Introduction to Natural Language Processing (600.465)

Probability

Dr. Jan Hajič CS Dept., Johns Hopkins Univ. hajic@cs.jhu.edu

www.cs.jhu.edu/~hajic

Experiments & Sample Spaces

- Experiment, process, test, ...
- Set of possible basic outcomes: sample space Ω
 - coin toss ($\Omega = \{\text{head,tail}\}\)$, die ($\Omega = \{1..6\}$)
 - yes/no opinion poll, quality test (bad/good) ($\Omega = \{0,1\}$)
 - lottery (| Ω | \cong 10⁷ .. 10¹²)
 - # of traffic accidents somewhere per year ($\Omega = N$)
 - spelling errors ($\Omega = Z^*$), where Z is an alphabet, and Z^* is a set of possible strings over such and alphabet
 - missing word ($|\Omega| \cong \text{vocabulary size}$)

Events

- Event A is a set of basic outcomes
- Usually $A \subset \Omega$, and all $A \in 2^{\Omega}$ (the event space)
 - Ω is then the certain event, \varnothing is the impossible event
- Example:
 - experiment: three times coin toss
 - $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - count cases with exactly two tails: then
 - **A** = {**HTT**, **THT**, **TTH**}
 - all heads:
 - $A = \{HHH\}$

Probability

- Repeat experiment many times, record how many times a given event A occurred ("count" c₁).
- Do this whole series many times; remember all c_is.
- Observation: if repeated really many times, the ratios of c_i/T_i (where T_i is the number of experiments run in the *i-th* series) are close to some (unknown but) constant value.
- Call this constant a <u>probability of A</u>. Notation: p(A)

Estimating probability

- Remember: ... close to an unknown constant.
- · We can only estimate it:
 - from a single series (typical case, as mostly the outcome of a series is given to us and we cannot repeat the experiment), set

$$p(A) = c_1/T_1.$$

- otherwise, take the weighted average of all c_i/T_i (or, if the data allows, simply look at the set of series as if it is a single long series).
- This is the **best** estimate.

Example

- Recall our example:
 - experiment: three times coin toss
 - $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - count cases with exactly two tails: A = {HTT, THT, TTH}
- Run an experiment 1000 times (i.e. 3000 tosses)
- Counted: 386 cases with two tails (HTT, THT, or TTH)
- estimate: p(A) = 386 / 1000 = .386
- Run again: 373, 399, 382, 355, 372, 406, 359
 - p(A) = .379 (weighted average) or simply 3032 / 8000
- *Uniform* distribution assumption: p(A) = 3/8 = .375

Basic Properties

- · Basic properties:
 - p: 2 $^{\Omega}$ → [0,1]
 - $-p(\Omega)=1$
 - Disjoint events: $p(\bigcup A_i) = \sum_i p(A_i)$
- [NB: <u>axiomatic definition</u> of probability: take the above three conditions as axioms]
- Immediate consequences:
 - $-p(\emptyset) = 0$, $p(\bar{A}) = 1 p(A)$, $A \subseteq B \Rightarrow p(A) \le p(B)$
 - $-\sum_{a\in\Omega}p(a)=1$

Joint and Conditional Probability

- $p(A,B) = p(A \cap B)$
- p(A|B) = p(A,B) / p(B)
 - Estimating form counts:

•
$$p(A|B) = p(A,B) / p(B) = (c(A \cap B) / T) / (c(B) / T) = c(A \cap B) / c(B)$$

Bayes Rule

- p(A,B) = p(B,A) since $p(A \cap B) = p(B \cap A)$
 - therefore: p(A|B) p(B) = p(B|A) p(A), and therefore

$$p(A|B) = p(B|A) p(A) / p(B)$$

Independence

- Can we compute p(A,B) from p(A) and p(B)?
- Recall from previous foil:

$$p(A|B) = p(B|A) p(A) / p(B)$$

 $p(A|B) p(B) = p(B|A) p(A)$
 $p(A,B) = p(B|A) p(A)$

... we're almost there: how p(B|A) relates to p(B)?

