Similarity Search by Aggregation of Multiple Pivot-Permutation Ranking

David Novak, Pavel Zezula

Masaryk University Brno, Czech Republic

CEMI meeting, April 16, 2014

David Novak (MU Brno)

PPP-Codes

CEMI meeting 1 / 17

Outline of the Talk

Approximate Distance-based Similarity Search

- PPP-Codes Approach
 - Multiple Pivot Space Partitioning
 - Ranking of the Data Objects
 - Indexing and Searching
- Efficiency of our Approach

- ∢ ∃ ▶

- generic similarity search
- data modeled as metric space (\mathcal{D}, δ) , where \mathcal{D} is a *domain* of objects and δ is a total *distance function* $\delta : \mathcal{D} \times \mathcal{D} \longrightarrow \mathbb{R}_0^+$ satisfying postulates of identity, symmetry, and triangle inequality

- generic similarity search
- data modeled as metric space (D, δ), where D is a domain of objects and δ is a total distance function δ : D × D → ℝ₀⁺ satisfying postulates of identity, symmetry, and triangle inequality
- query by example: K-NN(q) returns K objects x from the dataset $\mathcal{X} \subseteq \mathcal{D}$ with the smallest $\delta(q, x)$

- generic similarity search
- data modeled as metric space (D, δ), where D is a domain of objects and δ is a total distance function δ : D × D → ℝ₀⁺ satisfying postulates of identity, symmetry, and triangle inequality
- query by example: K-NN(q) returns K objects x from the dataset $\mathcal{X} \subseteq \mathcal{D}$ with the smallest $\delta(q, x)$
- dataset \mathcal{X} may be very large
- \bullet distance function δ may be time consuming

- generic similarity search
- data modeled as metric space (D, δ), where D is a domain of objects and δ is a total distance function δ : D × D → ℝ₀⁺ satisfying postulates of identity, symmetry, and triangle inequality
- query by example: K-NN(q) returns K objects x from the dataset $\mathcal{X} \subseteq \mathcal{D}$ with the smallest $\delta(q, x)$
- dataset \mathcal{X} may be very large
- \bullet distance function δ may be time consuming
- requires approximate search

Motivation

current indexes for large-scale approximate search:

- dataset X is partitioned
- given query q, the "most-promising" partitions form the candidate set
- the candidate set S_C is refined by calculating $\delta(q, x)$, $\forall x \in S_C$

Motivation

current indexes for large-scale approximate search:

- dataset X is partitioned
- given query q, the "most-promising" partitions form the candidate set
- the candidate set S_C is refined by calculating $\delta(q, x)$, $\forall x \in S_C$

reading and refinement of S_C form majority of the search costsaccuracy of the candidate set is key

- data space is partitioned multiple-times independently
 - each partitioning is defined by one pivot space

- data space is partitioned multiple-times independently
 - each partitioning is defined by one pivot space
- given query q, multiple ranked candidate sets are generated

- data space is partitioned multiple-times independently
 each partitioning is defined by one pivot space
- given query q, multiple ranked candidate sets are generated
- these multiple candidate rankings are effectively merged
 - the merged candidate set is smaller and more accurate

- data space is partitioned multiple-times independently
 each partitioning is defined by one pivot space
- given query q, multiple ranked candidate sets are generated
- these multiple candidate rankings are effectively merged
 - the merged candidate set is smaller and more accurate
- the final candidate set is retrieved and refined

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Formally: object $x \in \mathcal{X}$ is mapped to its pivot permutation (PP): Π_x on $\{1, \ldots, k\}$ such that $\Pi_x(i)$ is the *i*-th closest pivot from x

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Formally: object $x \in \mathcal{X}$ is mapped to its pivot permutation (PP): Π_x on $\{1, \ldots, k\}$ such that $\Pi_x(i)$ is the *i*-th closest pivot from x

each Voronoi cell corresponds to a pivot permutation prefix (PPP) of length $l: \Pi_x(1..l)$

Multiple Pivot Space Partitioning

We propose to create λ independent pivot space partitionings

Multiple Pivot Space Partitioning

We propose to create λ independent pivot space partitionings

data objects $x \in \mathcal{X}$ are encoded as

$$PPP_{I}^{1..\lambda}(x) = \langle \Pi_{x}^{1}(1..l), \ldots, \Pi_{x}^{\lambda}(1..l) \rangle$$

