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Experiments & Sample Spaces

» Experiment, process, test, ...

» Set of possible basic outcomes: sample space O
— coin toss (£ = {head,tail}), die (Q = {1..6})
— yes/no opinion poll, quality test (bad/good) (©3 = {0,1})
— lottery (| €2 | = 107 .. 1012)
— # of traffic accidents somewhere per year (2 = N)

— spelling errors (QQ = Z"), where Z is an alphabet, and 2"
is a set of possible strings over such and alphabet

— missing word (| Q | = vocabulary size)
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Events

» Event A 18 a set of basic outcomes

* Usually A — Q,and all A € 22(the event space)
— Q) is then the certain event, & is the impossible event
* Example:
— experiment: three times coin toss
* Q= {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
— count cases with exactly two tails: then
+ A={HTT,THT, TTH}
— all heads:
+ A= {HHH}
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Probability

» Repeat experiment many times, record how many
times a given event A occurred (“count™ ¢, ).

* Do this whole series many times; remember all ¢;s.

» Observation: if repeated really many times, the
ratios of ¢/T; (where T, 1s the number of
experiments run in the i-#z senes) are close to
some (unknown but) constant value.

* (Call this constant a probability of A. Notation: p(A)
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Estimating probability

» Remember: ... close to an urkriows constant.

* We can only estimate it:

— from a single series (typical case, as mostly the
outcome of a series is given to us and we cannot repeat
the experiment), set

p(A) = ¢,/T,.
— otherwise, take the weighted average of all ¢,/T. (or, if

the data allows, simply look at the set of series as if it
is a single long series).

» This 1s the best estimate.
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Example

Recall our example:
— experiment: three times coin toss
* Q= {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
— count cases with exactly two tails: A = {HTT, THT, TTH;

Run an experiment 1000 times (1.e. 3000 tosses)
Counted: 386 cases with two tails (HTT, THT, or TTH)
estimate: p(A) =386/ 1000 = .386

Run again: 373, 399, 382, 355, 372, 406, 359

— p(A) =.379 (weighted average) or simply 3032 / 8000
Uniform distribution assumption: p(A) = 3/8 = .375
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Basic Properties

» Basic properties:
-p:2% —>[0,1]
- p=1
— Disjoint events: p('/A) =2 p(A)
» [NB: axiomatic definition of probability: take the
above three conditions as axioms |

* Immediate consequences:

- p(@)=0, p( A)=1-p(A), AcB = p(A)<pB)
o Zaeﬂp(a)zl
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Joint and Conditional Probability

* p(AB)=p(ANB)
* P(AIB) =p(A.B)/p(B)

— Estimating form counts:

* pAB) =pAB) pB)=(cANB)/T)/(c(B)/T) =
= ¢(A N B) / ¢(B)

Q
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Bayes Rule

* p(A.B)=p(B.A)since plA mnB)=p(B m A)
— therefore: plA|B) p(B) =p(B|A) p(A), and therefore

p(AIB) =p(BJA) p(A)/p(B) @
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Independence

* Can we compute p({A,B) from p(A) and p(B)?
» Recall from previous foil;
p(A[B) =p(B|A) p(A)/p(B)
p(AIB) p(B) =p(B|A) p(A)
P(A.B) = p(B|A) p(A)
... we’'re almost there: how p(B|A) relates to p(B)?
— p(B|A) =P(B @A and B are independent

o coin tosses, weather today and
weather on March 4th 1789;

* Any two events for which p(B|A) = P(B)!
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Chain Rule

/

p(A, Ay Ay A, A)= ¢

DA A AsAg. A X DA As Ay A X
X PUASI A, A X PUAL A x p(AY

» this 1s a direct consequence of the Bayes rule.
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The Golden Rule
(of Classic Statistical NLP)

» Interested in an event A given B (where it is not
easy or practical or desirable) to estimate p(A|B)):

* take Bayes rule, max over all Bs:
* argmax, p(A|B) = argmax, p(B|A) . p(A)/p(B) =

argmax, p(B|A) p(A) e

... as p(B) 1s constant when changing As
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Random Variables

* 1s afunction X: €2 — Q
— in general: Q =Rx, typically R
— easier to handle real numbers than real-world events

