Hyperbolické   Funkce MB202 Jaro 2015 433670 433418 sinh(x) = ex − e−x 2 = e2x −1 2ex D(sinh) = R H(sinh) = R sinh(x) argsinh(x) = ln(x + x2 +1) D(argsinh) = R H(argsinh) = R argsinh(x) cosh(x) cosh(x) = ex +e−x 2 = e2x +1 2ex D(cosh) = R H(cosh) = 1,∞ argcosh(x) argcosh(x) = ln(x + x2 −1) D(argcosh) = 1,∞ H(argcosh) = 0,∞ argsinh(sinh(x)) argcosh(cosh(x)) tgh(x) tgh(x)      argtgh(x) argtgh(tgh(x)) coth(x) coth(x)    argcoth(x) argcoth(coth(x)) vzorečky sinh(x ± y) = sinh(x)cosh(y)±cosh(x)sinh(y) cosh(x ± y) = cosh(x)cosh(y)±sinh(x)sinh(y) sinh(2x) = 2sinh(x)cosh(x) cosh(2x) = cosh2 (x)+sinh2 (x) sinh2 (x) = 1 2 (cosh(2x)−1) cosh2 (x) = 1 2 (cosh(2x)+1) cosh2 (x)−sinh2 (x) =1 tgh(x ± y) = tgh(x)±tgh(y) 1±tgh(x)tgh(y) tgh(2x) = 2tgh(x) 1+tgh2 (x) vztah  k  sin/cos sinh(x) = −isin(ix) cosh(x) = cos(ix) tgh(x) = −itg(ix) coth(x) = icot(ix) užití •  řetězovka •  fyzika •  tractrix