Similarity Search by Aggregation of Multiple Pivot-Permutation Ranking

David Novak, Pavel Zezula

Masaryk University Brno, Czech Republic

CEMI meeting, April 16, 2014

Outline of the Talk

1 [Approximate Distance-based Similarity Search](#page-2-0)

2 [PPP-Codes Approach](#page-8-0)

- [Multiple Pivot Space Partitioning](#page-12-0)
- [Ranking of the Data Objects](#page-20-0)
- [Indexing and Searching](#page-30-0)
- [Efficiency of our Approach](#page-35-0)

4 0 8

- **o** generic similarity search
- • data modeled as metric space (D, δ) , where D is a domain of objects and δ is a total *distance function* $\delta: \mathcal{D} \times \mathcal{D} \longrightarrow \mathbb{R}^+_0$ satisfying postulates of identity, symmetry, and triangle inequality

- **o** generic similarity search
- data modeled as metric space (D, δ) , where D is a *domain* of objects and δ is a total *distance function* $\delta: \mathcal{D} \times \mathcal{D} \longrightarrow \mathbb{R}^+_0$ satisfying postulates of identity, symmetry, and triangle inequality
- **query by example:** $K-NN(q)$ returns K objects x from the dataset $\mathcal{X} \subset \mathcal{D}$ with the smallest $\delta(q, x)$

- **o** generic similarity search
- data modeled as metric space (D, δ) , where D is a *domain* of objects and δ is a total *distance function* $\delta: \mathcal{D} \times \mathcal{D} \longrightarrow \mathbb{R}^+_0$ satisfying postulates of identity, symmetry, and triangle inequality
- **query by example:** $K-NN(q)$ returns K objects x from the dataset $\mathcal{X} \subset \mathcal{D}$ with the smallest $\delta(q, x)$
- dataset $\mathcal X$ may be very large
- • distance function δ may be time consuming

- **o** generic similarity search
- data modeled as metric space (D, δ) , where D is a *domain* of objects and δ is a total *distance function* $\delta: \mathcal{D} \times \mathcal{D} \longrightarrow \mathbb{R}^+_0$ satisfying postulates of identity, symmetry, and triangle inequality
- **query by example:** $K-NN(q)$ returns K objects x from the dataset $\mathcal{X} \subset \mathcal{D}$ with the smallest $\delta(q, x)$
- dataset $\mathcal X$ may be very large
- distance function δ may be time consuming
- • requires approximate search

Motivation

current indexes for large-scale approximate search:

- dataset X is partitioned
- \bullet given query q, the "most-promising" partitions form the candidate set
- the candidate set S_C is refined by calculating $\delta(q, x)$, $\forall x \in S_C$

∢ □ ▶ ⊰ _□ ▶ ⊰ ∃ ▶ ⊰

Motivation

current indexes for large-scale approximate search:

- dataset X is partitioned
- \bullet given query q, the "most-promising" partitions form the candidate set
- the candidate set S_C is refined by calculating $\delta(q, x)$, $\forall x \in S_C$

reading and refinement of S_C form majority of the search costs • accuracy of the candidate set is key

1 data space is partitioned multiple-times independently

• each partitioning is defined by one pivot space

イロト イ押 トイヨト イヨ

- **1** data space is partitioned multiple-times independently
	- each partitioning is defined by one pivot space
- 2 given query q, multiple ranked candidate sets are generated

◂**◻▸ ◂⁄** ▸

- **1** data space is partitioned multiple-times independently • each partitioning is defined by one pivot space
- 2 given query q, multiple ranked candidate sets are generated
- **3** these multiple candidate rankings are effectively merged
	- the merged candidate set is smaller and more accurate

- **1** data space is partitioned multiple-times independently • each partitioning is defined by one pivot space
- 2 given query q, multiple ranked candidate sets are generated
- **3** these multiple candidate rankings are effectively merged
	- the merged candidate set is smaller and more accurate
- **4** the final candidate set is retrieved and refined

