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Abstract. Model checking together with other formal methods and
techniques is being adapted for applications to biological systems. We
present a selection of approaches used for modeling biological systems
and formalizing their interesting properties in temporal logics. We also
give a brief account of high performance model checking techniques and
add a few case studies that demonstrate the use of model checking in
computational systems biology. The primary aim is to give a reference
for further reading.

1 Introduction

All biological systems, from single pathways to multicellular organisms, can be
seen as complex systems of interacting components. Biological systems can also
be seen as reactive systems, as they continuously interact with their environment.
Systems biology thus studies complex interactions in biological systems, with the
aim to understand better the processes that happen in such a system, as well as
to grasp the emergent properties of such a system as a whole.

Computational systems biology can, by drawing upon mathematical ap-
proaches developed in the context of computer science and engineering [87, 144],
contribute to the creation of powerful simulation, analysis and reasoning tools
for working biologists. These tools can be used in devising new experiments and
ultimately, for understanding functional properties of genome, proteome, cells,
and organisms.

We are experiencing growing collaboration between biologists and computer
scientists in the area of systems biology in recent years. This is because it has
turned out that formal mathematical approaches to modeling and analysis, that
have been developed for distributed computer systems and are referred to as
formal methods, are applicable to biological systems as well as both kinds of
systems have a lot in common.
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In particular, automated formal verification (model checking) is one of the
most promising formal methods that have the potential to be exploited in com-
putational systems biology, because model checking is in principle an excellent
methodology to verify/refute interesting biological hypotheses.

In this tutorial review, we would like to briefly describe some of the issues
related to the application of model checking to the analysis of biological systems.

2 Setting the Context

2.1 Model Checking of Computer Systems

Model checking is a computer science and engineering technique that grew up
from a purely academic research technique to a well-accepted industrial verifica-
tion method. Nowadays, model checking is widely considered as an enhancement
and complement to existing validation and verification techniques such as simu-
lation and testing.

The roots of model checking lay in our never-ending quest to build computer
systems that would be bug-free and correct. Our dependency on computer-based
applications (both hardware and software) have motivated researchers to develop
new techniques to increase our confidence in correctness of developed systems.

Testing is the basic verification technique that is widely used and extremely
useful in practise. Another solution is to simulate the behavior of the system
on a computer. Simulation does not work directly on the real system, but on a
model. A model is an abstract representation of the real system. An advantage
of simulation is that one does not need to build the real system and thus it is
usually much cheaper than testing.

Both testing and simulation are widespread in industrial applications and
their utilization has been shown to be very useful. One drawback, however, is
that it is not possible, in general, to simulate or test all the possible scenarios
or behaviors of a given system. That is, these techniques are in general not
exhaustive and the failure cases may appear among those not tested or simulated.

Formal verification is a technique that complements testing and simulation.
Even though the introduction of formal verification is rather costly, it pays off
after all as it results in significant reduction in verification time as well as devel-
opment costs and time-to-market. Attempts are being made to integrate formal
verification techniques and tools with other design approaches to support engi-
neering of complex industrial systems.

Model checking is a distinguished technique of formal verification of complex
hardware and software designs. Founders of the technique, Edmund M. Clarke
jr. (CMU, USA), Allen E. Emerson (Texas at Austin, USA), and Joseph Sifakis
(IMAG Grenoble, France), were awarded ACM Turing Award in 2007 for their
roles in developing model checking into a highly effective verification technol-
ogy, widely adopted in the hardware and software industries. Unfortunately, the
model checking procedure is computationally demanding and memory-intensive
in general, hence, its applicability to large and complex systems routinely seen in
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practise these days is still limited. The major hampering factor is the state space
explosion problem [61] due to which large industrial models cannot be efficiently
handled, unless more sophisticated and scalable methods are used.

A lot of attention has been paid to the development of approaches to fight the
state space explosion problem in the field of automated formal verification [139].
Many techniques, such as state compaction [93], compression [107], state space
reduction [140, 58, 81], symbolic state space representation [41], etc., were in-
troduced to reduce the memory requirements needed to handle the verification
problem with standard sequential algorithms. These techniques allowed to verify
larger systems without the need of increased computing power.

However, for large industrial models, the state space, even if significantly
reduced using the above mentioned techniques, does not completely fit into the
main memory of a computer and hence the model-checking algorithm becomes
very slow as soon as the memory is exhausted and the system starts swapping.
A typical approach to dealing with these practical limitations is to increase
the computational power (especially the amount of random-access memory) by
building a powerful parallel computer as a network (cluster) of workstations.
Individual workstations communicate through a message-passing interface such
as MPI. Observed from outside, a cluster appears as a single parallel computer
with high computing power and a large amount of memory. In recent years, a
lot of effort has been invested into using parallel and distributed environments
in order to solve the computational and space complexity bottlenecks in model
checking and therefore we devote a special section to review some parallel and
distributed approaches (Section 3.4).

2.2 On the Role of Model Checking in Systems Biology

There are many ways how we can improve correctness of computer systems.
The used methods and techniques are generally classified as verification and/or
falsification approaches. The role of verification techniques, typically theorem
proving, is to guarantee there is no bug in the system while the role of falsification
techniques, typically testing, is to demonstrate the presence of errors. Model
checking is primarily a verification technique which is, however, often used for
falsification (as a bug hunting method).

We might tend to a similar position of model checking when applied to bio-
logical systems. The situation is, however, different for many reasons (see Fig. 1).
The most important difference is that in biology, the system under investigation
already exists. It is not the primary role of biology to create life (at least to some
extent). On the other hand, computer systems are man-made. In computer engi-
neering the models are used as abstractions that are step-wise transformed into
the final system. This contrasts to experimental sciences where models serve as
hypotheses. The role of verification in computer engineering is to ensure the sys-
tem that was constructed from the model has the same behavior as prescribed
by the model. If the verification fails, the system has to be corrected. In the case
of successful verification, we are done – the engineer has completed his task. On
the other hand, in experimental sciences the goal is to show that the hypothesis
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correctly captures some aspects of the real system. Scientific ideas are tested by
generating multiple possible hypotheses, coming up with predictions for each of
them, and then designing tests (experiments) by which we can falsify the hy-
potheses. Typically, we test hypotheses in order to refute them, not to try to
support them. In computer engineering the model is thus always correct, while
in science the system is.
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Fig. 1. Knowledge discovery in biology and computer engineering

Now let us have a closer look at the possible position of model checking in
computational systems biology. Systems biology can be characterized as an ap-
proach to the understanding of life through the study of how the properties of bi-
ological systems arise through interactions between the system components [137].
From this point of view, biological systems are similar to complex computer sys-
tems. Namely, in both kinds of systems the interaction of components is a source
of various emergent system properties that are not explicitly encoded in individ-
ual system parts. The common problem related to the analysis of such systems
is that the emergent properties are difficult to identify and quite often hard to
understand because the causes and effects are not obviously related.

For complex parallel and distributed software and hardware systems the pro-
cess of detection and analysis of emergent properties relates closely to the process
of formal verification. It is often the case that the emergent properties of dis-
tributed systems, such as deadlocks or non-progressive cycles, are properties that
the designers of the system have not the intention to introduce. Methods of au-
tomated formal verification, model checking in particular, can be thus used to
detect such properties and to prove their absence.

Going beyond verification and/or falsification of properties of biological sys-
tems, there are many other interesting questions having sometimes no direct
counter-part in computer systems, that can be solved by application of model
checking techniques. An example is the problem of parameter identification (also
called parameter estimation or model calibration). Parameter identification is a
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key issue in systems biology, as it represents the crucial step to obtaining better
models of biological systems that give more precise predictions. This issue is
usually addressed by fitting the model simulations to the observed experimental
data. In biological models, the control parameters used to define the behavior
of models are kinetic or rate parameters. Some of these parameters usually can-
not be experimentally determined which leads to the need to estimate these
parameters by computational methods. To this end, model checking provides a
promising alternative to fitting – parameters can be identified or fine tuned to
satisfy given set of properties. Parameter identification by model checking has
been referred to as parameter synthesis [76, 13, 25].

In [40, 147, 76], comprehensive parameter exploration techniques are intro-
duced. They are based on the construction (usually approximation) of a land-
scape function that maps every model parametrization to a value quantitatively
characterizing validity of the properties. Landscape function has direct appli-
cation in robustness analysis. Robustness can be understood as a feature of a
system to maintain a property in the face of parameter perturbation.

3 Description of Technique and Tools

In this section we give more technical details about models used in systems
biology and their biological properties. We also introduce some parallel and
distributed approaches to model checking as high performance techniques to
support analysis of complex biological systems.

3.1 Models of Biological Systems

Most of the models currently developed in systems biology focus on complex
interactions among system components. State-of-the-art biological knowledge is
being reconstructed and organized in the form of biological networks. Biologi-
cal networks are built from biological knowledge databases, experimental data
and generally understood principles based on many simplifying assumptions.
There are two fundamental types of biological networks – reaction networks and
regulatory networks. Recent network reconstructions typically mix the two. Re-
action networks provide a detailed view of underlying biochemical interactions
– nodes are chemical species and stoichiometry-labeled (multi-)edges represent
elementary chemical reactions. Regulatory networks are higher level and focus
on feedbacks among individual system components – nodes are species or ab-
stract biological objects and edges represent positive or negative influence. Gene
regulatory networks make a typical example [115].

Computational systems biology studies the dynamics of biological networks,
in particular, how a population of components affected by network interactions
evolves in time. To this end, biological model is defined as a biological network as-
sociated with a suitable semantics reflecting the system dynamics at a particular
level of abstraction. The semantics fulfils the following tasks:
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– Network components are given a mathematical interpretation as variables
(numbers of molecules or molar concentrations),

– Network interactions are given a mathematical interpretation as rules spec-
ifying dynamical changes in variables.

Both variables and rules can be understood as model quantities modeled at differ-
ent levels of abstraction. Variables can be treated as either discrete or continuous.
Discrete-value semantics can capture either a microscopic or mesoscopic view of
biological particles (e.g., number of molecules) or abstract qualitative interpre-
tations of selected qualities of modeled components (e.g., absence/presence of
a species). Continuous-value semantics represents a so-called macroscopic view
where the modeled objects are expected to appear in large quantities provided
that it is inconvenient to distinguish small differences (e.g., molar concentration
of a species in a cell).

Quantities that can be associated with rules are time and probability. Since
each interaction occurs in time with a specific rate, the respective rule is exe-
cuted with this rate implying the inherent time aspect of the system dynamics.
Naturally, time is considered as continuous, dense quantity. When the informa-
tion on rate is unknown or abstracted out due to simplifications, discrete-time
semantics is employed. It deals with the shortest (discrete) time step which can
represent an arbitrary finite time horizon. Discrete-time abstraction allows to
treat qualitative models as untimed, i.e., the exact duration of a single time step
is left unspecified. It is worth noting that in the most of cases the occurrence of
any rule is modeled as instantaneous and it occurs immediately after the condi-
tions for occurrence are satisfied. There exist models that refine these aspects of
semantics (e.g., delayed interactions [45] or non-instantaneous interactions [11]).

With respect to execution of interactions, rules can be either deterministic
or stochastic. Deterministic rules represent interactions that occur each time all
preconditions are satisfied (e.g., if there is a non-zero amount of all reactants,
the reaction occurs). There is no noise affecting the interaction. Stochastic inter-
actions reflect noisy environment by assuming a certain probability with which
they occur.

Finally, there is yet another notion of quantity that can enhance the model
semantics. In particular, interactions and even variable values can be assigned
quantitative costs and rewards, e.g., time spent in particular concentration levels,
energy consumed by particular reactions, etc. By adding this kind of informa-
tion (if available), models can be adjusted to provide interesting and detailed
quantitative predictions resulting from complex dynamics.

Types of semantics mentioned above can be suitably combined resulting in
several classes of models varying in the level of abstraction employed, as is
overviewed in Fig. 2. On the right side of the scheme, there are models con-
sidering continuous component quantities and deterministic interactions. These
inherently quantitative models are currently the most widely used in computa-
tional systems biology since they have deep roots in mathematical biology. In
fact, from the semantics point of view they are purely denotational [87] and thus
we call them mathematical. On the left side of the scheme, there are discrete-
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value models which can be either quantitative (incorporating real-time and/or
stochasticity of interactions) or qualitative (abstracting from the timed nature
and stochasticity of interactions). These models are closer to computer science or
they directly originate from computer science. Fisher and Henzinger [87] classify
these models as executable, since for any of them the semantics can be considered
either denotational or operational. The operational view allows to understand
biological systems in the similar way as programs or any formal models in com-
puter engineering. That way these models naturally bring the model checking
technique to biology.
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Fig. 2. Model types sorted according to different level of details captured in their
semantics.