Multiple Pivot Space Partitioning

We propose to create λ independent pivot space partitionings

data objects $x \in \mathcal{X}$ are encoded as

$${\it PPP}^{1..\lambda}_{\it I}(x)=\langle \Pi^1_x(1..{\it I}),\ldots,\Pi^\lambda_x(1..{\it I})
angle$$

in the example above $\lambda = 2$, k = 8, l = 4:

$$PPP_4^{1..2}(x_5) = \langle \langle 7, 4, 8, 5 \rangle, \langle 7, 8, 4, 6 \rangle \rangle$$

Ranking within a Single Pivot Space

Task: Having data $x \in \mathcal{X}$ encoded by PPP $\Pi_x(1..l)$ (single recursive Voronoi partitioning), define ranking of the PPPs with respect to $q \in \mathcal{D}$

Ranking within a Single Pivot Space

Task: Having data $x \in \mathcal{X}$ encoded by PPP $\Pi_x(1..l)$ (single recursive Voronoi partitioning), define ranking of the PPPs with respect to $q \in \mathcal{D}$

Ranking within a Single Pivot Space

Solution: We define distance between Voronoi cell $C_{\langle i_1,...,i_l \rangle}$ and query q as a weighted arithmetic mean of distances $\delta(q, p_{i_1}), \ldots, \delta(q, p_{i_l})$

Ranking using Multiple Pivot Spaces

Task: Having λ rankings of PPPs from λ pivot spaces, aggregate these rankings effectively into a final ranking

Ranking using Multiple Pivot Spaces

Task: Having λ rankings of PPPs from λ pivot spaces, aggregate these rankings effectively into a final ranking

 $q\in\mathcal{D}$

$$\begin{array}{c} \psi_{q}^{1:} & \{ x \ y_{1} \ y_{2} \} & \{ y_{3} \ y_{4} \ y_{5} \} & \{ y_{6} \} \ ... \\ \psi_{q}^{2:} & \{ y_{3} \ y_{2} \} & \{ y_{1} \ y_{4} \ y_{6} \ y_{7} \} & \{ x \ y_{8} \} \ ... \\ \psi_{q}^{3:} & \{ x \} & \{ y_{3} \ y_{4} \ y_{5} \} & \{ y_{2} \ y_{6} \} \ ... \\ \psi_{q}^{4:} & \{ y_{1} \ y_{2} \} & \{ y_{3} \ y_{4} \ y_{5} \} & \{ y_{8} \} & \{ y_{6} \} \ ... \\ \psi_{q}^{5:} & \{ y_{1} \ y_{2} \} & \{ y_{4} \ y_{5} \} & \{ y_{3} \ y_{4} \ y_{5} \} & \{ x \ y_{7} \} \ ... \\ \end{array}$$

Ranking using Multiple Pivot Spaces

Solution: Ranking of object x is p-percentile (e.g. median) of its λ ranks

 $\Psi_{\mathbf{p}}(q, x) = percentile_{\mathbf{p}}(\psi_{q}^{1}(x), \psi_{q}^{2}(x), \dots, \psi_{q}^{\lambda}(x))$

 $q\in\mathcal{D}$

 $\Psi_{0.5}(q, x) = percentile_{0.5}\{1, 1, 3, 4, ?\} = 3$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• the Voronoi cells span large areas of the space

3

Image: A match a ma

- the Voronoi cells span large areas of the space
- given a query, the "close" cells contain also distant data objects
 - there is many more distant ones

- the Voronoi cells span large areas of the space
- given a query, the "close" cells contain also distant data objects
 - there is many more distant ones
- having several "orthogonal" partitionings
 - the query-relevant objects should be often at top positions
 - the distant objects vary

- the Voronoi cells span large areas of the space
- given a query, the "close" cells contain also distant data objects
 - there is many more distant ones
- having several "orthogonal" partitionings
 - the query-relevant objects should be often at top positions
 - the distant objects vary
- the percentile-based aggregation increases probability that query-relevant objects are ranked higher than the distant ones

Indexing the PPP-Codes

We build trie-like structure for each pivot space

- leafs: only suffixes of PPPs (spare memory)
- dynamic splits to optimize the memory usage
- possible grouping and delta-encoding of IDs in leaves

$$\Psi_{0.5}(q, x) = percentile_{0.5}\{1, 1, 3, 4, ?\} = 3$$

Given query $q \in \mathcal{D}$, our search algorithm:

David Novak (MU Brno)

$$\Psi_{0.5}(q, x) = percentile_{0.5}\{1, 1, 3, 4, ?\} = 3$$

Given query $q \in \mathcal{D}$, our search algorithm:

9 generates one-by-one individual rankings ψ_a^j (GETNEXTIDS algorithm, it uses the trie structures)

$$\Psi_{0.5}(q, x) = percentile_{0.5}\{1, 1, 3, 4, ?\} = 3$$

Given query $q \in \mathcal{D}$, our search algorithm:

- generates one-by-one individual rankings ψ_q^j (GETNEXTIDS algorithm, it uses the trie structures)
- Outputs objects with the best aggregated ranks (PPPRANK algorithm based on MEDRANK by Fagin et al.)