- p(B|A) = P(B) (iff) A and B are independent
- Example: two coin tosses, weather today and weather on March 4th 1789;
- Any two events for which p(B|A) = P(B)!

Chain Rule

$$p(A_1, A_2, A_3, A_4, ..., A_n) =$$

$$p(A_1|A_2, A_3, A_4, ..., A_n) \times p(A_2|A_3, A_4, ..., A_n) \times$$

$$\times p(A_3|A_4, ..., A_n) \times ... p(A_{n-1}|A_n) \times p(A_n)$$

this is a direct consequence of the Bayes rule.

The Golden Rule (of Classic Statistical NLP)

- Interested in an event A given B (where it is not easy or practical or desirable) to estimate p(A|B)):
- take Bayes rule, max over all Bs:
- $\operatorname{argmax}_{A} p(A|B) = \operatorname{argmax}_{A} p(B|A) \cdot p(A) / p(B) =$

... as p(B) is constant when changing As

Random Variables

- is a function X: $\Omega \rightarrow Q$
 - in general: $Q = R^n$, typically R
 - easier to handle real numbers than real-world events
- random variable is discrete if Q is countable (i.e. also if <u>finite</u>)
- Example: die: natural "numbering" [1,6], coin: {0,1}
- Probability distribution:
 - $p_X(x) = p(X=x) =_{df} p(A_x)$ where $A_x = \{a \in \Omega : X(a) = x\}$
 - often just p(x) if it is clear from context what X is

Expectation Joint and Conditional Distributions

- is a mean of a random variable (weighted average)
 - $E(X) = \sum_{x \in X(\Omega)} x \cdot p_X(x)$
- Example: one six-sided die: 3.5, two dice (sum) 7
- Joint and Conditional distribution rules:
 - analogous to probability of events
- Bayes: $p_{X|Y}(x,y) =_{\text{notation}} p_{XY}(x|y) =_{\text{even simpler notation}} p(x|y) = p(y|x) \cdot p(x) / p(y)$
- Chain rule: $p(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{z}) \cdot p(\mathbf{y}|\mathbf{z}) \cdot p(\mathbf{x}|\mathbf{y}, \mathbf{z}) \cdot p(\mathbf{w}|\mathbf{x}, \mathbf{y}, \mathbf{z})$

Standard distributions

- Binomial (discrete)
 - outcome: 0 or 1 (thus: binomial)
 - make n trials
 - interested in the (probability of) number of successes r
- Must be careful: it's not uniform!
- $p_b(r|n) = {n \choose r} / 2^n$ (for equally likely outcome)
- (ⁿ_r) counts how many possibilities there are for choosing r objects out of n; = n! / (n-r)!r!

Continuous Distributions

- The normal distribution ("Gaussian")
- $p_{norm}(x|\mu,\sigma) = e^{-(x-\mu)^2/(2\sigma^2)}/\sigma\sqrt{2\pi}$
- where:
 - μ is the mean (x-coordinate of the peak) (0)
 - σ is the standard deviation (1)

• other: hyperbolic, t

Introduction to Natural Language Processing (600.465)

Essential Information Theory I

Dr. Jan Hajič

CS Dept., Johns Hopkins Univ.

hajic@cs.jhu.edu

www.cs.jhu.edu/~hajic

The Notion of Entropy

- Entropy ~ "chaos", fuzziness, opposite of order, ...
 - you know it:
 - · it is much easier to create "mess" than to tidy things up...
- Comes from physics:
 - Entropy does not go down unless energy is used
- Measure of *uncertainty*:
 - if low... low uncertainty; the higher the entropy, the higher uncertainty, but the higher "surprise" (information) we can get out of an experiment