Mathematical models are used to represent actual quantitative relations be-
tween components in the system. Generally, a system of ordinary differential
equations (ODEs) [118, 110] and/or differential algebraic equations (DAEs) [37]
is used to represent the interaction and processes among the various components.
Determinism and continuity reflect the modeled phenomena in high chemical
species concentrations or large cell populations (the macroscopic level) while
completely neglecting the noise and differences in individual components and
interactions. These models can be simulated, analyzed, and possibly solved, but
require detailed knowledge of the biological system, i.e., quantitative parameters
identifying the physical aspects of system interactions (e.g., kinetic coefficients
of chemical reactions).

On the other hand, executable models employ abstract representations to
explain biological phenomena. Examples of widely used formalisms are Boolean
networks [159, 50, 121], Petri Nets [103, 32, 49, 143], timed automata [27, 153, 97],
compact process algebraic representations such as BioPEPA [56], Kappa [68] or
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suitable adaptations of π-calculus [141, 145]. These formalisms have an inherent
execution scheme attached to the models, and relate different qualitative config-
urations (states) of model components to each other. The relation among states
can be either qualitative or quantitative (with real-time bounded or even stochas-
tic rules). The advantage is the capability to effectively represent the logic behind
biological systems dynamics without precise quantitative knowledge about the
component interactions. Executable models are inherently discrete provided that
the dynamics (execution) occurs in terms of a series of discrete events. In the
untimed setting, nondeterminism allows to capture all possible “timings” (or-
derings) of concurrent events. To quantitatively differentiate among all possible
executions in a particular state, rules can be assigned probabilities, resulting in
discrete stochastic models [36, 163] most typically represented by discrete-time
Markov chains (DTMC). When set appropriately, executable models can be used
at any level of view of biological systems dynamics.

Stochastic models allow to incorporate noise which causes fluctuations in
component quantities and that way affects the biological system dynamics [80,
120]. In physics, chemistry and related fields, the probabilistic time-evolution
of a system with discrete component quantities is described by so-called master
equations. In the case of biological phenomena, the chemical master equation
(CME) provides an exact mathematical model for stochastic dynamics [95]. It
is formalized as a set of differential equations, providing a denotational repre-
sentation of component quantities distribution in continuous-time. Gillespie [94,
96] has made an important breakthrough in stochastic modeling by introducing
techniques for exact simulation of CME. From the computer scientific view-
point, the CME can be equivalently represented by continuous-time Markov
chains (CTMC) which provide operational semantics and allow us to consider
continuous-time stochastic models as executable [72].

Although outside the scope of this paper, it is worth mentioning that a sig-
nificant and general class of models is that of hybrid models most typically rep-
resented by means of hybrid automata [105] or process algebraic techniques [90,
34]. Hybrid models allow to mix discrete-value components with continuous-
value components and discrete-time dynamics with continuous-time dynamics.
Such a complicated semantics limits the model analysis [106, 44]. Hybrid models
can be satisfactorily used for modeling and simulation [75] and, when simplify-
ing assumptions are employed (e.g., considering linear dynamics of continuous
components), also for a more advanced analysis of biological processes [67, 89].
To incorporate noise, stochastic hybrid models [154] (i.e., stochastic hybrid au-
tomata) allow both discrete-time and continuous-time dynamics to evolve ran-
domly. Coupling of both kinds of dynamics while keeping their stochasticity
complicates analysis even more. To this end, simulation-based (statistical) [70]
or fluid-flow approximation techniques [34, 65] are typically employed.

Model Simplification It is important to note that component quantities in
biological models most typically do not evolve unlimitedly. In particular, con-
centration (or number of molecules) is always limited by degradation processes.
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However, it might not be easy to identify the bounds without a deeper analysis
of the model. From the context of an observed phenomenon and the time-scale
of relevant model behavior, it can be possible to identify the time-horizon (or
the number of steps in the untimed case) for which it is guaranteed that the phe-
nomenon occurs. Even periodically repeating phenomena, e.g., circadian clock,
can be approximately detected and analyzed in finite time in the order of an ap-
propriately selected time-scale. Again, a non-trivial analysis has to be performed
in some cases to estimate or overapproximate correctly the time horizon. In any
case, some hypotheses on maximal (extreme) bounds on component quantities
or time can be always considered.

From the computational point of view, there exist many well developed and
efficient techniques for exhaustive analysis of models appearing in the top left
quadrant of the scheme in Fig. 2. The assumptions stated above imply finite
number of model states. However, models in other quadrants incorporate con-
tinuous or dense quantities which significantly complicate or even disallow the
direct exhaustive analysis. We focus on continuous-time discrete-value models
first. Reduction of timed automata into untimed finite automata [2] is the cru-
cial procedure enabling exhaustive analysis for continuous-time discrete-value
models. A continuous-time stochastic model represented by a continuous-time
Markov chain is reduced to a discrete-time Markov chain and a Poisson process
(or a birth process) by uniformization techniques [161, 72]. All reductions at this
level are exact, provided that no information is lost.

There are techniques to abstract (or approximate) continuous-value models
by discrete-value models. Formally defined abstractions allow specific properties
to be preserved by means of over-approximation (resp. under-approximation) of
model behavior. However, the effect of behavior spuriously added (resp. lost) by
the abstraction is usually large. Over-approximative abstractions are conserva-
tive in the sense that each execution of the original model is also present in the
abstract model but there can appear a new behavior, not present in the original
model. Underapproximative abstractions ensure that no execution is added to
the abstract model but some can be ignored.

Besides formal abstraction, there are approximations that distort the original
behavior rather than adding or removing some. Such approximations do not
guarantee preservation of dynamics properties but the deviation of behavior is
ensured not to exceed a certain (specified) approximation error.

In the case of continuous-time deterministic models, typically non-linear,
the most widely used approximation is provided by numerical simulation (in-
tegration) methods. For certain classes of ordinary differential equations, there
are also formal abstraction techniques providing a discrete-time discrete-value
over-approximation in terms of non-deterministic finite automata [116, 30, 99,
62] or a continuous-time discrete-value over-approximation in terms of timed
automata [133]. In the former case, the extent of falsely added executions is
usually large whereas the latter case prevents addition of any executions with
non-realistic timing and therefore the number of false executions can be reduced.
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Some classes of continuous-time deterministic models can be also approx-
imated by continuous-time stochastic models provided that continuous-value
variables are approximated by a suitable number of uniformly distributed dis-
crete levels. If calibrated properly, averaged stochastic executions converge to
the deterministic solution [42] (see [103] for tutorial).

In reverse direction, some classes of continuous-time stochastic models can
be approximated by deterministic continuous-time models (ODEs) by means
of fluid-approximation techniques [69]. Based on these techniques, more sophis-
ticated analysis methods for stochastic models, combining fluid-approximation
with CTMC analysis have recently been proposed [33]. The advantage of these
techniques is that they avoid the state-explosion problem.

In this text we focus on well-established methods developed for discrete- and
continuous-time discrete-value models, in particular, we consider techniques tar-
geting the exhaustive analysis of temporal properties of systems dynamics based
on qualitative and quantitative model checking. Brief description of concrete
techniques is presented in Section 3.3. Properties of biological interest are de-
scribed in Section 3.2. Examples of models and the application of model checking
techniques is presented on several case studies in Section 4.

Model Parameters Biological model of any type is determined by a fixed
topology (biological network) where the interactions (rules) are parametrized.
Parameters provide degrees of freedom in which the model dynamics can be
adjusted. In contrast to the network topology which stands on common princi-
ples, finding a correct model parametrization is a non-trivial task which makes
a critical part of the so-called inverse problem [82].

Parameters appear in all kinds of models. In the case of qualitative models, a
parameter most typically affects the logic behind a rule, i.e., adjusting the effect
of the respective interaction on model components. Sets of possible parmeter
values (parametrizations) for qualitative models are finite and discrete, but can
be very large (e.g., the number of parametrizations for setting the dynamics
of a gene A in a Boolean model of a gene regulatory network is exponential
wrt the number of genes affecting the expression of A). In quantitative models,
parameters represent the quantitative aspects associated with the semantics of
rules, i.e., how the respective interaction evolves in time. In continuous-time
stochastic (resp. deterministic) models the parameters describe the rate (resp.
velocity) of respective interactions. In real-time models, the parameters describe
time delays (minimal or maximal) between particular interactions. In all these
cases, parametrization sets are are uncountable and bounded by laws of physics.

3.2 Biologically Relevant Properties

With respect to the nature of phenomena generated by dynamics of biological
processes, typical properties studied on biological models can be organized into
six elemental categories: reachability properties, temporal ordering of events,
variable correlations, (multi)stability properties, monotonic trends, and oscil-
lation properties. To reason about the model types presented in the previous
subsection, properties have to be expressed with different levels of detail.
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Qualitative Properties Qualitative properties abstract away from any quan-
titative information like time aspects or energy costs of targeted biological phe-
nomena. Qualitative properties are in general interpretable on all types of mod-
els, especially on untimed discrete-value models. Computer science offers two
basic logical formalisms allowing to express qualitative properties of systems
dynamics: linear-time temporal logics, interpreted on individual model execu-
tions (paths), and branching-time temporal logics, interpreted on trees of (non-
deterministically) branching model executions.

The basic linear-time temporal logic is Linear Temporal Logic (LTL) [142].
LTL has been proved to be the basic formal language that is most suitable for
qualitatively expressing properties of the six elemental categories. LTL can be
interpreted on all kinds of models.

The most basic branching-time logic is Computational Tree Logic (CTL) [57].
In contrast to LTL, CTL allows to reason about non-determinism and, therefore,
is used for properties dealing with non-determinism. CTL is also interpretable
on all kinds of models, yet, the expressiveness of CTL is limited in the case of de-
terministic models. Below we give several examples of biologically-relevant prop-
erties. Unless otherwise mentioned, these properties will be expressed in LTL.

Qualitative reachability properties express reachability of specified concen-
tration levels in given model variables. For example, the formula F(2 ≤ B ≤ 3)
expresses the property that B reaches the concentration level between 2 and
3 at some point during the progress of the model dynamics. The linear-time
formula Fϕ containing the operator F (Future) has the intuitive meaning that,
on a given path, there must eventually exist a state where ϕ is satisfied. Note
that the property tells nothing regarding the moment at which the event oc-
curs. Reachability properties are useful especially for expressing global bounds
of reachable concentration values.

To capture the qualitative temporal patterns in the dynamics of inspected
variables, the properties expressing temporal ordering of events are used. These
properties are based on linear-time operator U (Until), i.e., the formul ϕ1Uϕ2,
with an intuitive meaning that, on a given path, ϕ2 must eventually hold in
some ith state on the path and for all states from the beginning of the path
until the ith state, ϕ1 must hold. An example of such property is the formula
(A ≤ 2) U [(2 < A ≤ 5) U (A > 5)] representing the following temporal pattern:
species A is initially kept below 2 until it reaches 5 and finally exceeds 5.

Variable correlations make important observations revealing cooperations
and dependencies in biological processes, e.g., co-expression of certain genes.
These properties can be expressed by combining several temporal ordering for-
mulae into a single formula using traditional logical operators. Following this
approach, mutual dependencies in the dynamics of inspected variables can be
captured. For example, the formula [(A ≤ 2) U ((2 < A ≤ 5) U (A > 5))] ⇒
[(B ≥ 10) U ((5 ≤ B < 10) U (B < 5))] expresses the following correlation
in concentration of species A and B: if A increases according to the temporal
pattern from the previous paragraph then B decreases from a level above 10 to
a level below 5.
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A specific kind of temporal properties deals with the analysis of presence of
stable concentration levels. An example of an elementary stability property is
the formula G(A ≤ 2) stating that concentration below 2 is stable (attractor)
for species A. The formula Gϕ, with the operator G (Globally), expresses the
requirement that ϕ must hold in each state of a given path, the intuitive meaning
is “forever”. Stability properties can be effectively combined with reachability
properties and relativized with respect to a specific initial condition. For exam-
ple, the formula (A ≥ 0) ⇒ FG(A ≤ 2) states that the stable concentration
below 2 is reached from any non-negative initial concentration of A. To query
for existence of several different stable states (multi-stability), the LTL formula
[(A ≤ 5) ⇒ G(A ≤ 5)] ∧ [(A > 5) ⇒ G(A > 5)] can be employed. It expresses
the fact that there are two different stable concentration levels in the dynamics
of A: the first is below the level 5 and the second is above 5. Note that this for-
mula expresses only the existence of the two stable attractors, there is nothing
specified with respect to reachability of both stable attractors from a particular
part of the state space (the so-called basin of attraction). To this end, CTL has
to be employed: EFAG(A ≤ 5)∧EFAG(A ≥ 5). The branching-time operator
EFϕ requires the existence of a branch where ϕ is eventually satisfied, whereas
AGϕ requires ϕ to hold in only those states. Therefore, the bistability formula
is satisfied in every state from which the execution can eventually branch into
both attractors.