« random variable 1s discrete 1f Q 1s countable (1.e.
also 1f finite)

* Example: die: natural “numbering” [1,6], coir: {0,1}
* Probability distribution:

- Px(X) = p(X=X) =4 p(A,) where A, = {a = Q: X(a)=x}
— often just p(x) if it is clear from context what X is
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Expectation
Joint and Conditional Distributions

1s a mean of a random variable (weighted average)
- E(X) =Z;cxy X - Px(X)
Example: one six-sided die: 3.5, two dice (sum) 7
Joint and Conditional distribution rules:
— analogous to probability of events

BHYES: PX|Y(K:~y) " notation PXY(X|Y) “even simpler notation
PEIY) = pyx) . px)/ p(y)
Chain rule: p(w,X,y,z) = p(z).p(¥|2).pX|¥.2). p(W|X,¥,Z)
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Standard distributions

Binomial (discrete)

— outcome: 0 or 1 (thus: binomial)

— make # trials

— interested in the (probability of) number of successes »

Must be careful: it’s not uniform!

pp(1n) = (:_1) / oo (for equally likely outcome)

(:_1) counts how many possibilities there are for
choosing r objects out of n; = n! / (n-r)!r!
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Continuous Distributions

* The normal distribution (“Gaussian™)

d Pnom(X|M:-G) = e-(x-pjzf@cz)/ G\fz_ﬂ

» where:

— s the mean (x-coordinate of the peak) (0)
— o isthe standard deviation (1)

* other: hyperbolic, t
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The Notion of Entropy

* Entropy ~ “chaos”, fuzziness, opposite of order, ...

— you know it:

+ it 1s much easier to create “mess” than to tidy things up...
» Comes from physics:
— Entropy does not go down unless energy is used

 Measure of uncertainty:

— if low... low uncertainty; the higher the entropy, the
higher uncertainty, but the higher “surprise”
(information) we can get out of an experiment
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The Formula

Let p,.(x) be a distnbution of random variable X

Basic outcomes (alphabet) 2

f

HX)=-2,.0 px)log, p(x) e

Umnit: bits (log,,: nats)
Notation: H(X) = H (X) = H(p) = Hy(p) = H(py)
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Using the Formula: Example

* Toss a fair coin; €2 = {head tail}
— pthead) = .5, pitail) = .5
— H(p) =- 0.5 log,(0.5) + (- 0.5 log,(0.5)) =
2x((-05)x(-1))=2x05=1
» Take fair, 32-sided die: p(x) =1/ 32 for every side x
~H) =-2,_, 5 p(x) log;p(x) = - 32 (p(x,) log,p(x))
(since for all i p(x)) = p(x,) = 1/32)
= 32 x ((1/32) x (-5)) = 5 (now you see why it's called DILS?)
« Unfair coin:
— pthead) = 2 ... H(p)=.722; pthead)= .01 ... H(p) = .081
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Example: Book Availability

Entropy

1

Q71352000
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The Limits

* When H(p) = 0?
— if aresult of an experiment is known ahead of time:
— necessarily:
xepx)=1l&vVyeld;y=zx = ply)=0
* Upper bound?
— none in general

— for | @ |=n: Hip) < log,n

+ nothing ¢an be more uncertain than the uniform distnbution
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Entropy and Expectation

* Recall:

— B(X) = 2y cxy Px(X) x X
 Then:

E(log, (1/px(X)) = 2y cxiy Px(X) 10g,(1/px(x)) =
= - Zexy Px(X) log,px(x) =

= H(p}i) “naotation H(p)
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Perplexity: motivation

* Recall:
— 2 equiprobable outcomes: H(p) = 1 bit
— 32 equiprobable outcomes: H{p) = 5 bits
— 4.3 billion equiprobable outcomes: H{p) ~= 32 bits

* What if the outcomes are not equiprobable?
— 32 outcomes, 2 equiprobable at .5, rest impossible:
* Hp) =1 bt
— Any measure for comparing the entropy (i.e.

uncertainty/difficulty of prediction) (also) for random
variables with different number of outcomes?
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Perplexity

Perplexity:

—G(p) = 2H(p)

* ... 50 we are back at 32 (for 32 eqp. outcomes), 2
for fair coins, etc.