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

メロト メ押 トメミト メミ

 -990

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Formally: object $x \in \mathcal{X}$ is mapped to its pivot permutation (PP): Π_x on $\{1, \ldots, k\}$ such that $\Pi_x(i)$ is the *i*-th closest pivot from x

Pivot space is defined by a set of k pivots $\{p_1, \ldots, p_k\} \subseteq \mathcal{D}$

Formally: object $x \in \mathcal{X}$ is mapped to its pivot permutation (PP): Π_x on $\{1, \ldots, k\}$ such that $\Pi_x(i)$ is the *i*-th closest pivot from x

each Voronoi cell corresponds to a pivot permutation prefix (PPP) of length Γ : $\Pi_{\rm x}(1..l)$

Multiple Pivot Space Partitioning

We propose to create λ independent pivot space partitionings

Multiple Pivot Space Partitioning

We propose to create λ independent pivot space partitionings

data objects $x \in \mathcal{X}$ are encoded as

$$
PPP_l^{1..\lambda}(x)=\langle \Pi_x^1(1..l),\ldots,\Pi_x^{\lambda}(1..l)\rangle
$$

David Novak (MU Brno) **[PPP-Codes](#page-0-0)** PPP-Codes CEMI meeting 7 / 17

Multiple Pivot Space Partitioning

We propose to create λ independent pivot space partitionings

data objects $x \in \mathcal{X}$ are encoded as

$$
PPP_l^{1..\lambda}(x)=\langle \Pi_x^1(1..l),\ldots,\Pi_x^{\lambda}(1..l)\rangle
$$

in the example above $\lambda = 2$, $k = 8$, $l = 4$:

$$
PPP_4^{1..2}(x_5)=\langle\langle 7,4,8,5\rangle,\langle 7,8,4,6\rangle\rangle
$$

Ranking within a Single Pivot Space

Task: Having data $x \in \mathcal{X}$ encoded by PPP $\Pi_x(1..l)$ (single recursive Voronoi partitioning), define ranking of the PPPs with respect to $q \in \mathcal{D}$

 QQ

メロト メ押 トメミト メミ

Ranking within a Single Pivot Space

Task: Having data $x \in \mathcal{X}$ encoded by PPP $\Pi_{x}(1..l)$ (single recursive Voronoi partitioning), define ranking of the PPPs with respect to $q \in \mathcal{D}$

Ranking within a Single Pivot Space

Solution: We define distance between Voronoi cell $C_{(i_1,...,i_l)}$ and query q as a weighted arithmetic mean of distances $\delta(q, p_{i_1}), \ldots, \delta(q, p_{i_l})$

Ranking using Multiple Pivot Spaces

Task: Having λ rankings of PPPs from λ pivot spaces, aggregate these rankings effectively into a final ranking

 QQ

イロト イ押 トイヨト イヨ

Ranking using Multiple Pivot Spaces

Task: Having λ rankings of PPPs from λ pivot spaces, aggregate these rankings effectively into a final ranking

 $q \in \mathcal{D}$

$$
\psi_q^1: \{x \ y_1 y_2\} \quad \text{rank}^{11} \quad \text{rank}^{12} \quad \text{rank}^{13} \quad \text{rank}^{14} \quad \text{rank}^{15} \quad \text{rank}^{16} \quad \text{rank}^{17} \quad \text{rank}^{18} \quad \text{rank}^{19} \quad \text{
$$

画

 QQ

メロト メ押 トメミト メミ

Ranking using Multiple Pivot Spaces

Solution: Ranking of object x is p-percentile (e.g. median) of its λ ranks

$$
\Psi_{\mathbf{p}}(q,x) = \text{percentile}_{\mathbf{p}}(\psi_q^1(x), \psi_q^2(x), \dots, \psi_q^{\lambda}(x))
$$