Important observations of biological dynamics are monotonous trends in sys-
tem variables [9]. Monotonicity is an indicator of robust increasing or decreasing
phases observed in individual species dynamics. In the qualitative setting inter-
preted on discrete-value models, the non-strict monotonicity can be expressed as
a special case of temporal ordering property, e.g., (A = 1) U [(A = 2) U (A = 3)].

Finally, an interesting dynamics phenomenon appearing in biology is oscil-
lation, e.g., circadian rhythms. A simple example of an oscillation property is
expressed by the formula (G[(A ≤ 3)⇒ F(A > 3)])∧ (G[(A > 3)⇒ F(A ≤ 3)])
representing a permanent oscillation of A around the concentration level 3. Os-
cillation properties require linear-time operators, they cannot be expressed in
CTL. Finer specification of oscillations can be realized by extending the formula
with additional constraints identifying the qualitative aspects of the oscillation,
e.g., the maximal and minimal amplitude levels.

Quantitative Properties Quantitative properties including time aspects, en-
ergy consumptions and the stochasticity of a system are essential in the analyses
of the dynamics of biological systems. Hence, a wide variety of logical formalisms
allowing to reason about quantitative system aspects have been used to study
biological systems. These formalisms usually extend the aforementioned logics
and can be roughly divided into deterministic and stochastic logics. Determinis-
tic logics are mostly focusing on a quantitative notion of time. The time extension
of CTL called Timed Computational Tree Logic (TCTL) has been introduced
in [2] and its simplified version is used as a specification language in the tool
UPPAAL [29]. The extension allows to specify additional clock constrains, e.g,
the TCTL formula EF(ϕ ∧ t ≤ 3), where t is a clock, requires the existence of
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an execution branch where ϕ is satisfied within 3 time units. A popular dense
time extension of LTL is Metric Interval Logic (MITL) introduced in [3] as a
restriction of Metric Temporal Logic (MTL) [123]. It is based on the timed until
modality UI where the interval I is a nonempty convex subset of R≥0. The for-
mula (A = 1) U[a,b] (A = 2) is satisfied at any time instant t such that A = 2 at
some t′ ∈ [t+ a, t+ b], and A = 1 continuously from t to t′. Another time exten-
sion of LTL called Timed Propositional Temporal Logic (TPTL) [4] is based on
freeze-quantification where extra clocks are used to specify temporal constraints.
These clocks can be reset at some point and later we can compare their values to
some integers. The TPTL formula G[(A = 1)⇒ x.F(B = 3 ∧ x ≤ 5)] expresses
that whenever the population of species A reaches 1, the population of species
B will reach 3 in 5 time units.

Motivated by the application of verification and monitoring techniques to
continuous-value and hybrid systems, Signal Temporal Logic (STL) has been in-
troduced [134]. It combines the dense time modalities of MITL with the numer-
ical predicates over real numbers. The predicates are given as a real-value signal
describing the evolution of the system, e.g, a function from time to a Cartesian
product over reals. The formula G[0,300][(x1 > 0.7) ⇒ F [3,5](x2 > 0.7)], where
x1, x2 are some signals, expresses that for each time point t ∈ [0.300] it holds
that if the value of the signal x1 in t is greater than 0.7 then there exists time
t′ ∈ [t + 3, t + 5] such that the value of the signal x2 in t′ is also greater than
0.7. For example, the tool Breach [76] employs STL to define temporal logic
formulae and check whether they are satisfied on simulated trajectories. A ver-
sion of LTL with constraints over the reals, named LTL(R), has been proposed
in [5] to express the temporal properties of molecular concentrations and their
derivatives. The quantifier free fragment of the first-order extension of LTL(R),
named QFLTL(R) has been considered in [86]. It allows to use free variables in
the atomic propositions and, thus, it enables to analyze numerical data time se-
ries in temporal logic and to automatically compute LTL(R) specifications from
experimental traces. The formula F(A ≥ p) expresses the question what thresh-
old p species A attain in the trace. These two extensions of LTL are used in the
tool BIOCHAM [84] to formalize numerical temporal properties.

Stochastic logics provides means to specify the probability and performance
measures on Markov chains. In the case of DTMCs, a probabilistic extension of
CTL, named PCTL, can be employed [100]. The logic is based on the probabilis-
tic operator P∼p[φ] expressing that the probability of the path formula φ being
satisfied from a given state meets the bound ∼ p. As a path formula it allows
standard bounded and unbounded temporal operators. Note that, PCTL is a
discrete-time logic and thus the path formulae are interpreted over discrete time
steps. The PCTL formula P≥0.9[F≤5(A = 3)] expresses that the probability that
the population of species A will be equal to 3 within 5 time steps is at least 0.9.

To formalize properties of CTMC, Continuous Stochastic Logic (CSL) [6]
has been introduced. It is a probabilistic extension of CTL with continuous-time
semantics. In contrast to PCTL, the path formulae in CSL uses an interval of
non-negative reals, rather than simply an integer upper bound. The CSL formula
P≥0.9[F[1,2](A = 3)] expresses that the probability that the population of species
A will be equal to 3 between 1 and 2 time units is at least 0.9. The logic also
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includes the steady-state operator S describing the steady-state behavior of a
CTMC. The CSL formula S≤0.05[A > 10] expresses that the long run probability
that the population of species A will be higher than 10 is at most 0.05.

To further broaden the scope of possibly expressible behavior, PCTL and
CSL have been extended to allow the specification over reward-based stochastic
models, i.e., Markov chains with real-valued rewards/costs attached to states
and transitions [126]. The extension enables to express properties such as the
expected time a system spends in a specified set of states over a time interval or
the expected number of times that a particular reaction occurrs.

The only way to combine temporal operators in PCTL and CSL is to use a
nested formula whose meaning can be too subtle. Therefore, a probabilistic ex-
tension of LTL has been introduced in [64] allowing to express the probability of
more complex events. The semantics of the logic is defined over Markov Decision
Processes (MDPs) [71] which are a widely used formalism for modeling systems
that exhibit both probabilistic and nondeterministic behavior, see e.g., [88] for
more details.

Expressing biological phenomena can require extensions of existing logics.
Biologically relevant temporal logic extensions target precise quantitative de-
scription of oscillations [74, 24] or qualitative properties combining linear-time
properties with branching-time [136].

3.3 Model Checking Techniques for Analysis of Biological Systems

Model checking techniques for the analysis of biological systems can be roughly
divided into exhaustive techniques and monitoring techniques. The exhaustive
techniques consist of checking whether all executions – state-event sequences –
generated by a given system S, satisfy the inspected property described as the
formula ϕ, i.e., they effectively decide the language inclusion ‖S‖ ⊆ ‖ϕ‖ (‖ϕ‖ is
the set of all executions that satisfy ϕ). In order to generate all executions, the
whole state-space has to be stored and evaluated. This is why the exhaustive
techniques generally suffer from the state-space explosion problem. There exist
several techniques allowing to reduce this problem, e.g., efficient symbolic repre-
sentation, state-space reductions or iterative abstraction refinement. For systems
which are outside the scope of exhaustive techniques, either due to the incorpo-
ration of continuous and/or unbounded values or simply due to the state-space
explosion problem, the monitoring techniques are the only feasible validation
method. Unlike the inclusion, test the monitoring techniques are based on the
membership test ω ∈ ‖ϕ‖ of an individual simulation trace ω ∈ ‖S‖, where the
responsibility for exhaustive coverage is delegated to the procedure that gener-
ates the traces. The key observation behind their efficiency is that for large and
complex systems, the simulation is generally easier and faster than building a
concise representation of global transition systems required for the exhaustive
model checking approach. However, since a single simulation generates a single
trajectory out of all the possible executions of a system, usually the average
values among several simulations need to be considered to achieve the necessary
level of confidence in the results obtained.
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A possible way to improve the accuracy of monitoring techniques is to em-
ploy the statistical model checking that addresses general stochastic systems in
terms of statistical inference. It samples the behaviors (simulations) of a model,
verifies their conformance with respect to a temporal formula (i.e. performs the
membership test), and finally applies a statistical estimation technique to com-
pute an approximate value for the probability that the formula is satisfied. The
accuracy of statistical model checking is affected by the accuracy of stochastic
simulations techniques that are employed and also by the structure of the model
or more precisely by the level of details (initial conditions, parameters, etc.) we
have about the system under study.

Exhaustive model checking, statistical model checking and monitoring tech-
niques have been applied to the study of biological systems. They allow re-
searchers to make predictions and test hypotheses on models of different kinds
(see Fig. 2). For deterministic models with continuous-value semantics the ex-
haustive techniques cannot be used due to the infinite number of possible ex-
ecutions. Therefore, advance monitoring techniques for various temporal logics
have been designed in order to analyze complex non-linear systems, see [135]
for a survey. These techniques have been further extended for application in
systems biology. For example, the tool Breach [76] provides a coherent set of
simulation-based techniques aimed at the analysis and parameter identification
of deterministic models of complex biological and hybrid systems. Its primary
features facilitate the computation and the property investigation of a large set
of trajectories and also provide information about the sensitivity with respect to
parameter perturbations. A successful application of this approach to systems
biology has been demonstrated in [77] where a model of the acute inflammatory
response to bacterial infection is analyzed.

A similar extension to monitoring techniques has been proposed in [86] where
the authors generalize the trace-based model checking algorithm [43] to a con-
straint solving algorithm for QFLTL(R) with numerical constraints over the
reals. Given an ODE model and a temporal property to verify within a finite
time horizon, the computation of a finite simulation trace by numerical inte-
gration provides a linear Kripke structure (each state has a single successor).
Afterwards, the QFLTL(R) generalization provides the ability to compute those
instantiations of a formula that are true in a finite trace, by giving the complete
domain of the real-valued variables occurring in the formula for which it is true.
This approach has been implemented in the tool BIOCHAM [84]

Techniques for the verification of a temporal logic property against stochastic
models can be either exact, based on probabilistic model checking, or approx-
imate, based on statistical model checking using stochastic simulation such as
Gillespie’s algorithm [94] or Monte Carlo sampling [114, 8]. Probabilistic model
checking answers quantitative temporal queries by performing an exhaustive ex-
ploration of all the possible paths through the system. The probabilistic model
checking techniques can be roughly divided into the techniques for discrete-time
and forcontinuous-time systems. A discrete-time system is usually described by
discrete-time Markov chain (DTMC) where the transitions between the states
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are governed by a probability distribution. The inspected properties of such sys-
tems are mostly specified in PCTL. The model checking algorithm for PCTL
over DTMC constructs the parse tree of a given formula Φ and for each node it
recursively computes the set of states satisfying the corresponding subformula.
For more details, see, e.g., [64].