* 1t 1S easier to 1magine:

— NLP example: vocabulary size of a vocabulary with
uniform distribution, which is equally hard to predict

the “wilder” (biased) distribution, the better:
— lower entropy, lower perplexity
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Joint Entropy and
Conditional Entropy

* Two random variables: X (space £2),Y (V)

» Joint entropy:
— no big deal: ((X,Y) considered a single event):

HX,Y) = - 2sca2iyew POLY) log, px,y)
* Conditional entropy:
H(YDQ - - ZX S5 sz =¥ M IDgZ p(Y|X)
recall that H(X) = E(log,(1/p5(x)))

(weighted “average”, and weights are not conditional)
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Conditional Entropy
(Using the Calculus)

» other definition;
HY[X) = 2, .o P&) HY[X=x) =

for H(Y|X=x), we can use the
single-variable definition (x ~ constant)

=Yea P(X) ( = Zy <v P[X) log,ply[x) ) -
- - ZX = sz eV P@'X) p(X) IDgZP(YP{) -
= Peee sz < PXY) 1og,p(y|x)
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Properties of Entropy I

* Entropy is non-negative:
~-HX) =0
— proof: (recall HX)=- 2, _ 5 px) log, p(x))

+ p(x)is non-negative; their produet p(x)log(p(x) s thus negative;

+ logip(x)) 1s negative or zero forx £ 1,

+ sum of negative numbers is negative;

« and -f 1s positive for negative |
* Chain rule:
— HX,Y) = H(Y|X) + H(X), as well as
— H(X.Y) =H(X|Y)+ H(Y) (since H(Y X) = H(X, Y))

Q71352000
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Properties of Entropy 11

» Conditional Entropy 1s better (than unconditional ):
— H(Y|X) <« H(Y) (proof on Monday)
* H(X:,Y) = H(X) + H(Y) (follows from the previcus (injequalities)
+ equality iff XY independent
+ [recall: XY independent iff p(X,Y )= p(X)p(Y)]
» H(p) 1s concave (remember the book availability graph?)
— concave function f over an interval (a,b):
vX,y e(ab), ¥i € [0,1]:
fOAxX + (1-A)y) = A0 + (1-M)i(y)

« function fis convex 1if -fis concave

[for proofs and generalizations, see Cover/Thomas]
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“Coding” Interpretation of Entropy

» The least (average) number of bits needed to
encode a message (string, sequence, series,...)
(each element having being a result of a random
process with some distribution p): = H(p)

* Remember various compressing algorithms?

— they do well on data with repeating (= easily
predictable = low entropy) patterns

— their results though have high entropy = compressing
compressed data does nothing
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Coding: Example

* How many bits do we need for [SO Latin 1?
— = the trivial answer: 8

* Experience: some chars are more common, some (very) rare:

...50 what 1f we use more bits for the rare, and less bits for the
frequent? [be careful: want to decode (easily)!]

suppose: p(*a’) = 0.3, p(*b’)=0.3, p(*c’) = 0.3, the rest: p(x)= .0004
code: “a’ ~ 00, *b* ~ 01, ¢’ ~ 10, rest: 11b,b.b;b,b.bb;b;
code acbbéebaac: 0010010111000011111001000010

g 5 B & o b a ac

number of bits used: 28 (vs. 80 using “naive” coding)

* code length ~ 1 / probability; conditional prob OK!

Q71352000
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Entropy of a Language

» Imagine that we produce the next letter using

Pl [Lps--o1),

where 1,,....1_1s the sequence of ali the letters which

had been uttered so far (i.e. # 1s really big!); let’s
call 1

* Then compute its entropy:

= - Ly en i< a POLN) log, plhy
» Not very practical, 1sn’t 1t?

1:,...:, al
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Cross-Entropy

Typical case: we've got series of observations

T = {t,, t,, t5, t,, ..., t } (numbers, words, ...; t, € £2);
estimate (simple):

vy € Q:B(y) = o) /[T], def. o(y) = |{t € T; t=y}|
...but the true p 1s unknown; every sample 1s too small!
Natural question: how well do we do using P [instead of p]?