Given query $q \in \mathcal{D}$, our search algorithm:

- generates one-by-one individual rankings ψ_q^J (GETNEXTIDS algorithm, it uses the trie structures)
- Outputs objects with the best aggregated ranks (PPPRANK algorithm based on MEDRANK by Fagin et al.)

Evaluation: Accuracy of the Candidate Set

Given K-NN, we consider $recall(A) = \frac{|A \cap A^P|}{K} \cdot 100\%$ vs. candidate set size

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Evaluation: Accuracy of the Candidate Set

Given K-NN, we consider $recall(A) = \frac{|A \cap A^P|}{K} \cdot 100\%$ vs. candidate set size

Candidate set size R necessary to achieve 80% of 1-NN recall

Settings: 1M CoPhIR dataset, l = 8 and $\mathbf{p} = 0.75$

Experimental Evaluation Criteria

three datasets:

- 100M CoPhIR (280-dim, complex metric, obj.: 600 B, δ time 0.01 ms)
- 1M SQFD (quadratic form distance, obj.: 2 kB, δ time 0.5 ms)
- 10M ADJ ($[0, 1]^{32}$ uniform, L_2 , obj.: 0.5–4.0 kB, δ time 0.001–1.0 ms)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Experimental Evaluation Criteria

three datasets:

- 100M CoPhIR (280-dim, complex metric, obj.: 600 B, δ time 0.01 ms)
- 1M SQFD (quadratic form distance, obj.: 2 kB, δ time 0.5 ms)
- 10M ADJ ($[0,1]^{32}$ uniform, L_2 , obj.: 0.5–4.0 kB, δ time 0.001–1.0 ms)

technical evaluation of our approach:

- mutual influence of various parameters to recall
 - k, l, λ , p, size of the PPP-Code representation

Experimental Evaluation Criteria

three datasets:

- 100M CoPhIR (280-dim, complex metric, obj.: 600 B, δ time 0.01 ms)
- 1M SQFD (quadratic form distance, obj.: 2 kB, δ time 0.5 ms)
- 10M ADJ ($[0,1]^{32}$ uniform, L_2 , obj.: 0.5–4.0 kB, δ time 0.001–1.0 ms)

technical evaluation of our approach:

- mutual influence of various parameters to recall
 - k, l, λ , **p**, size of the PPP-Code representation

• $k \in \{64, 128, 256, 512\}$, l = 8, $\lambda = 5$, $\mathbf{p} = 0.5$ (3rd rank out of 5)

Evaluation: Candidate Set vs. Recall

candidate set size R vs. recall

3

Evaluation: Candidate Set vs. Recall

Recall and search time on while increasing candidate set size R.

Settings: 100M CoPhIR dataset, k = 512

Evaluation: Tradeoff

complexity of the $\operatorname{PPPRANK}$ algorithm vs. candidate set reduction

3

Evaluation: Tradeoff

complexity of the $\operatorname{PPPRANK}$ algorithm vs. candidate set reduction

PPP-Code /		size of an object [bytes]			
M-Index [ms]		512	1024	2048	4096
δ time	0.001 ms	370 / 240	370 / 410	370 / 1270	370 / 1700
	0.01 ms	380 / 660	380 / 750	380 / 1350	380 / 1850
	0.1 ms	400 / 5400	400 / 5400	420 / 5500	420 / 5700
	1 ms	1100 / 52500	1100 / 52500	1100 / 52500	1100 / 52500
Search times [ms] of PPP-Codes / M-Index smaller search times are in boldface.					

Settings: 10M ADJUSTABLE dataset, 10-NN recall = 85 %, k = 128; PPP-Codes: R = 1000; M-Index: R = 400000

イロト 不得 トイヨト イヨト 二日

Conclusions

The PPP-Codes technique

- use multiple pivot spaces to encode data objects
- rank data with respect to query within individual pivot spaces
- final candidate set is aggregation of these rankings
- efficient indexing and searching mechanisms are defined

· < /⊒ > < ∃ >

Conclusions

The PPP-Codes technique

- use multiple pivot spaces to encode data objects
- rank data with respect to query within individual pivot spaces
- final candidate set is aggregation of these rankings
- efficient indexing and searching mechanisms are defined

The results show that

- even two pivot spaces help, more than five do not help much
- the candidate set is reduced by one-two orders of magnitude
- the rank & merge algorithm is complex but usually worth