As mentioned in Section 3.1 a continuous-time system is usually described by
a continuous-time Markov chain (CTMC). While each transition between states
in a DTMC corresponds to a discrete-time step, transitions in a CTMC occur
in real time. The transitions between the states in CTMC are governed by the
transition rate matrix. It assigns a rate λ to each pair of states in the CTMC,
which are used as parameters of the exponential distribution, i.e., the probability
of the transition being triggered within t time-units equals 1−e−λ·t. To reflect the
real time aspects, the inspected properties of such systems are mostly specified in
CSL. Efficient model checking algorithm for CSL over CTMC has been proposed
in [7]. It reduces the model checking problem to the transient analysis, i.e., to the
computation of transient probability, having started in state s, of being in state
s′ at time instant t. The reduction is based on a modification of the rate matrix
such that certain states are made absorbing (all outgoing transitions are ignored)
according to their validity with respect to the inspected formula. A standard
technique for computing transient probabilities is based on uniformization. The
key idea is for a given CTMC to construct the uniformized DTMC where all
exponential delays in the CTMC are normalized with respect to the fastest
transition rate q. Then each step of the uniformized DTMC corresponds to a
single exponentially distributed delay with the parameter q. The ith matrix
power of the uniformized DTMC gives the probability of jumping between each
pair of states in the DTMC in i steps. The transient probability in time t is
computed as the sum of the matrix powers weighted by Poisson probabilities
giving the probability of i such steps occurring in time t. For more details about
the probabilistic model checking techniques, see, e.g., [126].

The exact probabilistic model checking suffers from the state-space explosion
problem, which is even more critical than in the non-probabilistic case. Therefore,
for systems with too many states (more that 1010) the described techniques
become intractable. As result, additional reduction techniques or the statistical
model checking have to be used in order to effectively analyze complex biological
systems. In [42], the authors consider signal transduction in the RKIP-inhibited
ERK pathway. They overcome the state-space explosion problem of probabilistic
model checking by rescaling model component quantities to lower numbers of
population levels. Probabilistic model checking has also been employed to the
analysis of gene regulatory circuits where an automatized translation of models
into a CTMC, based on quasi-steady-state approximation (QSSA), has been
proposed [132].

The main problem with statistical model checking is caused by rare events,
i.e., temporal formulae whose satisfaction probability is very small. When esti-
mating the probability of such formulae, the number of simulations needed to
ensure a good estimate becomes unfeasible. In [60], the authors show that the im-
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portance sampling, a variance-reduction technique for the Monte Carlo method,
and the cross-entropy method, a general Monte Carlo approach to combinato-
rial and continuous multi-extremal optimization and importance sampling, can
efficiently address this problem. They use Bounded Linear Temporal Logic, a
variant of LTL where the temporal operators are equipped with time bounds, to
reason about biochemical reactions in systems biology.

Both exact and approximate model checking techniques have been imple-
mented in several tools, e.g., PRISM [125], MARCIE [152]. These tools have
been successfully employed in the analysis of biological systems, e.g., in [102]
the authors apply PRISM to analyze the complex FGF (Fibroblast Growth Fac-
tor) signalling pathway, in [151], the authors analyze stochastic Petri nets model
of a biological network using efficient state-space representation based on inter-
val decision diagrams. Advanced techniques for exact CSL model checking that
allow to reduce the state-space explosion problem for some classes of biological
systems have been implemented in the prototype tool SABRE [73].

For real-time models, model checking techniques are based on transforming
the uncountable continuous-time model into an equivalent finite discrete struc-
ture (the so-called zone automaton). The two main real-time model checking
tools, UPPAAL [29] and KRONOS [164], have also been used for the analysis
of biological models. In the case of UPPAAL, applications to gene regulatory
networks [153, 97] and signaling pathways [150] have been realized. KRONOS
was applied to gene regulatory networks [27] and to real-time abstractions of
continuous-time deterministic models [133].

At the end of this section we briefly introduce model checking techniques for
qualitative models of biological systems. These techniques have been extensively
studied, see [59] for a good starting point, and there also exist several matured
tools providing their efficient implementations.

Application of the qualitative model checking to systems biology is highly-
relevant for Boolean models of genetic regulatory networks [50, 31] and signaling
networks [149, 79], provided that symbolic verification techniques are usually
employed. In [43], the tool BIOCHAM is used to verify the qualitative properties
(specified in CTL) of asynchronous state transitions with Boolean semantics
using standard symbolic model checker NuSMV [55].

Explicit model checking techniques are used in [121] where the authors pro-
pose new methodology for parameter identification and the analysis of discrete
gene networks based on colored LTL model checking [13]. They improve the
standard automata-based algorithm for LTL model checking [160] that consists
of the following steps. The inspected LTL formula ϕ is negated and translated
into a Büchi automaton A¬ϕ describing all the executions violating ϕ. After-
wards, the synchronous product of A¬ϕ and a finite state automaton describing
the system under study is constructed. The system satisfies the formula ϕ if and
only if the language of the product automaton is empty, which is if and only if
there is no reachable accepting cycle (cycle containing an accepting state) in the
underlying graph of the product automaton. Instead of employing this standard
algorithm for each possible parametrization individually, the authors propose
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a heuristics reducing the computation effort by means of operating on entire
parametrization space. A concrete application of these techniques is presented
in Section 4.

Another formal method for qualitative analysis of biological systems is pre-
sented in [103], where Petri nets have been used to describe the mitogen-activated
protein kinase. The authors study general properties (boundedness, liveness, re-
versibility, invariants), structural properties (reflecting the modeling approach)
and also properties specified in temporal logic.

Model checking is also employed to qualitative abstractions of quantitative
models, examples are given in Section 4. Techniques for finite discrete abstraction
of the continuous state space are used in the tool BioDiVinE [18] to analyze
biological models specified in terms of a set of chemical reactions. Chemical
reactions are transformed into a system of multi-affine differential equations
that are further discretized to a finite state automaton in order to employ the
standard LTL model checking techniques including property-driven parameter
identification.

3.4 Parallel and Distributed Model Checking

As already stated above model checking is a computationaly demanding pro-
cedure and techniques to fight the state explosion problem are an unavoidable
ingredient of it. To verify even larger systems, however, no option was left out
than to employ combined computing power of multiple computing devices. At-
tempts to use hard drives or parallel computers for the verification of large sys-
tems have appeared in the very early years of the automated formal verification
era. However, the inaccessibility of cheap parallel computers with sufficiently
fast external memory devices together with the negative theoretical complexity
results excluded these approaches from the main stream in formal verification.
Moreover, due to the Moore’s law, the performance of software tools kept im-
proving continuously for years as the power of a single-cored CPU grew. The
situation changed dramatically with the introduction of multi-core CPU chips.
The progress in computer design over the past decades had measured several
orders of magnitude with respect to various physical parameters such as power
consumption, efficiency, physical size or cost. As a result, it became more effi-
cient for chip producers to introduce multiple CPU cores on a single chip rather
than to increase the speed of a single core. As the speed of a single core virtually
stopped growing, every piece of software that was built upon a serial algorithm
could not take the advantage of technological progress anymore. The focus of par-
allel and distributed-memory computing community shifted away from unique
massively parallel systems competing for world records towards smaller and more
cost-effective systems built up from small and cheap personal computer parts.
Suddenly, the need for parallel processing became rather general and widespread
in all science fields relying on complex computation operations, automated for-
mal verification being not an exception. As a matter of fact, the interest in the
platform-dependent formal verification has been revived.
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Unfortunately, some verification techniques cannot preserve their efficiency if
adapted to non-sequential models of computation, and therefore an urgent need
for new and quite different verification procedures emerged. Many new tech-
niques have been introduced. There were attempts to consider both the symbolic
as well as the enumerative techniques, theorem-provers as well as sat-solvers,
etc. Some of those approaches are applicable across a broad range of computing
platforms, some of them are tailored to the specific capabilities of a particular
hardware architectures. Examples include techniques to fight the memory limits
with an efficient utilization of external memory devices [156], techniques that
introduce cluster-based algorithms to employ the aggregate power of network-
interconnected computers [155, 129, 92], techniques to speed-up the verification
process on multi-core processors [109, 14, 128], etc.

Parallel Algorithms for LTL Model Checking The need for parallel pro-
cessing in automated formal verification stemmed from the desire to fight the
state space explosion problem by employing the aggregate memory of multiple
network interconnected workstations. The crucial problem is how to distribute
the work among participating processors in order to take advantage of the ag-
gregate memory and parallel processing at the same time.

Based on a parallel algorithm for state space generation [47], a static parti-
tioning scheme relying on a hash function was introduced [52]. As observed by
multiple researchers, the hash-based partitioning yields better space locality if
only some parts of the state descriptor are used as the input to the partition-
ing function. There were considered approaches requiring the user of the tool
to specify the concrete parts of the state descriptor to be used for partition-
ing [52], other approaches employed automated or semi-automated techniques
to do it [53]. Techniques for load balancing the set of visited states, also known
as re-partitioning techniques, have been suggested [1, 130, 124] as well as state
space generation schemes employing probability aspects [122].

The first known public implementation of a distributed memory tool for
the verification of communication protocols was the parallel implementation of
the Murϕ tool [155]. Murϕ’s parallel work-flow relied on the standard MPI-like
approach to messaging, nevertheless, active messages were later introduced into
Murϕ to improve its efficiency. The successful story of Murϕ was followed by
other verification tools: SPIN [130], CADP [92], DiVinE [19], UPPAAL [28], etc.
Distributed-memory techniques of automated formal verification also appeared
in the context of Petri Nets [52, 104], Markov chains [101], and symbolic BDD-
based model checkers [98, 83].

As a demonstration of distributed-memory approaches to verification we con-
sider explicit state parallel LTL model checking. The LTL model checking prob-
lem can be reformulated as a cycle detection problem in an oriented graph and
the basic principles behind presented algorithms rely on efficient solutions to
detecting cycles in a distributed environment. The best known enumerative se-
quential algorithms for the detection of accepting cycles are the Nested DFS
algorithm [63] (implemented, e.g. in the model checker SPIN [107]) and SCC-
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based algorithms originating in Tarjan’s algorithm for the decomposition of the
graph into strongly connected components (SCCs) [158]. While Nested DFS is
more space efficient, SCC-based algorithms produce shorter counterexamples in
general. The linear time complexity of both algorithms relies on the postorder as
produced by the depth-first search traversal. It is a well known fact that comput-
ing depth-first search postorder is P-complete [146], hence probably inherently
sequential. This means that none of the two algorithms can be easily adapted
to work on a parallel machine. A few fundamentally different cluster-based tech-
niques for accepting cycle detection appeared, though. They typically perform
repeated reachability over the graph. Unlike the postorder problem, reachability
is a graph problem which can be parallelized, hence the algorithms might be
transformed to cluster-based algorithms that work with reasonable increase in
time and space.

The algorithms employ specific structural properties of the underlying graphs
(often pre-computed in advance from the system specification), use additional
data structures to divide the problem into independent sub-problems, or trans-
late the model-checking problem to another one, which admits efficient parallel
solution. Several of the algorithms are based on sequentially less efficient but
well parallelizable breadth-first exploration of the graph or on placing bounds
limiting the size of the graph to be explored.

The first parallel algorithm for LTL model checking employed the so-called
dependency structure [17] to record the reachability relation among accepting
states of a distributed graph and applied the topological sort algorithm [117] to
detect the presence of a self-reachable accepting state. Other parallel algorithms
appeared with the time, building upon various ideas. They have differed in the-
oretic complexity as well as practical efficiency, see [39] for a survey. The two
most successful parallel algorithms for LTL model checking are the OWCTY
algorithm [48] based on explicit-state implementation of symbolic SCC hull de-
tection and the MAP algorithm [38] based on value propagation.

Distributed-memory processing cannot attack the state space explosion prob-
lem alone and must be combined with other techniques. One of the most success-
ful techniques to fight the state space explosion in explicit-state model checking
is Partial Order Reduction [140]. DiVinE is able to perform this reduction, even
though a new topological sort proviso had to be developed in order to maintain
efficiency of parallel and distributed-memory processing [16].

Another important algorithmic improvement relates to the classification of
LTL formulas. For some classes of LTL formulas (weak LTL), the parallel al-
gorithms may by significantly improved. With this observation the OWCTY
algorithm can be improved so that its complexity even meets the complexity of
the optimal sequential Nested DFS algorithm and it allows for on-the-fly verifi-
cation in most verification instances [15].

Parallelism in Distributed and Shared-Memory The general idea in dist-
ributed-memory explicit state model checking is to aggregate the computational
power of multiple network interconnected workstations (clusters) in order to fa-
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cilitate the verification of large model checking instances [17]. The set of vertices
of the graph to be processed is partitioned among participating computation
nodes using a static partitioning function. When a computation node processes
a vertex, it enumerates all its immediate successors and checks them for their
ownership. If a newly generated vertex is local according to the partitioning
function, it is pushed to the local queue where it waits for further processing.
Otherwise a network message containing the vertex is created and sent to the
queue of the owning computation node. With this work-flow, a message is gener-
ated with every edge connecting vertices from different partitions of the graph.