Idea: simulate actual p by using a different T

(or rather: by using different observation we simulate the
insufficiency of T vs. some other data (“random” difference))
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Cross Entropy: The Formula

* H,(p) = H(p’) + D@’[|p)

H, (P) =-2..,p'x) log,P(X) @

* p’1s certainly not the true p, but we can consider 1t the
“real world” distribution against which we test p

e note on notation (confusing...). p/p’ <> b , also H.(p)
* (Cross)Perplexity: G .(p) = G.(p)= 2Hp' ()
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Conditional Cross Entropy

« So far: “unconditional” distribution(s) p(x), p’(x)...
* In practice: virtually always conditioning on context
* Interested in: sample space ¥, rv. Y,y e ¥,
context: sample space {2, r.v. X, x € (23
“our” distnbution p(y[x), test against p’(y,x),
which 1s taken from some independent data:

I_Ip’ (p) =R Zy eV, xell p:(y?}{) lﬂgzp(ﬂx)
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Sample Space vs. Data

» [n practice, 1t 1s often inconvenient to sum over the
SE]IHPIG SPEICG(S) LP, €2 (espeaially for cross entropy!)

* Use the following formula:

*  This is in fact the normalized log probability of the “test™ data:

Q71852000

HP’ (p) = - ZY cv.xe q P’ (¥.X) logp(ylx) =
- 1/|T7] Zi: LT log,p(yix)

Hp(p) =- 1/]T| log, H: L PIXD
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Computation Example

)= {Eljbj..jz} . PI'Db. distribution (assumed/estimated from data):
pia) = 25, p(b) =.5, pi{z) = 1/64 for & €{c..r}, =0 for the rest: s,t,u,v,w,x, v,z

Data (test): barb p@=p =25 p®)=23

Sum over £2;
) a becdefg...pgr st ... =2
pleglogpled .5+ .54+0404+04+04+04+04+04+04+0+1 . 54+04+04+04+04+0 = 2.5

Sum over data;

ifs 1/b  2/a 3/r 4/b Y,/“LflT’l
log,p(s) 1 + 2 4+ 6 + 1 =10 (1/4) x 10 =2.5
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Cross Entropy: Some Observations

H(p) ?2<=>? H,(p) ALL!
Previous example:
[p(a) = .25, pib) =.5, plc) = 1/64 for @ ={c..r}, =0 for the rest: s,tu,v,w,x,y.z|

H{p) = 2.5 bits = H(p’) (barb)
Other data: probable:  (1/8) (6+6+6+142+1+6+6)= 4.25

H(p) < 4.25 bits = H(p’) (probable)
And fially: abba: (1/4) (2+1+1+2)= 1.5

H{p) > 1.5 bits = H(p’) (abba)
But what about: baby p¢y)ogpiy) = -.2510g,0 = w0 (2?)
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Cross Entropy: Usage

Comparing data??
— NO/! (we believe that we test on real datal)
Rather: comparing distnbutions (vs. real data)

Have (got) 2 distributions: p and q (on some £, X)
— which is better?
— better: has lower cross-entropy (perplexity) on real data S

“Real” data; S
Hs(p) = - 18| 2= 1 5 logap(yix) @Hs(‘ﬂ =- L8| Zi= 1 g logaq(yixy)
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Comparing Distributions

Test data S: probable

* p(.) from prev. example:
play=.25, plby =5, p(cy = 1/ for e €{c r}, =0 for the rest: stuv wryz
* q(l) (cnndltmnal de:ﬁned by a table)

H.(p) =425

qi.l)—= |4 1 f t other

5 0 3 0 0 0 125 10 0

o 1 0 0 0 1 125 0 0 g% qlojr) =1

: 0 N 0 1 0 125 0 "

i 0 5 0 0 0 125 0 |0 qrlpy=.125
o 0 0 0 0 0 125 ¥ 0

P 0 0 0 0 0 125 0 1

7 0 N N 0 0 125 eo—— T |

YR i 0 1 0 0 125 0 0

(1/8) (log(ploth.}Hog(r[p)+log (o|r}+log(blo)+log(ab) Hlog(bla)Hlogilb)+log(e[l))

(1/8) (

Q71852000
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0
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1

+ 0 +

1

H:(q) = .625
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