 $q \in \mathcal{D}$

$$
\psi_q^1: \{\mathbf{x} \ y_1 y_2\} \{y_3 y_4 y_5\} \{y_6\} \dots
$$
\n
$$
\psi_q^2: \{y_3 y_2\} \{y_3 y_4 y_5\} \{y_6\} \dots
$$
\n
$$
\psi_q^2: \{y_3 y_2\} \{y_1 y_4 y_6 y_7\} \{\mathbf{x} y_8\} \dots
$$
\n
$$
\psi_q^3: \{\mathbf{x}\} \{y_3 y_4 y_5\} \{y_2 y_6\} \dots
$$
\n
$$
\psi_q^4: \{y_1 y_2\} \{y_3 y_4 y_5\} \{y_8\} \{y_6\} \dots
$$
\n
$$
\psi_q^5: \{y_1 y_2\} \{y_3 y_4 y_5\} \{y_8\} \{\mathbf{x} y_7\} \dots
$$
\n
$$
\Psi_{0.5} (q, x) = \text{percentile}_{0.5} \{1, 1, 3, 4, ?\} = 3
$$

KOD KAR KED KED E VAN

• the Voronoi cells span large areas of the space

← ロ ▶ → イ 同

画

 299

- the Voronoi cells span large areas of the space
- **•** given a query, the "close" cells contain also distant data objects
	- there is many more distant ones

4 0 8

- the Voronoi cells span large areas of the space
- **•** given a query, the "close" cells contain also distant data objects
	- there is many more distant ones
- having several "orthogonal" partitionings
	- the query-relevant objects should be often at top positions
	- the distant objects vary

- the Voronoi cells span large areas of the space
- **•** given a query, the "close" cells contain also distant data objects
	- there is many more distant ones
- having several "orthogonal" partitionings
	- the query-relevant objects should be often at top positions
	- the distant objects vary
- • the percentile-based aggregation increases probability that query-relevant objects are ranked higher than the distant ones

Indexing the PPP-Codes

We build trie-like structure for each pivot space

- leafs: only suffixes of PPPs (spare memory)
- dynamic splits to optimize the memory usage
- possible grouping and delta-encoding of IDs in leaves

$$
\Psi_{0.5}(q, x) = percentile_{0.5}\{1, 1, 3, 4, ?\} = 3
$$

Given query $q \in \mathcal{D}$, our search algorithm:

David Novak (MU Brno) [PPP-Codes](#page-0-0) CEMI meeting 12 / 17

$$
\Psi_{0.5}(q, x) = percentile_{0.5}\{1, 1, 3, 4, ?\} = 3
$$

Given query $q \in \mathcal{D}$, our search algorithm:

 $\textcolor{black} \textbf{\textsf{I}}\textbf{\textsf{I}}$ generates one-by-one individual rankings $\psi^j_{\textcolor{black} \textbf{\textsf{q}}}$ (GETNEXTIDS algorithm, it uses the trie structures)

$$
\Psi_{0.5}(q, x) = percentile_{0.5}\{1, 1, 3, 4, ?\} = 3
$$

Given query $q \in \mathcal{D}$, our search algorithm:

- $\textcolor{black} \textbf{\textsf{I}}\textbf{\textsf{I}}$ generates one-by-one individual rankings $\psi^j_{\textcolor{black} \textbf{\textsf{q}}}$ $(GETNEXTIDS$ algorithm, it uses the trie structures)
- ² outputs objects with the best aggregated ranks $(PPPRANK$ algorithm based on MEDRANK by Fagin et al.)

Given query $q \in \mathcal{D}$, our search algorithm:

- $\textcolor{black}{{\mathbf{D}}}$ generates one-by-one individual rankings $\psi^j_{\bm q}$ $(GETNEXTIDS$ algorithm, it uses the trie structures)
- ² outputs objects with the best aggregated ranks $(PPPRANK$ algorithm based on MEDRANK by Fagin et al.)