Message aggregation and buffering are the standard techniques in parallel
computing to alleviate the burden of network communication overhead. There-
fore, the model checker maintains buffers of messages to be sent to individual
computing nodes. A buffer is flushed (messages sent to network) upon one of the
following situations: 1) the buffer was explicitly flushed by the executed graph
algorithm, 2) the maximal number of messages for the buffer has been reached,
and 3) the local computing node was (otherwise) idle.

Most techniques and results known from the distributed-memory setting are
straightforwardly applicable to shared-memory architectures. In particular, the
graph to be processed is partitioned among individual parallel shared-memory
threads in the same way as it would be in the distributed-memory setting. Each
individual thread maintains its own hash table and its own pool of vertices to
be processed. Vertices belonging to different threads are pushed to their local
pools by means of lock-free shared-memory queues [14]. Relative advantages
and disadvantages of shared versus private hash tables, within the context of
thread-private pools of vertices to be processed, have been discussed in [22].

Nevertheless, the scalability of parallel distributed-memory solutions to shared-
memory is often limited. Therefore, shared-memory specific techniques are needed
to improve the efficiency and scalability of existing parallel distributed-memory
solutions on shared-memory architectures. Examples of successful shared-memory
specific techniques include, e.g. shared communication data structures [111, 14],
specific termination detection techniques [14], dual-core algorithms [109], or quite
a unique partitioning scheme [108].

Many-Core Parallelism After NVIDIA’s CUDA technology [66] was intro-
duced, a lot of computational demanding tasks have been accelerated by GPU-
aware algorithms. Examples of GPU accelerated procedures include, but are not
limited to, sorting [148], sparse matrix-vector multiplication [51], or numerous
biological and physical simulations, such as protein folding [113]. As for the
graph theory, successful adaptation of general graph traversal algorithms have
been reported too [138] demonstrating the tremendous computational power of
the CUDA device. On the other hand, graphs to be explored efficiently with a
CUDA accelerated algorithm must be encoded explicitly in a compact way.

The CUDA technology as a computing platform, attracted also researches
in the field of automated formal verification. The key challenge, for which no
satisfactory solution is known yet, is how to accelerate the generation of explicitly
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encoded state space graph from implicit definition. Preliminary attempts to do
so relate to explicit model checking. They suggest to employ a massively parallel
check for enabled transitions emanating from the vertices on the frontier of the
search and their massively parallel execution [78].

Once the state space is generated and explicitly represented in an appropriate
sparse matrix-like structure, many verification tasks can be accelerated using
CUDA technology. This has been successfully demonstrated, e.g. on verification
of probabilistic systems [35], LTL model checking [23] or the acceleration of
strongly connected components decomposition [12].

3.5 Model Checking Tools for Biological Systems

There are several specialized tools for the analysis of biological systems that
employ model checking. Some of these tools are well accepted by the community
and routinely used in the process of model development. In addition, several
model checking tools were experimentally used for the analysis of models in
systems biology. In this section we point to three of them that we found to be
closest to our own interest in exhaustive model checking. For richer reviews we
would like to refer to [46, 10, 112].

BioCham (Fages et al. [85], see [84] for tutorial)

BioCham stands for BIOCHemical Abstract Machine. The tool provides a mod-
eling environment for systems biology, with some unique features for static
analysis or for inferring unknown model parameters from temporal logic con-
straints. BioCham covers qualitative (Boolean) models as well as quantitative
models (continuous-time deterministic and continuous-time stochastic). Models
are specified in its native rule-based language. An important feature is that quan-
titative models specified at the level of reaction networks can be automatically
analyzed at the level of qualitative (Boolean) semantics.

Qualitative Models CTL is employed to formalize the temporal properties of a
biological system and validate models with respect to such specifications. Sym-
bolic model checker NuSMV [54] is used to handle this analysis task. Moreover,
BioCham has an update component for automatically modifying a network that
does not satisfy a given CTL formula. The algorithm of this component is based
on the counterexamples computed by NuSMV. Although incomplete (in the sense
of sometimes not being able to find the appropriate changes to networks), such
a component is useful because of being able to handle large networks [43].

Continuous-time Deterministic Models BioCham introduces LTL with numeri-
cal constraints (LTL(R)) to specify properties of numerical simulations of ODE
models. Since simulations always produce finite discretely-sampled trajectories
bounded by the requested time horizon, there is a natural monitoring algorithm
built in. Furthermore, the tool is able to compute the violation degree of a for-
mula. Intuitively, a violation degree is the distance between a particular behavior
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of a system, given as a path, and the expected behavior, given as a temporal-
logic formula [147]. Such a violation measure can be used to estimate a fitness
function with evolutionary optimization methods. This is done by finding kinetic
parameter values satisfying a set of biological properties formalized in temporal
logic. In addition, such a measure can be used to estimate the robustness of a
biological model with respect to its temporal specification.

Finally, probabilistic model checking is also provided. BioCham estimates the
probability of an LTL formula satisfaction by sampling stochastic simulations.

GNA (de Jong et al. [116])

Genetic Network Analyzer (GNA) provides support for modeling and simulation
of genetic regulatory networks using knowledge about regulatory interactions in
combination with gene expression data. GNA operates on piece-wise affine mod-
els providing a clear relation between quantitative and qualitative semantics.
Instead of exact numerical values for the parameters, which are often not avail-
able for gene networks, the piece-wise affine models allow to specify inequality
constraints. This information is sufficient to generate a state transition graph
that describes the qualitative dynamics of the network overapproximating the
ODE model.

GNA is able to export the resulting qualitative model to the finite state
transition system and check properties by means of standard model-checking
tools, either locally installed or accessible through a remote web server. The
tool is connected with NuSMV and CADP (Garavel et al. [91]) model checkers.
GNA supports an extension of CTL logic, CTRL [136], allowing to express a
significant set of biologically relevant properties not expressible in plain CTL.

Additionally, parameter identification techniques have also been introduced
for GNA [26]. Based on symbolic model checking, the method avoids enumerating
all possible parametrizations in searching for parametrizations satisfying the
given temporal specification.

BioDiVinE (Barnat et al.[18, 20])

BioDiVinE1 is a tool-box for automated analysis of biological systems by means
of applying model checking to qualitative and quantitative biological models.
Emphasis is put on the computational aspects and algorithms are adapted to
enable their effective distribution and/or parallelization. Currently, the tool-box
contains the following tools:

BioDiVinE 1.0 is a tool created for model checking LTL properties over
continuous-time deterministic biological models given by means of multi-affine
ODEs ([18], see Section 3.1), which are abstracted by employing the rectangu-
lar abstraction [62], translating the continuous model into a finite automaton.
The tool makes an evolutionary branch of enumerative LTL model checker Di-
VinE [19] by adapting the OWCTY [48] and MAP [38] algorithms for distributed

1 http://sybila.fi.muni.cz/tools
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analysis of biological models. Properties are specified by means of Büchi au-
tomata allowing even more flexibility than is provided by LTL.

Parsybone and PEPMC are tools for property-driven identification of bi-
ological models. Parsybone focuses on logical parameters in qualitative mod-
els [121], in particular, in gene regulatory networks encoded using the formalism
of R. Thomas [159]. PEPMC provides parameter identification for quantitative
models [13], in particular, continuous-time deterministic models represented as
piece-wise multi-affine ODEs (this model class generalizes multi-affine models to
capture regulatory dynamics). Both tools are based on colored LTL model check-
ing technique providing a heuristics for effective exploration of models with finite
parametrizations. As in BioDiVinE 1.0, specification of the temporal properties
is realized by means of Büchi automata.

PARASIM is a tool for approximative analysis of robustness of continuous-
time deterministic models. For sets of perturbations of kinetic parameters (or
initial conditions) and temporal properties specified in Signal Temporal Logic
(STL) [134], the so-called landscape function, giving the property’s validity for
parametrizations in the required perturbation set, is computed.

Usage of the BioDiVinE toolset is demonstrated in Section 4.

4 Model Checking in Action – Application Examples

In this section we give case studies on qualitative and quantitative representa-
tions of two biologically relevant models. The main purpose is to demonstrate the
application of selected techniques based on model checking. We focus on tech-
niques implemented in the BioDiVinE tool set, in particular, explicit LTL model
checking and parameter identification techniques built on the top of it. Addi-
tionally, we provide a demonstration of probabilistic model checking recently
extended to property-driven exploration of model parameters.

4.1 E. coli Ammonium Transport Model

We consider a simple biological model that describes ammonium transport from
the external environment into the cells of Escherichia Coli. This simplified
model is based on a published model of the E. Coli ammonium assimilation
system [131].

The model is a typical example of the dynamical models appearing in current
computational systems biology. In particular, the model is represented as a re-
action network associated with a continuous-time deterministic semantics given
in terms of (non-linear) ODEs. Parameters were taken from the literature.

We employ model checking to explore the model dynamics from a global
perspective. The term global has two meanings here. First, we want to analyze
the model dynamics starting at any possible initial concentration of the species,
not only at a single initial condition, as allowed by traditionally used simulation
methods. Second, we want to explore the model dynamics without restricting
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ourselves to a given parametrization. In particular, we want to explore how
parameters affect the expected (or required) behavior of the model.

As stated in Section 3.1, exhaustive exploration of the system states cannot
be directly employed on continuous-time deterministic models due to the un-
countability of time and variable domains. In order to allow the model checking
analysis, the model must be simplified in terms of Section 3.1. In this particular
case, we employ the rectangular abstraction technique [62] that allows to trans-
form an ODE model of a specific class into a finite automaton provided that the
dynamics properties are (conservatively) preserved.

Fig. 3. E. Coli ammonium transport mechanism and the respective pathway

Model Description E. coli can express membrane-bound transport proteins
for the transportation of small molecules from the environment into the cy-
toplasm at certain conditions. At normal ammonium concentration, the free
diffusion of ammonium can provide enough flux for the growth requirement of
nitrogen. When ammonium concentration is very low, E. coli cells express AmtB
(an ammonium transporter) to complement the deficient diffusion process. Three
molecules of AmtB (trimer) form a channel for the transportation of ammonium.
Protein structure analysis revealed that AmtB binds NH4+ at the entrance gate
of the channel, deprotonates it and conducts NH3 into the cytoplasm as illus-
trated in Figure 3 (left) [119]. At the periplasmic side of the channel there is a
wider vestibule site capable of recruiting NH+

4 cations. The recruited cations
are passed through the hydrophobic channel where the pKa of NH+

4 was shifted
from 9.25 to below 6, thereby shifting the equilibrium toward the production of
NH3. NH3 is finally released at the cytoplasmic gate and converted to NH+

4

because the intracellular pH (7.5) is far below the pKa of NH+
4 .

In addition to the above mentioned AmtB mediated transport, the bidirec-
tional free diffusion of the uncharged ammonium through the membrane is also
included in the simplified model. The intracellular NH+

4 is then metabolised by
Glutamine Synthetase (GS). The whole model is depicted in Figure 3 (right). The
external ammonium is represented in the uncharged and charged forms denoted
NH3ex and NH+

4 ex. Analogously, the internal ammonium forms are denoted
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NH3in and NH+
4 in. The reaction network that combines AmtB transport with

NH3 diffusion is given in Table 1.

AmtB +NH4ex
k1←k2→ AmtB : NH4 k1 = 5 · 108, k2 = 5 · 103

AmtB : NH4
k3→ AmtB : NH3 +Hex k3 = 50

AmtB : NH3
k4→ AmtB +NH3in k4 = 50

NH4in
k5→ k5 = 80

NH3in+Hin
k6←k7→ NH4in k6 = 1 · 1015, k7 = 5.62 · 105

NH3ex
k8←k9→ NH3in k8 = k9 = 1.4 · 104

Table 1. The model of ammonium transport

The reaction network is assigned a set of ODEs as listed in Table 2 (employing
the law of mass action kinetics). It is worth observing that the form of the ODE
right-hand sides is in all cases made by polynomials of degree one. Since we are
especially interested in how the concentrations of internal ammonium change
with respect to the external ammonium concentrations, we employ the following
simplifications:

– We do not consider the dynamics of the external ammonium forms, thus
we take NH3ex and NH+

4 ex as constants (the input parameters for the
analysis).

