

PA199 Advanced Game Design

Lecture 6 Collision Detection

> Dr. Fotis Liarokapis 24th March 2015

Motivation

- · Techniques for collision detection depend on the type of game
- For many games rough approximations are fine - i.e. Arcade-style games
- · For more complex games need to be familiar with a variety of techniques ranging from simple to complex
 - i.e. 3D games

Rough Approximations Example

Collision Detection

- Do objects collide/intersect?
 - Static
 - Dynamic
- · Picking is simple special case of general collision detection problem
 - Check if ray cast from cursor position collides with any object in scene
 - Simple shooting
 - Projectile arrives instantly, zero travel time

(Δ)

Collision Detection.

- · A better solution
 - Projectile and target move over time
 - -See if collides with object during trajectory

 (Δ)

Collision Detection Applications

- Determining if player hit wall/floor/obstacle and stop them walking through it
 - -Terrain following (floor)
 - -Maze games (walls)
- Determining if projectile has hit target
- · Determining if player has hit target
 - Punch/kick (desired)
 - -Car crash (not desired)

 (\triangle)

 (Δ)

Collision Detection Applications .

- Detecting points at which behavior should change
 - -Car in the air returning to the ground
- Cleaning up animation
 - Making sure a motion-captured character's feet do not pass through the floor
- Simulating motion
 - Physics, or cloth, or something else

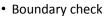
Simulating Motion

Why it is Hard?

- · Complicated for two reasons
 - Geometry is typically very complex
 - Potentially requiring expensive testing
 - Naïve solution is O(n2) time complexity
 - Since every object can potentially collide with every other object

(A)

(A)


Why it is Hard - Example

Basic Concepts

From Simple to Complex

- Perimeter of world vs. viewpoint or objects
 - 2D/3D absolute coordinates for bounds
 - Simple point in space for viewpoint/objects
- · Set of fixed barriers
 - -Walls in maze game
 - 2D/3D absolute coordinate system

From Simple to Complex.

- Set of moveable objects
 - -One object against set of items
 - Missile vs. several tanks
 - Multiple objects against each other
 - Punching game: arms and legs of players
 - · Room of bouncing balls

(A)

HCI

Naive General Collision Detection

- · For each object i containing polygons p
 - Test for intersection with object j containing polygons q
- For polyhedral objects, test if object i penetrates surface of j
 - Test if vertices of i straddle polygon q of j
 - If straddle, then test intersection of polygon q with polygon p of object i
- Very expensive! O(n2)

Fundamental Design Principles

- Fast simple tests first, eliminate many potential collisions
 - Test bounding volumes before testing individual triangles
- Exploit locality, eliminate many potential collisions
 - Use cell structures to avoid considering distant objects

Fundamental Design Principles.

- Use as much information as possible about geometry
 - Spheres have special properties that speed collision testing
- Exploit coherence between successive tests
 - Things don't typically change much between two frames

Example: Player-Wall Collisions

- 'First person' games must prevent the player from walking through walls and other obstacles
- Most general case
 - Player and walls are polygonal meshes
- Each frame, player moves along path not known in advance
 - Assume piecewise linear
 - Straight steps on each frame
 - Assume player's motion could be fast

Simple Approach

- On each step, do a general mesh-to-mesh intersection test to find out if the player intersects the wall
- If they do, refuse to allow the player to move
- Problems with this approach? how can we improve:
 - In response?
 - In speed?

Typical Approaches

- · Frustrating to just stop
 - For player motions, often best thing to do is move player tangentially to obstacle
- · Do recursively to ensure all collisions caught
 - Find time and place of collision
 - Adjust velocity of player
 - Repeat with new velocity, start time, start position (reduced time interval)
- · Handling multiple contacts at same time
 - Find a direction that is tangential to all contacts

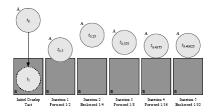
Collision Detection Approaches

- Two basic techniques:
 - -Overlap testing
 - Detects whether a collision has already occurred
 - -Intersection testing
 - Predicts whether a collision will occur in the future

Overlap Testing

- Facts
 - Most common technique used in games
 - -Exhibits more error than intersection testing
- Concept
 - -For every simulation step, test every pair of objects to see if they overlap
 - Easy for simple volumes like spheres, harder for polygonal models

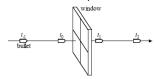
(Δ)


Overlap Testing: Useful Results

- · Useful results of detected collision
 - -Time collision took place
 - -Collision normal vector

Overlap Testing: Collision Time

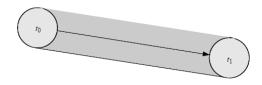
- Collision time calculated by moving object back in time until right before collision
 - Bisection is an effective technique


 (Δ)

 (Δ)

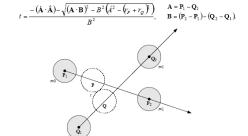
Overlap Testing: Limitations

- Fails with objects that move too fast
 - Unlikely to catch time slice during overlap
- · Possible solutions
 - Design constraint on speed of objects
 - Reduce simulation step size


Intersection Testing

- · Predict future collisions
- · When predicted:
 - Move simulation to time of collision
 - Resolve collision
 - -Simulate remaining time step