The Formula

- Let p_x(x) be a distribution of random variable X
- Basic outcomes (alphabet) Ω

$$H(X) = -\sum_{x \in \Omega} p(x) \log_2 p(x)$$

- Unit: bits (log₁₀: nats)
- Notation: $H(X) = H_p(X) = H(p) = H_X(p) = H(p_X)$

Using the Formula: Example

- Toss a fair coin: Ω = {head,tail}
 - p(head) = .5, p(tail) = .5
 - $\mathbf{H}(\mathbf{p}) = -0.5 \log_2(0.5) + (-0.5 \log_2(0.5)) = 2 \times ((-0.5) \times (-1)) = 2 \times 0.5 = 1$
- Take fair, 32-sided die: p(x) = 1/32 for every side x
 - $\mathbf{H}(\mathbf{p}) = -\sum_{i=1..32} p(x_i) \log_2 p(x_i) = -32 (p(x_1) \log_2 p(x_1))$ (since for all $i \ p(x_i) = p(x_1) = 1/32$) $= -32 \times ((1/32) \times (-5)) = 5 \text{ (now you see why it's called bits?)}$
- Unfair coin:
 - p(head) = .2 ... H(p) = .722; p(head) = .01 ... H(p) = .081

Example: Book Availability

← p(Book Available)

The Limits

- When H(p) = 0?
 - if a result of an experiment is known ahead of time:
 - necessarily:

$$\exists x \in \Omega; p(x) = 1 \& \forall y \in \Omega; y \neq x \implies p(y) = 0$$

- Upper bound?
 - none in general
 - for $|\Omega| = n$: $H(p) \le \log_2 n$
 - · nothing can be more uncertain than the uniform distribution

Entropy and Expectation

Recall:

$$- E(X) = \sum_{x \in X(\Omega)} p_X(x) \times x$$

• Then:

$$\begin{split} E(\log_2(1/p_X(x))) &= \sum_{x \in X(\Omega)} p_X(x) \log_2(1/p_X(x)) = \\ &= - \sum_{x \in X(\Omega)} p_X(x) \log_2 p_X(x) = \\ &= H(p_X) =_{\text{notation}} H(p) \end{split}$$

Perplexity: motivation

- Recall:
 - -2 equiprobable outcomes: H(p) = 1 bit
 - 32 equiprobable outcomes: H(p) = 5 bits
 - 4.3 billion equiprobable outcomes: H(p) ~= 32 bits
- What if the outcomes are not equiprobable?
 - 32 outcomes, 2 equiprobable at .5, rest impossible:
 - H(p) = 1 bit
 - Any measure for comparing the entropy (i.e. uncertainty/difficulty of prediction) (also) for random variables with <u>different number of outcomes</u>?

Perplexity

· Perplexity:

$$-G(p) = 2^{H(p)}$$

- ... so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins, etc.
- · it is easier to imagine:
 - NLP example: vocabulary size of a vocabulary with uniform distribution, which is equally hard to predict
- the "wilder" (biased) distribution, the better:
 - lower entropy, lower perplexity

Joint Entropy and Conditional Entropy

- Two random variables: X (space Ω), Y (Ψ)
- · Joint entropy:
 - no big deal: ((X,Y) considered a single event):

$$H(X,Y) = -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(x,y)$$

Conditional entropy:

$$H(Y|X) = -\sum_{x \in \Omega} \sum_{y \in \Psi} \underline{p(x,y)} \log_2 p(y|x)$$
 recall that $H(X) = E(\log_2(1/p_X(x)))$ (weighted "average", and weights are not conditional)

Conditional Entropy (Using the Calculus)

other definition:

$$\begin{split} H(Y|X) &= \sum_{x \in \Omega} p(x) \; H(Y|X=x) = \\ & \text{ for } H(Y|X=x), \text{ we can use the } \\ & \text{ single-variable definition } (x \sim \text{constant}) \\ &= \sum_{x \in \Omega} p(x) \left(- \sum_{y \in \Psi} p(y|x) \log_2 p(y|x) \right) = \\ &= - \sum_{x \in \Omega} \sum_{y \in \Psi} p(y|x) \; p(x) \log_2 p(y|x) = \\ &= - \sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(y|x) \end{split}$$