– We assume constant intracellular pH (7.5) and extracellular pH (7.0), thus
Hex and Hin are calculated to be 3·10−8 and 10−7. Based on the extracellular
pH and the total ammonium concentration, concentrations of NH3ex and
NH+

4 ex can be calculated.

Without loss of correctness, we simplify the notation of the cation NH+
4 as NH4.

d[AmtB]
dt

= −k1 · [AmtB] · [NH4ex] + k2 · [AmtB : NH4] + k4 · [AmtB : NH3]
d[AmtB:NH3]

dt
= k3 · [AmtB : NH4]− k4 · [AmtB : NH3]

d[AmtB:NH4]
dt

= k1 · [AmtB] · [NH4ex]− k2 · [AmtB : NH4]− k3 · [AmtB : NH4]
d[NH3in]

dt
= k4 · [AmtB : NH3]− k7 · [NH3in] + k6 · [NH4in]

d[NH4in]
dt

= k5 · [NH4in] + k7 · [NH3in] · [Hin]− k6 · [NH4in]

Table 2. The mathematical model of ammonium transport

Model Simplification The restricted polynomial form of ODEs implies that
the model falls into the class of so-called multi-affine systems for which a sim-
plification, the so-called rectangular abstraction, is defined [30] (see [62] for the
relation with model checking). Each variable is assigned a set of specific (arbi-
trarily defined) points, the so-called thresholds, expressing concentration levels of
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special interest. This set contains two specific thresholds – the maximal and the
zero concentration level (bounding of the state space has been discussed in Sec-
tion 3.1). The intermediate thresholds then define a partition of the (bounded)
continuous state space. The individual regions of the partition are called rectan-
gles. An example of a partition is given in Figure 4.

A
k1←k2→ B

dA
dt

= −k1 ·A+ k2 ·B
dB
dt

= k1 ·A− k2 ·B

thresholds on A: 0, 5, 6, 10
thresholds on B: 0, 2, 3, 5

A

B

Fig. 4. Example of a rectangular partition of a two-dimensional system (left) and the
intuition behind the construction of the abstracted transition system (right).

The partition of the system gives us directly the finite discrete abstraction of
the dynamic system. In particular, the BioDiVinE tool implements a (discrete)
state space generator that constructs a finite automaton representing the rect-
angular abstraction of the system dynamics. Since the states of the automaton
are made by the rectangles in the phase-space partition, the automaton is called
rectangular abstraction transition system (RATS). The main point is that for
each rectangle the exit faces are determined. The intuition is depicted in Fig-
ure 4(right). There is a transition from a rectangle to its neighbouring rectangle
only if, in the vector field considered in the shared face, there is at least one
vector whose particular component agrees with the direction of the transition.
The important result is that in a multi-affine system it suffices to consider only
the vector field in the vertices of the face. In Figure 4(right), the exit faces of
the central rectangle are emphasised by bold lines. In Figure 5 there is depicted
the rectangular abstraction transition system constructed for the affine system
from Figure 4(left). It is known that the rectangular abstraction is an overap-
proximation with respect to trajectories of the original dynamic system.

There is one specific issue when considering the time progress of the ab-
stracted trajectories. If there exists a point in a rectangle from which there is no
trajectory diverging out through some exit face, then there is a self-transition
defined for the rectangle. In particular, this situation signifies an equilibrium
inside the rectangle. Such a rectangle is called non-transient. For affine systems,
a sufficient and necessary condition is known, that characterizes non-transient
rectangles by the vector field in the vertices of those rectangles. However, for
multi-affine systems, only the necessary condition is known. Hence, for multi-
affine systems BioDiVinE treats as non-transient some states which are not nec-
essarily non-transient.
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Fig. 5. Example of a rectangular abstraction transition system. The emphasized state
and transition make a counterexample contradicting the property F(B > 3).

We use LTL logic to encode the dynamics properties of the model. Given
a dynamic system S with a particular initial state we can then say that S
satisfies a formula ϕ, written S |= ϕ, only if the trajectory starting at the initial
state satisfies ϕ. In the context of automata, LTL logic is interpreted universally
provided that a formula ϕ is satisfied by the automaton A, written A |= ϕ, only
if each execution of the automaton starting from any initial state satisfies ϕ.
The following theorem characterizes the relation between validity of ϕ in the
rectangular abstraction automaton and in the original dynamic system, taken
from [62].

Theorem 1. Consider a dynamic system S and the associated RATS A. If A |=
ϕ then S |= ϕ.

The theorem states that when the model checking of a particular property
on a RATS returns true, we are sure that the property is satisfied in the origi-
nal dynamic system. However, when the result is negative, the counterexample
returned does not necessarily reflect any trajectory in the original system.

The system in Figure 5 satisfies a formula FG(B ≤ 3) expressing the tem-
poral property stating that whatever the choice of the initial state, the system
eventually stabilizes at states where concentration of B is kept below 3. Now
let us consider a formula F(B > 3) expressing the property that whatever the
initial settings, the concentration of B will eventually exceed the concentration
level 3. In this case the model checking returns one of the counterexamples as
emphasized in Figure 5(right) stating that if initially A < 5 and B < 3 then B
is not increased while staying indefinitely long in the emphasised state.

We apply the rectangular abstraction method to the ammonium transport
model. We consider the set of states from which we want to explore the dynamics
given by the following intervals of concentration values:

AmtB ∈ 〈0, 1·10−5〉, AmtB : NH3 ∈ 〈0, 1·10−5〉, AmtB : NH4 ∈ 〈0, 1·10−5〉,
NH3in ∈ 〈1 · 1−6, 1.1 · 10−6〉, NH4in ∈ 〈2 · 10−6, 2.1 · 10−6〉

The upper bounds as well as the intervals of internal ammonium forms have
been set with respect to the available data obtained from the literature. The
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partition used for rectangular abstraction has been set by thresholds as given in
Table 3.

AmtB 0, 10−12, 10−10, 9.9 · 10−8, 10−7, 5 · 10−6, 10−5

AmtB : NH3 0, 10−7, 10−5

AmtB : NH4 0, 10−7, 10−5

NH3in 0, 10−6, 1.1 · 10−6, 3 · 10−6, 8 · 10−6, 10−5

NH4in 0, 2 · 10−6, 2.1 · 10−6, 10−5, 5 · 10−4, 5.3 · 10−4, 5.4 · 10−4, 10−3

Table 3. Partitioning of the continuous state space.

Model Checking Analysis From the essence of biophysical laws, it is clear
that the maximal reachable concentration level accumulated in the internal am-
monium forms directly depends on the ammonium sources available in the en-
vironment. However, it is not directly clear what particular maximal level of
internal ammonium is achievable at given amount of external ammonium (dis-
tributed into the two forms). In the analysis we have focused on just this phe-
nomenon. More precisely, the problem to solve was to analyze how the setting
of the model parameters NH3ex and NH+

4 ex affects the maximal concentration
level of NH3in and NH+

4 in reachable from given initial conditions.

It is very difficult to provide in vitro measurements of AmtB concentration
(and also the concentration of dimers AmtB : NH3 and AmtB : NH4). This
gives a strong motivation to analyze the model globally (with uncertain initial
conditions).

We have conducted several model checking experiments in order to determine
the maximal reachable concentration levels of NH3in and NH+

4 in. In particular,
we have searched for the lowest α satisfying the property G(NH3in < α) and
the lowest β satisfying G(NH4in < β). The property G p requires that all
paths available in the rectangular abstraction from the states specified by the
initial condition must satisfy the given proposition p at every state. Note that
if the model checking method finds the property G p false in the model, it also
returns a counterexample for that. The counterexample satisfies the negation
of the checked formula, which is in this case F¬p. Interpreting this observation
intuitively for the above formulae, we use model checking to find a path on which
the species NH3in (resp. NH4in) exceeds the level α (resp. β).

The procedure was the following: At the starting point, we substituted for
α (resp. β) the upper initial bounds of the respective variables. Then we found
the requested values by iteratively increasing and decreasing α (resp. β). The
obtained results are summarized in Table 4.

The results have shown that NH3in does not exceed its initial level no matter
how the external ammonium is distributed between NH3ex and NH+

4 ex. The
upper bound concentration considered for both NH3ex and NH4+ex has been
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α G(NH3in < α) # states Time

1.1 · 10−6 true 1081 0.36 s

β G(NH4in < β) # states Time

1 · 10−3 true 2161 0.45 s
5 · 10−4 false 4753 1.9 s
6 · 10−4 true 2161 0.43 s

5.4 · 10−4 true 1441 0.27
5.3 · 10−4 false 3421 1.2 s

Table 4. Experiments on detecting maximal reachable levels of internal ammonium

set to 1 · 10−5 which corresponds to common concentration level of the gas in
the cell environment.

In the case of NH4in we have found that the upper bound to maximal reach-
able level is in the interval β ∈ 〈5.3 · 10−4, 5.4 · 10−4〉. Since the counterexample
achieved can be a spurious one due to the overapproximating abstraction, the
exact maximal reachable value may be lower. This can be explored by numerical
simulation, an important fact is that the range for setting β is now limited to
the detected interval.

The results have been achieved by running the OWCTY algorithm on a single
computation node. In [18], there is presented a refined variant (a finer partition)
of the model leading to 105 reachable states. For that variant, distributing of
the computation to 36 nodes was needed to achieve good times (in the order of
seconds).

Parameter Exploration Owing to the membrane location of AmtB, in vitro
measuring of the concentration of AmtB-based species is impossible and there-
fore the estimation of kinetic parameters of this model is very difficult.

To identify parameter values computationally, we employ the colored model
checking technique [13] implemented in the PEPMC tool of the BioDiVinE
toolset (see Section 3.5). If we denote each parametrization by a distinct color
and assume that the respective (parametrization-specific) state space has all its
transitions marked by this color, we can construct a global state space as a union
of all the parametrization-specific state spaces. Since a change in parameter val-
ues affects the model dynamics, which is entirely represented by state transi-
tions, the parameter space is completely projected onto the transition relation
defined on the universal state space. In this setting, our solution to the parame-
ter identification problem is based on analysis of mono-colored paths in a graph
with multi-colored edges. Since in many parametrizations small perturbations in
parameter values lead to small locally distributed variations in the transition re-
lation, the respective mono-colored graphs can exhibit significant similarity. For
parametrizations amenable to such property, the algorithm achieves good effi-
ciency. In Fig. 6, the basic idea of solving the parameter identification problem
by automata-based LTL model checking is illustrated. The automaton represent-



31

ing the model dynamics can be extended with colored edges, where each color
corresponds to a certain parametrization. We expect that transitions are to a
large extent shared among individual colors. This allows us to accelerate the
computation.

we decide on all parameterizations at once

check if the product accepts an empty language

YES NO

is the maximal set of valid parameters  
inverse of P in entire parameter space

property is robust return set P of parameter values
violating the property

never claim Buchi automaton

GF ([A]>2.5 | [B]>2.5)

FG ([A]<=2.5 & [B]<=2.5)

parameterized Kripke structure of the model

naively for each parameterization separately 

[A]

[B]

5

0 2.5 5

2.5

Fig. 6. Intuition behind colored model checking.

It is important to note that in the considered model the parameters are
quantitative and their domain is uncountable (but bounded). However, as shown
in [25], the rectangular abstraction partitions the parameter domains into a finite
number of intervals where each interval contains parameter values producing an
isomorphic state transition system. Intuition behind the application of this result
is illustrated in Fig. 7.

In our model, we investigate the effect of different parameter settings to
the production of the model output – the internal ammonium forms NH3in and
NH4in. In particular, we look for perturbations in individual kinetic parameters
that lead to an increase of internal ammonium concentration above the standard
values. In the terms of LTL model checking, we formulate the negation of this re-
quirement – we check whether the standard value is never exceeded. We formalize
the discussed requirement by safety LTL properties ϕ1 = G(NH3in < 1.1 · 106)
and ϕ2 = G(NH4in < 2.1·106) stating that NH3in (resp. NH4in) never exceeds
the given concentration. We performed two sets of parameter identification tasks.
In the first group, each single parameter was considered unknown ( remaining
parameters were set w.r.t. literature [131]). In the second group, we considered a
collection of three unknown parameters. In all experiments, the range for every
parameter was set to (1 · 10−12, 1 · 1012). In Table 5, the most interesting results
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k2 = 0.8
k1 =?

