
Big Data
A general approach to process multimedia datasets

David Mera

Masaryk University
Brno, Czech Republic

24/02/2014



Table of Contents

1 Introduction
Big Data
Terminology

2 Big data processing systems
Batch data approach
Stream data approach

3 System development
Highest system overview
Main goals
System overview
Lambda architecture
System architecture
Main challenges
System prototype
Ongoing work



Table of Contents

1 Introduction
Big Data
Terminology

2 Big data processing systems
Batch data approach
Stream data approach

3 System development
Highest system overview
Main goals
System overview
Lambda architecture
System architecture
Main challenges
System prototype
Ongoing work



Introduction
Big Data

Organizations have potential access to huge datasets of
heterogeneous data.
Stored data are usually not structured.
Data should be processed to uncover useful information.



Introduction
Terminology

Batch data
Static snapshot of a dataset
Batch computation has a ‘start’ and an ‘end’
Fast datasets processing

Stream data
Stream of events that flows into the system at a given data
rate over which we have no control
Stream computation ‘never’ ends
The processing system must keep up with the event rate or
degrade gracefully
Near-real time answers



Table of Contents

1 Introduction
Big Data
Terminology

2 Big data processing systems
Batch data approach
Stream data approach

3 System development
Highest system overview
Main goals
System overview
Lambda architecture
System architecture
Main challenges
System prototype
Ongoing work



MapReduce

MapReduce is a framework for paralleling the processing of
massive datasets.
The Hadoop implementation is highly optimized for batch
processing
Hadoop attempts to run Map and Reduce tasks at the
machines were data being processed are located

Task Tracker

DataNode

Node 1

Task Tracker

DataNode

Node 2

Task Tracker

DataNode

Node n

Secondary 

Name Node

HDFS

NameNode

MapReduce 

Framework

Job Tracker

Master Node



MapReduce
Map and Reduce functions

MapReduce Job
Map function (mandatory)

Computation

intermediate<key', value>input<key,value>

Data Source

Reduce function (optional)

Merge function
Output (0..N)intermediate<key',value>



Storm
Distributed and fault-tolerant realtime computation

Storm cluster
Master node

The Nimbus daemon is responsible for distributing code around
the cluster, assigning tasks to machines, and monitoring for
failures

Worker nodes
The Supervisor daemon listens for work assigned to its machine
and starts and stops worker processes as necessary based on
what Nimbus has assigned to it.

Communication - Zookeeper

Nimbus

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor



Storm
Components

Storm runs topologies
Graph of computation
Each node in a topology contains processing logic

Stream
Unbounded sequence of tuples

Spout
It reads input data from an external source and emits them as
a stream
It is capable of replaying a tuple

Bolt
Input streams –> some processing –> new streams.

Spout

Bolt

Bolt

Bolt

Bolt

Spout



Storm
Parallelism of a Storm topology

Topologies execute across worker processes (JVM)
Tasks are spread evenly across all the workers
The parallelism for each node is defined by the user
User can also specify tasks for each node
Stream grouping - How a stream should be partitioned

i.e.Shuffle grouping
Scalability in processing time

TOPOLOGY

Worker Process

Task

Task

Task

Task

Task

Task

Worker Process

Task

Task

Task

Task

Task

Task

Pink

Spout
Blue

Bolt
Green

Bolt



Previous conclusions

“Attempting to build a general-purpose platform for both batch and
stream computing would result in a highly complex system that
may end up not being optimal for either task”



Table of Contents

1 Introduction
Big Data
Terminology

2 Big data processing systems
Batch data approach
Stream data approach

3 System development
Highest system overview
Main goals
System overview
Lambda architecture
System architecture
Main challenges
System prototype
Ongoing work



System development
Highest system overview



System development
Goals

Efficient processing of huge datasets
External and internal data access
Heterogeneous data management
Processing of arbitrary functions
Data relations management
Infrastructure flexibility



System development
System overview

...

... ... ...

...

...

Job(Algorithm, libraries, Data source)

Data Source

Distributed storage system

Monitoring

 system

Stream of events

Event(key,TimeStamp,Datum)

Processing system

Subtask-1 Subtask-2 Subtask-N

Subtask-M

Query

system
query



System development
Lambda architecture

Batch layer
Storage of the master dataset
Batch views computation

New Data

Speed layer

All Data Batch View

Batch View

Serving LayerBatch Layer

Realtime View

Realtime View

Query

Query

Merge

Merge



System development
Lambda architecture

Serving layer
Batch views storage
Efficient query system
The views are updated whenever the batch layer finishes
precomputing a batch view

New Data

Speed layer

All Data Batch View

Batch View

Serving LayerBatch Layer

Realtime View

Realtime View

Query

Query

Merge

Merge



System development
Lambda architecture

Speed layer
Realtime processing of arbitrary functions on arbitrary data
Real time views computation via incremental updates

New Data

Speed layer

All Data Batch View

Batch View

Serving LayerBatch Layer

Realtime View

Realtime View

Query

Query

Merge

Merge



System development
General overview of the architecture

System interface

Processing Layer

Computer resources

Speed layer

Storm

Batch layer

MapReduce

Hadoop

View layer

Middleware layer

JOB (URI,algorithm, libraries)

Monitoring system

Monitoring Layer

Cluster

monitoring

Processing 

system 

monitoring

Hadoop V2

Distributed File System

HDFS

YARN 
Cluster Resource Management

Metascheduler

Data Source

Stream of events

Event (key,timestamp,datum)



System development
Processing layer - Main challenges

Data source access
URIs (Uniform Resource Identifier)
External data: Speed Layer (virtual streams)
Internal data: Batch Layer

Data management
Heterogeneous data
Data storage

Data relations
Timestamp
Specialized Storm topologies

Processing arbitrary functions
Meta-language
Scheduler



System development
Monitoring layer - Main challenges

Infraestructure flexibility
Dedicated hardware infrastructure: it is expensive and very
often it is wasted
Shared infraestructure: processing systems are not usually
adapted.

Main Challenges
Monitoring system to analyze the status of the cluster and jobs
Metascheduler to automatically modify the use of the
infraestructure according to the monitoring system



System development
Prototype

A virtual cluster via Virtual Box was deployed
Hadoop and HDFS were installed (batch layer)
Storm was installed (speed layer)

Master node

Slave nodes

Nimbus (Storm)

Supervisors (Storm)

NameNode (HDFS)

Datenodes (HDFS)



System development
Prototype

A Spout to get external data was deployed
Data containers were developed
A generic bolt was designed to store data

Specific implementation to deal with HDFS
Bolt takes into account the block size

...

... ...
...

...

Storm

Topology

HDFS

JOB (topology, libraries, server, port)

Save raw data

Extract 

features
Save features

Soket

Spout



Ongoing work

Deployment of the prototype in a real cluster
Comparative study between the prototype and other
processing approaches

Sequential computing
Grid computing
MapReduce

Infrastructure flexibility
Storm flexibility
Monitoring system development

Cluster status
Job status

Metascheduler development



Big Data
A general approach to process multimedia datasets

Thank you for your attention!


	Introduction
	Big Data
	Terminology

	Big data processing systems
	Batch data approach
	Stream data approach

	System development
	Highest system overview
	Main goals
	System overview
	Lambda architecture
	System architecture
	Main challenges
	System prototype
	Ongoing work