 QQ

ヨメ メラメ

∢ ロ ▶ - ィ 何 ▶ - ィ

Evaluation: Accuracy of the Candidate Set

Given K-NN, we consider $recall(A) = \frac{|A \cap A^P|}{K} \cdot 100\%$ vs. candidate set size

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Evaluation: Accuracy of the Candidate Set

Given K-NN, we consider $recall(A) = \frac{|A \cap A^P|}{K} \cdot 100\%$ vs. candidate set size

Candidate set size R necessary to achieve 80% of 1-NN recall

Settings: 1M CoPhIR dataset, $l = 8$ and $p = 0.75$

Experimental Evaluation Criteria

three datasets:

- **100M CoPhIR (280-dim, complex metric, obj.: 600 B,** δ **time 0.01 ms)**
- 1M SQFD (quadratic form distance, obj.: 2 kB, δ time 0.5 ms)
- • 10M ADJ ($[0, 1]^{32}$ uniform, L_2 , obj.: 0.5–4.0 kB, δ time 0.001–1.0 ms)

Experimental Evaluation Criteria

three datasets:

- **100M CoPhIR (280-dim, complex metric, obj.: 600 B,** δ **time 0.01 ms)**
- 1M SQFD (quadratic form distance, obj.: 2 kB, δ time 0.5 ms)
- 10M ADJ ($[0, 1]^{32}$ uniform, L_2 , obj.: 0.5–4.0 kB, δ time 0.001–1.0 ms)

technical evaluation of our approach:

- • mutual influence of various parameters to recall
	- k, l, λ , **p**, size of the PPP-Code representation

Experimental Evaluation Criteria

three datasets:

- **100M CoPhIR (280-dim, complex metric, obj.: 600 B,** δ **time 0.01 ms)**
- 1M SQFD (quadratic form distance, obj.: 2 kB, δ time 0.5 ms)
- 10M ADJ ($[0, 1]^{32}$ uniform, L_2 , obj.: 0.5–4.0 kB, δ time 0.001–1.0 ms)

technical evaluation of our approach:

- mutual influence of various parameters to recall
	- k, l, λ , **p**, size of the PPP-Code representation

• $k \in \{64, 128, 256, 512\}, l = 8, \lambda = 5$, $p = 0.5$ (3rd rank out of 5)

 Ω

イロト イ押ト イヨト イヨト

Evaluation: Candidate Set vs. Recall

candidate set size R vs. recall

 \equiv 990

イロト イ部 トイヨ トイヨト

Evaluation: Candidate Set vs. Recall

candidate set size R vs. recall

Recall and search time on while increasing candidate set size R.

Settings: 100M CoPhIR dataset, $k = 512$

 200

Evaluation: Tradeoff

complexity of the PPPRank algorithm vs. candidate set reduction

 $E = \Omega Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Evaluation: Tradeoff

complexity of the PPPRank algorithm vs. candidate set reduction

Settings: 10M ADJUSTABLE dataset, 10-NN recall = 85% , $k = 128$; PPP-Codes: $R = 1000$; M-Index: $R = 400000$

KOD KARD KED KED DA MAA

Conclusions

The PPP-Codes technique

- **•** use multiple pivot spaces to encode data objects
- rank data with respect to query within individual pivot spaces
- final candidate set is aggregation of these rankings
- **•** efficient indexing and searching mechanisms are defined

4 ロ ▶ 4 包

Conclusions

The PPP-Codes technique

- **•** use multiple pivot spaces to encode data objects
- rank data with respect to query within individual pivot spaces
- final candidate set is aggregation of these rankings
- **•** efficient indexing and searching mechanisms are defined

The results show that

- **•** even two pivot spaces help, more than five do not help much
- the candidate set is reduced by one–two orders of magnitude
- • the rank & merge algorithm is complex but usually worth