[A]

[B]

1

2

3

45

(0.8,1.6)
value of k1:

(1.6,max)(0.4,0.8)(0,0.4)

1
2
3
4
5

[A]

[B]

5

0 2.5 5

2.5

[A]

[B]

5

0 2.5 5

2.5

[A]

[B]

5

0 2.5 5

2.5

[A]

[B]

5

0 2.5 5

2.5

Fig. 7. Partitioning of uncountable parameter space into a finite number of intervals.
Parameter k1 is considered to be unknown. Rectangular abstraction of the model is
determined by thresholds 0, 2.5, 5 imposed on both species A and B producing five
intersection points. By substituting any of these points into the ODEs while setting
the left-hand sides to zero (equilibrium), we can solve the resulting homogeneous system
of linear equations for k1. The solution gives us those values of k1 where the sign of
any of the derivatives changes. By iterating this procedure for each of the points, the
domain of k1 is partitioned into four intervals as can be seen in the table above. Each
of the intervals makes a class of equivalence with respect to the derivative sign in a
particular intersection point. Accordingly, in this example we get four (qualitatively)
different automata abstracting the model dynamics.
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are summarized. The presented data show the scanned parameter set, the an-
alyzed property with the computed valid parametrizations, number of reached
states, and computation times. Note that if a parameter is not mentioned it led
trivially to validity on the entire (1 · 10−12, 1 · 1012).

P prop. intervals of validity
#

states
reached

time

k4 ϕ1 (1 · 10−12, 2.7 · 106) 124580 30 s
k5 ϕ2 (1.5 · 107, 1 · 1012) 3068 0.40 s
k6 ϕ1 (5.2 · 106, 1 · 1012) 67572 22 s
k6 ϕ2 ∅ 6319 1.8 s
k7 ϕ1 (1 · 10−12, 3.3 · 106) 126458 33 s
k7 ϕ2 (1.6 · 107, 1 · 1012) 12523 3.5 s
k9 ϕ1 (1 · 10−12, 2.7 · 106) 97495 20 s
k9 ϕ2 ∅ 5779 1.5 s

k1,6,9 ϕ1
k9 ∈ (1 · 10−12, 2.7 · 106) ∨

[k9 ∈ (2.7 · 106, 3.2 · 106) ∧ k6 ∈ (1 · 10−12, 1.07 · 106)]
202638 51 min

k1,6,10 ϕ2
[k1 ∈ (1 · 10−12, 1 · 107)∧ k6 ∈ (1 · 10−12, 1.4 · 105)∧ k10 ∈ (1.18 · 106, 1 · 1012)]

∨[k6 ∈ (1.4 · 105, 1.07 · 106) ∧ k10 ∈ (1 · 10−12, 1.18 · 105)]
19473 19 min

Table 5. Parameter exploration experiments.

Of special interest are individual scans of k6 and k9 for ϕ2. In particular, the
results show that, in the given parameter value range, there is no perturbation
which would satisfy the property. With respect to both parameters, the model
is robust in the negative property F(NH4in > 2.1 · 106) stating that NH4in
eventually exceeds the given concentration. Thus, regardless the setting of k6, k9,
on each trajectory leading from the range specified by initial conditions, NH4in
must exceed the standard concentration range.

4.2 Gene Regulation of Mammalian Cell Cycle

In the second case study, we focus on parameter identification by model checking
for a model of a regulatory network. In particular, we investigate a model repre-
senting the central module of the genetic regulatory network governing the G1/S
cell cycle transition in mammalian cells [157]. In particular, the model considers
a two-gene network describing interaction of the tumor suppressor protein pRB
and the central transcription factor E2F1 (see Fig. 8(left)).

This simple model demonstrates the feature of bistability, i.e., the occurrence
of two stable states. Bistable networks can drive the systems response to some
stimulus: With no stimulus, the system keeps (once reaching it) a certain stable
state. In particular, in the stable state, the concentrations of the species does
not change, because production and degradation had reached an equilibrium. A
stimulus, which is in the form of a change of some protein concentration caused
from outside the system, evokes deflection from the stable state. If the deflec-
tion is weak enough, the system returns to the previous stable state afterwords.
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But when it overruns some threshold, the system approaches the other stable
state, with no chance of returning to the first one, even after the end of the
stimulus. That way the system can decide whether a stimulus is strong enough
to permanently switch to a particular mode. The first stable state of our system
represents the low level of the E2F1 protein concentration. In this state, the cell
stays in G1-phase. When increased enough, the concentration of E2F1 grows
higher, to the level of the second stable state, which causes the cell approaches
to S-phase.

Qualitative model First, we consider a Boolean model of the network, we
formulate the required properties, and we employ the parameter identification
algorithm to find parametrizations of unknown parameters (denoted by question
marks in Fig. 8).

We employ the Boolean model of gene regulatory networks as introduced by
Thomas [159]. The concrete modeling approach including the parametrization is
taken from [13]. The Boolean model is determined by the structure (topology)
of the GRN and the regulatory logic that controls the network dynamics. The
Boolean model is defined as a tuple B = 〈G, σ, θ, ρ, L〉 where

– G = (V,E) is a directed graph with vertices V = {g1, ..., gn} denoting genes
and set of edges E ⊆ V × V denoting regulations.

– σ(e) ∈ {+,−} denotes the type of regulation e ∈ E: positive (+) or negative
(−),

– θ(e) ∈ N≥1 denotes the activation threshold of e ∈ E,
– ρ(gi) ∈ N≥1 denotes the maximum expression level of gi ∈ V determining

the expression domain {0, ..., ρ(gi)},
– L is the regulatory logic defined as the set L = {Ki,R | 1 ≤ i ≤ n,R ⊆ {v ∈
V | 〈v, gi〉 ∈ E}} where Ki,R denotes the target expression level of gi when
regulated by all genes in R, 0 ≤ Ki,R ≤ ρ(gi).

In our example, the model, depicted in Fig. 8, consists of two genes pRB and
E2F1. To differentiate between the two outgoing regulations from both E2F1
and pRB, we choose the genes maximal activity levels ρ(pRB) = ρ(E2F1) = 2.
Negative and positive interactions together with thresholds are set with respect
to data presented in [157]. The regulatory logic is known only for the basal gene
activity, in particular, pRB under the empty context (no incoming regulation
active) has the tendency to attain the expression level 1. A significant role for
the model behavior has the positive autoregulation of E2F1. In order to become
active (i.e., the resource for E2F1, since E2F1 is not a target of any other positive
regulation), we need to set KE2F1,∅ = 2. We do not know target levels for other
regulatory contexts of both genes, therefore we consider them as parameters.
Note that since the expression levels of both genes is bounded by the maximal
activity levels, the number of possible parametrizations is finite.

Once the regulatory logic is set (all parameters are assigned), the semantics
in terms of a finite automaton capturing the dynamics of a network B can be
defined as the tuple BTS(B) = 〈S, T, S0〉 where S =

∏n
i=1{0, ..., ρ(gi)} is set of
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states with S0 ⊆ S initial states and T ⊆ S×S is the transition relation defined
as follows.

First we denote the level of gi in the state s ∈ S by li(s). Assume there is a
regulation e = 〈gi, gj〉 ∈ E between genes gi, gj . We say that gi is a resource for
gj in s if σ(e) = + and li ≥ θ(e), or σ(e) = − and li < θ(e). Let Re(s, gi) denote
the set of all resources of gi in s. There is a transition s → s′ according to the
following rules:

– If there exists u such that Ku,Re(s,gu) > lu then lu(s′) = lu(s) + 1.
– If there exists u such that Ku,Re(s,gu) < lu then lu(s′) = lu(s)− 1.

The presented semantics requires that the level of at most one gene can
be affected in a single transition. This represents the so-called asynchronous
semantics [159] that models all possible time-orderings of individual expression
level updates by the means of non-determinism (an update on a single gene is
considered an atomic operation).

The formulae specifying behavior of E2F1 are built over the following atomic
propositions:

AP = {E2F1 < x | 1 ≤ x ≤ ρ(E2F1)}

For the purpose of our analysis, we establish the set of initial states S0 as
those satisfying lpRB = 0 and lE2F1 ∈ {0, 1, 2}.

To filter out certain trivial executions, the concept of explicitly stated ac-
cepting states in the Büchi automaton (BA) representing the LTL property is
used. Such a restriction is called a fairness constraint as is frequently used in
formal verification by model checking [59]. From the above regulatory logic set-
tings follows the selection of accepting states with lpRB ≥ 1, denoted F1. A more
restricting filter may be created by choosing states satisfying lpRB = 2, de-
noted F2. The former fairness constraint can be formulated in LTL as a formula
GF(pRB ≥ 1), the latter one as GF(pRB = 2).

We understand bistability as the following set of properties (described in the
form of LTL formulae). These properties are used to detect certain paths in the
model state space with respect to the behavior observed in vitro. In the following
we assume θ ∈ {1, 2}:

– expression of E2F1 begins below the threshold and does not exceed it
(G(E2F1 < θ))

– expression of E2F1 begins above the threshold and remains such
(G(E2F1 ≥ θ))

– expression of E2F1 begins under the threshold and at certain moment ex-
ceeds it and stays above the exceeded level ((E2F1 < θ)→ FG(E2F1 ≥ θ))

We used the colored model checking algorithm implemented in the Parsy-
bone tool of the BioDiVinE toolset (see Section 3.5) to identify admissible
parametrizations for these properties with the setting of accepting states F1.
In particular, the properties listed above have been used as an observer (BA)
that makes a witness for the respective dynamic phenomenon. Only a small pa-
rameter restriction was synthesized by employing the observer (BA) for both
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settings θ = 1 and θ = 2: KpRB,{E2F1} 6= 0. When employing the accepting
states F2, the observer demanded KpRB,{pRB,E2F1} = 2 as well and, additionally,
KpRB,{pRB} = 2 for θ = 1. Apparently, the regulatory network is considerably
robust regarding the choice of θ and the setting of regulatory logic on E2F1 (i.e.
KE2F1,R where R ⊆ {E2F1,pRB}).

Continuous-time deterministic model Now we consider a quantitative model
of the gene regulatory network traditionally formalized by means of so-called Hill
kinetics that abstracts from unknown elementary reactions occurring during pro-
cesses of protein identification and its regulation. However, from the perspective
of computer analysis, Hill kinetics introduces rational polynomial functions into
the right-hand sides if ODEs. Course of the Hill function modeling positive reg-
ulation is shown in Fig. 9.

pRB E2F1

−1

−2

+1

+2
KpRB , ∅ = 1
KpRB,{pRB} =?
KpRB,{E2F1} =?
KpRB,{E2F1,pRB} =?

KE2F1, ∅ = 2
KE2F1,{E2F1} =?
KE2F1,{pRB} =?
KE2F1,{E2F1,pRB} =?

d[pRB]
dt

= k1
[E2F1]

0.5+[E2F1]
0.5

0.5+[pRB]
− γpRB [pRB]

d[E2F1]
dt

= kp + k2
a2+[E2F1]2

16+[E2F1]2
5

5+[pRB]
− γE2F1[E2F1]

Fig. 8. (left) Genetic regulatory network controlling the G1/S transition. (right) Reg-
ulatory logic employed for the qualitative model. (bottom) The original ODE model
system that makes the quantitative model of the network.

To analyze the model at the level of quantitative kinetics, we again need to
simplify the continuous-time deterministic model. Similarly as in the previous
case study, we translate the model into the discrete-time discrete-value domain.
To this end, we employ the piece-wise multi-affine abstraction (PMA) of the
non-linear ODE model shown in Fig. 8. This abstraction has two consecutive
steps:

– transforming the non-linear ODE model into a piece-wise multi-affine (PMA)
model and

– performing rectangular abstraction to transform the PMA model into a finite
automaton (the so-called rectangular abstraction transition system)

The first step has been defined in [25], the main idea is to get rid of the rational
polynomial functions appearing in right-hand sides of ODEs. As illustrated in
Fig. 9, this is done by approximating each of them by a so-called ramp function
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defined in the following way:

r+(xi, θi, θ
′
i) =


0, if xi ≤ θi,
xi−θi
θ′i−θi

, if θi < xi < θ′i,

1, if xi ≥ θ′i.

The ramp function approximates the non-linear sigmoid function by a piece-wise
affine curve. A sum of scaled ramp functions approximating individual segments
of the original non-linear curve can be employed.