Properties of Entropy I

- Entropy is non-negative:
 - $-H(X) \ge 0$
 - proof: (recall: $H(X) = -\sum_{x \in \Omega} p(x) \log_2 p(x)$)
 - $\log(p(x))$ is negative or zero for $x \le 1$,
 - p(x) is non-negative; their product p(x)log(p(x) is thus negative;
 - · sum of negative numbers is negative;
 - and -f is positive for negative f
- Chain rule:
 - H(X,Y) = H(Y|X) + H(X), as well as
 - H(X,Y) = H(X|Y) + H(Y)(since H(Y,X) = H(X,Y))

Properties of Entropy II

- Conditional Entropy is better (than unconditional):
 - $-H(Y|X) \le H(Y)$ (proof on Monday)
- $H(X,Y) \le H(X) + H(Y)$ (follows from the previous (in)equalities)
 - · equality iff X,Y independent
 - [recall: X,Y independent iff p(X,Y) = p(X)p(Y)]
- H(p) is concave (remember the book availability graph?)
 - concave function \underline{f} over an interval (a,b):

$$\forall x,y \in (a,b), \ \forall \lambda \in [0,1]:$$

 $f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y)$

- · function f is convex if -f is concave
- [for proofs and generalizations, see Cover/Thomas]

"Coding" Interpretation of Entropy

- The least (average) number of bits needed to encode a message (string, sequence, series,...)
 (each element having being a result of a random process with some distribution p): = H(p)
- Remember various compressing algorithms?
 - they do well on data with repeating (= easily predictable = low entropy) patterns
 - their results though have high entropy ⇒ compressing compressed data does nothing

Coding: Example

- How many bits do we need for ISO Latin 1?
 - → the trivial answer: 8
- Experience: some chars are more common, some (very) rare:
 - ...so what if we use more bits for the rare, and less bits for the frequent? [be careful: want to decode (easily)!]
 - suppose: p('a') = 0.3, p('b') = 0.3, p('c') = 0.3, the rest: $p(x) \approx .0004$
 - code: 'a' ~ 00, 'b' ~ 01, 'c' ~ 10, rest: $11b_1b_2b_3b_4b_5b_6b_7b_8$
 - code acbbécbaac: 00100101<u>1100001111</u>1001000010 acbb é cbaac
 - number of bits used: 28 (vs. 80 using "naive" coding)
- code length ~ 1 / probability; conditional prob OK!

Entropy of a Language

• Imagine that we produce the next letter using $p(l_{n+1}|l_1,...,l_n)$,

where $l_1,...,l_n$ is the sequence of <u>all</u> the letters which had been uttered so far (i.e. \underline{n} is really big!); let's call $l_1,...,l_n$ the <u>history</u> h (h_{n+1}) , and all histories H:

- Then compute its entropy:
 - $- \sum_{h \in H} \sum_{l \in A} p(l,h) \log_2 p(l|h)$
- · Not very practical, isn't it?

Cross-Entropy

Typical case: we've got series of observations
 T = {t₁, t₂, t₃, t₄, ..., t_n} (numbers, words, ...; t_i ∈ Ω);
 estimate (simple):

$$\forall y \in \Omega: \hat{p}(y) = c(y) / |T|, \text{ def. } c(y) = |\{t \in T; t = y\}|$$

- ...but the true p is unknown; every sample is too small!
- Natural question: how well do we do using p [instead of p]?
- Idea: simulate actual p by using a different T'
 (or rather: by using different observation we simulate the
 insufficiency of T vs. some other data ("random" difference))

Cross Entropy: The Formula

• $H_{p'}(\hat{p}) = H(p') + D(p'||\hat{p}|)$

$$H_{p'}(\tilde{p}) = -\sum_{x \in \Omega} p'(x) \log_2 \tilde{p}(x) \bullet$$

- p' is certainly not the true p, but we can consider it the "real world" distribution against which we test p
- note on notation (confusing...): $p/p' \leftrightarrow \tilde{p}$, also $H_{T'}(p)$
- (Cross)Perplexity: $G_{p'}(p) = G_{T'}(p) = 2^{H_{p'}(p)}$