Second, the PMA model is abstracted by using the rectangular abstraction
as introduced in Section 4.1. Since Theorem 1 extends to piece-wise multi-affine
models with no restrictions [25], the abstraction procedure is the same as in the
case of multi-affine systems. Again, the rectangular abstraction partitions the
domain of every unknown parameter domain into a finite number of intervals.

Fig. 9. Sigmoid (Hill) function for positive regulation abstracted by a corresponding
ramp function. The steepness is affected by the exponent appearing in Hill functions,
here denoted n.

The parameters in the original ODE model have been estimated by employ-
ing the bifurcation analysis [157]. We show how our alternative method based
on model checking can be employed for identification of parametrizations satis-
fying the required specification. Our PMA abstraction of this system is shown in
Fig. 10. Each function %i(x) is defined as a sum of several ramp-functions that
gradually approximate the respective regulatory Hill curve by a polyline.

Since we detected bistability by using the qualitative model above, it follows
to find how this phenomenon is affected by the setting of (quantitative) kinetic
parameters. As shown in [157], the steady behavior of this system is strongly
influenced by the degradation coefficient γpRB . Fig. 11 shows the vector field of
the above system for two different values of γpRB .

Similarly to the previous case, to express dynamical properties of paths in
rectangular abstraction of an n-dimensional model M we employ traditional
Linear Temporal Logic (LTL) built over atomic propositions AP :

AP =
{
xi � θij | 1 ≤ i ≤ n, 1 ≤ j ≤ ζi},� ∈ {<,>}

}
.
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d[pRB]
dt

= k1%1(pRB,E2F1)− γpRB [pRB]
d[E2F1]

dt
= kp + k2%2(pRB,E2F1)− γE2F1[E2F1]

%1(pRB,E2F1) = (0.85r+(E2F1, 0, 3) + 0.1r+(E2F1, 3, 10) + 0.05r+(E2F1, 10, 50))
·(0.85r−(pRB, 0, 2) + 0.1r−(pRB, 2, 5) + 0.05r−(pRB, 5, 80))

%2(pRB,E2F1) = (0.85r+(E2F1, 0, 10) + 0.1r+(E2F1, 10, 20) + 0.05r+(E2F1, 20, 80))
·(0.5r−(pRB, 0, 5) + 0.2r−(pRB, 5, 10) + 0.15r−(pRB, 10, 30) + 0.15r−(pRB, 30, 130))

Fig. 10. Piece-wise multi-affine abstraction (PMA model) for the G1/S transition reg-
ulatory network.

Our goal is to determine the set of parameters in the range [0.01, 1] for which
the concentration of E2F1 is greater than 8 in the stable state. This phenomenon
can be specified in terms of an LTL formula ϕ = FG([E2F1] > 8).

We executed the colored model checking algorithm implemented in the PEPMC
tool (see Section 3.5) for the model described above and the property ϕ. Since
the abstraction technique has the overapproximative character, some of coun-
terexamples found by model checking can be false-positive paths. Therefore the
result is an under-approximated set of parameter valuations under which the
property ϕ is satisfied. Owing to the fact that the property ϕ is a liveness prop-
erty, many of the counterexamples can be paths on which the time does not
really proceed (the so-called time-convergent paths). In [21] we have shown a
way of how the model checking procedure for this specific model can be elabo-
rated to avoid unwanted time-convergent paths. By applying the algorithm to
the model described above we were able to prove that for γpRB > 0.053, the
system stabilizes with E2F1 > 8.
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(a) γpRB = 0.01, the system stabilizes
with E2F1 < 3
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(b) γpRB = 0.1, the system stabilizes
with E2F1 > 11

Fig. 11. Vector field of the liveness model.
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Gene a interactions Gene b interactions

a→ a+A 1 b→ b+B 0.05
aB → aB +A 1 bB → bB +B 1

A+ a↔ aA 100; 10 A+ b↔ bA 100; 10
B + a↔ aB 100; 10 B + b↔ bB 100; 10

Protein degradation

A→ γA B → γB

Property # iter. # subsp. time[h]

(1a) 1.2·106 153 9
(2a) 2.0·106 69 5.5
(3a) 2.0·106 66 4.5
(1b) 4.0·106 159 10.5
(2b) 4.0·106 132 8
(3b) 4.0·106 80 5

(a) (b)

Fig. 12. (a) Stochastic mass action model of the G1/S regulatory circuit – A denotes
the protein pRB, B denotes E2F1, a, b represent genes, aA, aB, bA, bB represent tran-
scription factor-gene promoter complexes (b) Computation results.

Continuous-time stochastic model We have translated the original ODE
model into the framework of stochastic mass action kinetics [94]. The result-
ing reactions are shown in Fig. 12a. Since the detailed knowledge of elementary
chemical reactions occurring in the process of transcription and translation is
incomplete, we use the simplified form as suggested in [80]. In the minimalistic
setting, the reformulation requires addition of rate parameters describing the
transcription factor–gene promoter interaction while neglecting cooperativeness
of transcription factors activity. Our parametrization is based on time-scale or-
ders known for the individual processes [162]. Moreover, we assume the numbers
of A and B are bounded by 10 molecules. The bound is calibrated with respect
to the original ODE model and reflects the character of the two steady states.
All other species are bounded by the initial number of DNA molecules (genes a
and b) which is conserved and set to 1. The model is translated into a CTMC
which has 1078 states and 5919 transitions.

An interesting biologically relevant problem is to predict how the population
of cells implements this regulatory circuit in reaction to mitogenic stimulation
and under presence of noise. Low molecular numbers typical for DNA and pro-
teins molecules make the gene regulation highly sensitive to noise. Since mito-
genic stimulation influences the degradation rate of A, our goal is to study the
population distribution around the low and high steady state.

In particular, we consider three hypotheses: (1) stabilization in the low mode
where B < 3, (2) stabilization in the high mode where B > 5, (3) stabilization
in the high mode where B > 7 ((3) is more focused than (2)). All the hypotheses
are expressed within time horizon 1000 seconds reflecting the time scale of gene
regulation response. We employ two alternative CSL formulations to express
each of the three hypothesis.

First, we express the property of being inside the given bound during the
time interval I = [500, 1000] using globally operator: (1a) P∼?[G

I (B < 3)], (2a)
P∼?[G

I (B > 5)] and (3a) P∼?[G
I (B > 7)]. The interval starts from 500 seconds

in order to bridge the initial fluctuation region and let the system stabilize.

For the fixed valuations of parameters, quantitative CSL model checking can
be used to answer the above mentioned questions. For this purpose, PRISM pro-
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vides the most suitable tool [125]. The papers on applying PRISM to biological
models [102, 127], the book [112], and the tutorials available at the tool webpage
provide a good source for this topic.

Here we focus on analysing the above stated properties with respect to the
potential uncertainty in parameters. In particular, we explore the effect of the
parameter γA on the probability of the properties. According to [157], we consider
the parameter space γA ∈ [0.005, 0.5].

The technique employed for the parameter exploration is described in [40], it
is implemented on the top of PRISM. The basic notion is the landscape function
that for each parameter point from the inspected parameter space returns the
quantitative model checking result for the respective CTMC determined by the
parameter point and the given property. Computation of the landscape function
is based on automatic decomposition of the given parameter space with respect
to how it influences the model dynamics. The computation is approximative and
provides the result within a required absolute error bound.

State #0 (A=0, B=0, a=0, b=0, aA=0, aB=1, bA=0, bB=1)
State #997 (A=10, B=0, a=1, b=1, aA=0, aB=0, bA=0, bB=0)
State #1004 (A=10, B=1, a=1, b=0, aA=0, aB=0, bA=1, bB=0)

Property (1b) (2b) (3b) (1a)

γ  A
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Fig. 13. Landscape functions of properties (1a,1b,2b,3b) for parameter γA ∈ [0.005, 0.5]
and initial states #0, #997 and #1004. The left Y-axis scale corresponds to (1a), the
right to (1b,2b,3b).

Since the stochastic noise causes molecules to repeatedly escape the requested
bound, the resulting probability is significantly lower than expected. Namely, in
cases (2a) and (3a) the resulting probability is close to 0 for the whole parameter
space. Moreover, the selection of an initial state has only a negligible impact on
the result. Therefore, in Fig. 13 only the resulting probability for case (1a) and
a single selected initial state is visualized.

Second, we use a cumulative reward property [126] to capture the fraction of
the time the system has the required number of molecules within the time interval



41

Fig. 14. Landscape function for property (3b), initial state #0 (A = 0, B = 0, a =
0, b = 0, aA = 0, aB = 1, bA = 0, bB = 1) and two-dimensional parameter space
(γA, γB) ∈ [0.005, 0.1] × [0.05, 0.1] (represented by X and Y axes, respectively). The
upper bound of the landscape function is illustrated.

[0, 1000]: (1b) R∼?[C
≤t](B < 3), (2b) R∼?[C

≤t](B > 5), (3b) R∼?[C
≤t](B > 7)

where t = 1000 and R∼?[C
≤t](B ∼ X) denotes that state reward ρ is defined

such that ∀s ∈ S.ρ(s) = 1 iff B ∼ X in s. The result is visualized for three
selected initial states in Fig. 13.

Fig. 13 also illustrates inaccuracy of our approach with respect to the absolute
error bound Err = 0.01 by means of small rectangles depicting approximations
of the resulting probabilities and expected rewards. The analyses predict that
the distribution of the low steady mode interferes with the distribution of the
high steady mode. It confirms bistability predicted in [157] but in contrast to
ODE analysis our method shows how the population of cells distributes around
the two stable states. Results of computations including the number of iterations
performed during parametrized uniformization, numbers of resulting subspaces
and execution times in hours, are presented in Fig. 12b.

Finally, to see how degradation rates of A and B cooperate in affecting prop-
erty (3b), we explore two-dimensional parameter space (γA, γB) ∈ [0.005, 0.1]×
[0.05, 0.1]. Fig. 14 illustrates the computed upper bound of the landscape func-
tion for initial state #0. The result predicts antagonistic relation between the
degradation rates which is in agreement with the ODE model [157].
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D.: Abstraction of biochemical reaction systems on polytopes. In: Proceedings of
the 18th IFAC World Congress. vol. 18, pp. 14869–14875 (2011)

63. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-Efficient Al-
gorithms for the Verification of Temporal Properties. Formal Methods in System
Design 1, 275–288 (1992)

64. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (Jul 1995)

65. Crudu, A., Debussche, A., Radulescu, O.: Hybrid stochastic simplifications for
multiscale gene networks. BMC Systems Biology 3(1), 89 (2009)

66. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide Ver-
sion 2.0, (2009), http://www.nvidia.com/object/cuda\_develop.html

67. Dang, T., Guernic, C.L., Maler, O.: Computing reachable states for nonlinear
biological models. Theor. Comput. Sci. 412(21), 2095–2107 (2011)

68. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1),
69–110 (2004)

69. Darling, R., Norris, J.: Differential equation approximations for markov chains.
Probab. Surveys 5, 37–79 (2008)

70. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sed-
wards, S.: Statistical model checking for stochastic hybrid systems. In: Hybrid
Systems and Biology (HSB). EPTCS, vol. 92, pp. 122–136 (2012)

71. Derman, C.: Finite State Markovian Decision Processes. Academic Press, Inc.,
Orlando, FL, USA (1970)

72. Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V.: Fast Adaptive Uniformiza-
tion for the Chemical Master Equation. In: Parallel and Distributed Methods in
Verification and High Performance Computational Systems Biology (HiBi/PDMC
2009). pp. 118–127. IEEE Computer Society (2009)

73. Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V.: Sabre: A tool for stochastic
analysis of biochemical reaction networks. CoRR abs/1005.2819 (2010)
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77. Donzé, A., Clermont, G., Langmead, C.J.: Parameter synthesis in nonlinear dy-
namical systems: Application to systems biology. Journal of Computational Biol-
ogy 17(3), 325–336 (2010)

78. Edelkamp, S., Sulewski, D.: Parallel State Space Search on the GPU (2009),
symposium on Combinatorial Search (SoCS)

79. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Path-
way logic: Symbolic analysis of biological signaling. In: Pacific Symposium on
Biocomputing. pp. 400–412 (2002)

80. El Samad, H., Khammash, M., Petzold, L., Gillespie, D.: Stochastic Modelling
of Gene Regulatory Networks. Int. J. of Robust and Nonlinear Control 15(15),
691–711 (2005)

81. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst.
Des. 9(1-2), 105–131 (1996)
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