Conditional Cross Entropy

- So far: "unconditional" distribution(s) p(x), p'(x)...
- · In practice: virtually always conditioning on context
- Interested in: sample space Ψ, r.v. Y, y ∈ Ψ;
 context: sample space Ω, r.v. X, x ∈ Ω;:
 "our" distribution p(y|x), test against p'(y,x),
 which is taken from some independent data:

$$H_{p'}(p) = -\sum_{y \in \Psi, x \in \Omega} p'(y,x) \log_2 p(y|x)$$

Sample Space vs. Data

- In practice, it is often inconvenient to sum over the sample space(s) Ψ, Ω (especially for cross entropy!)
- Use the following formula:

$$H_{p'}(p) = \begin{bmatrix} -\sum_{y \in \Psi, x \in \Omega} p'(y,x) \log_2 p(y|x) = \\ -1/|T'| \sum_{i=1..|T'|} \log_2 p(y_i|x_i) \end{bmatrix}$$

This is in fact the normalized log probability of the "test" data:

$$H_{p'}(p) = -1/|T'| \log_2 \prod_{i=1..|T'|} p(y_i|x_i)$$

Computation Example

- Ω = {a,b,..,z}, prob. distribution (assumed/estimated from data):
 p(a) = .25, p(b) = .5, p(α) = 1/64 for α ∈ {e.r}, = 0 for the rest: s,t,u,v,w,x,y,z
- Data (test): \underline{barb} p'(a) = p'(r) = .25, p'(b) = .5
- Sum over Ω:

Sum over data:

$$i/s_i$$
 1/b 2/a 3/r 4/b $1/|T'|$ $-log_2p(s_i)$ 1 + 2 + 6 + 1 = 10 (1/4) × 10 = 2.5

Cross Entropy: Some Observations

- H(p) ?? <, =, > ?? $H_{p'}(p)$: ALL!
- · Previous example:

```
[p(a) = .25, p(b) = .5, p(\alpha) = 1/64 \text{ for } \alpha \in \{c..r\}, = 0 \text{ for the rest: } s,t,u,v,w,x,y,z]H(p) = 2.5 \text{ bits} = H(p') \left(\underline{barb}\right)
```

- Other data: probable: (1/8) (6+6+6+1+2+1+6+6) = 4.25 H(p) < 4.25 bits = H(p') (probable)
- And finally: abba: (1/4) (2+1+1+2) = 1.5 H(p) > 1.5 bits = H(p') (abba)
- But what about: $\underline{\text{baby}} \xrightarrow{-\underline{p'}('y')\log_2p('y')} = -.25\log_20 = \infty$ (??)

Cross Entropy: Usage

- Comparing data??
 - -NO! (we believe that we test on **real** data!)
- Rather: comparing distributions (vs. real data)
- Have (got) 2 distributions: p and q (on some Ω, X)
 - which is better?
 - better: has lower cross-entropy (perplexity) on real data S
- "Real" data: S
- $H_S(p) = -1/|S| \sum_{i=1,|S|} log_2 p(y_i|x_i)$?? $H_S(q) = -1/|S| \sum_{i=1,|S|} log_2 q(y_i|x_i)$

Comparing Distributions

Test data S: probable

• p(.) from prev. example:

$$H_{S}(p) = 4.25$$

$$p(a) = .25$$
, $p(b) = .5$, $p(\alpha) = 1/64$ for $\alpha \in \{c..r\}$, = 0 for the rest: s,t,u,v,w,x,y,z

q(.|.) (conditional; defined by a table):

q(. .)→	a	ь	е	1	0	p	r	other	
a	0	.5	0	0	0	.1 25	0	0	
ь	1	0	0	0	1	.1 25	0	0	ex.: q(o r) = 1
е	0	0	0	1	0	.1 25	0	g	7 ()
1	0	.5	0	0	0	.1 25	0 /	0	q(r p) = .125
0	0	0	0	0	0	.1 25	1	0	1 /
р	0	0	0	0	0	.1 25	0	1	
r	0	0	0	0	0	.1 25 -	- 0 -		2
other	0	0	1	0	0	.1 25	0	0	1