Intersection Testing: Swept Geometry


- Extrude geometry in direction of movement
- Swept sphere turns into a 'capsule' shape

Intersection Testing: Sphere-Sphere Collision

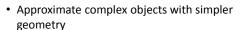
Intersection Testing: Limitations

- Issue with networked games
 - Future predictions rely on exact state of world at present time
 - Due to packet latency, current state not always coherent
- Assumes constant velocity and zero acceleration over simulation step
 - Has implications for physics model and choice of integrator

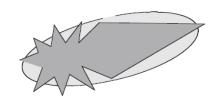
HCI

 (Δ)

Complexity Issues


Dealing with Complexity

- Two common issues when dealing with complexity:
 - Complex geometry must be simplified
 - Not so easy!
 - Reduce number of object pair tests
 - Varies depending on the types of objects



(A)

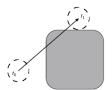
Simplified Geometry

- i.e. Ellipsoid shown below

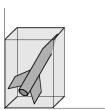
Minkowski Sum

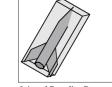
- By taking the Minkowski Sum of two complex volumes and creating a new volume then overlap can be found
 - By testing if a single point is within the new volume

 $X \oplus Y = \{A + B : A \in X \text{ and } B \in Y\}$



Minkowski Sum Example


Bounding Volumes


- Bounding volume is a simple geometric shape
 - Completely encapsulates object
 - If no collision with bounding volume, no more testing is required
- Most common bounding volumes is box
 - More later on...

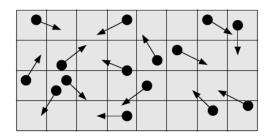
Box Bounding Volumes

Axis-Aligned Bounding Box

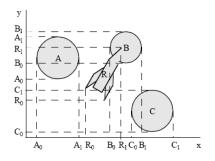
Oriented Bounding Box

Achieving O(n) Time Complexity

- Possible solutions for O(n) time complexity
 - Partition space
 - Plane sweep algorithm


(A)

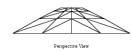
Partition Space Solution

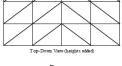


(A)

 (Δ)

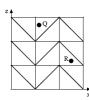
Plane Sweep Algorithm Solution



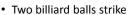

 (\triangle)

 (Δ)

Terrain Collision Detection



Locate Triangle on Height Field



Collision Resolution: Examples

- Calculate ball positions at time of impact
- Impart new velocities on balls
- Play "clinking" sound effect
- · Rocket slams into wall
 - Rocket disappears
 - Explosion spawned and explosion sound effect
 - Wall charred and area damage inflicted on nearby characters
- Character walks through wall
 - Magical sound effect triggered
 - No trajectories or velocities affected

Collision Resolution Components

\bigcirc

Prologue Stage

- Resolution has three parts:
- Prologue
- -Collision
- Epilogue

- Collision known to have occurred
- Check if collision should be ignored
- · Other events might be triggered
 - -Sound effects
 - -Send collision notification messages

HCI

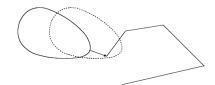
Collision Stage

- Place objects at point of impact
- Assign new velocities using either
 - Physics
 - -Some other decision logic

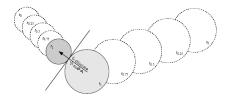
Epilogue Stage

- Propagate post-collision effects
- Possible effects
 - Destroy one or both objects
 - Play sound effect
 - -Inflict damage
- Many effects can be done either in the prologue or epilogue

Resolving Overlap Testing


- Extract collision normal
- Extract penetration depth
- Move the two objects apart
- -Compute new velocities

Extract Collision Normal


- Find position of objects before impact
- Use two closest points to construct the collision normal vector

Extract Collision Normal.

- Sphere collision normal vector
 - Difference between centers at point of collision

Resolving Intersection Testing

- · Simpler than resolving overlap testing
 - No need to find penetration depth or move objects apart
- Simply just
 - -Extract collision normal
 - -Compute new velocities

Acceleration Techniques

 (Δ)

Accelerating Collision Detection

(A)

- Two kinds of approaches (many others also)
 - Collision proxies / bounding volumes hierarchies
 - Spatial data structures to localize
- Used for both 2D and 3D
- · Accelerates many things, not just collision detection
 - Raytracing
 - Culling geometry before using standard rendering pipeline

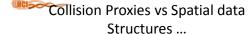
Collision Proxies vs Spatial data Structures

Spatial data Structures:

- Object centric
- Space centric
- Spatial redundancy
- Object redundancy

Collision Proxies vs Spatial data Structures.

- Collision Proxies:
- Object centric - Spatial redundancy
- Space centric
- - Object redundancy


Spatial data Structures:

Collision Proxies vs Spatial data Structures ..

 \bigcirc

Collision Proxies:

Spatial data Structures:

- Object centricSpatial redundancy
- Space centric
- Object redundancy

Collision Proxies:

Spatial data Structures:

- Object centric
- Space centric
- Spatial redundancy
- Object redundancy

Collision Proxies

 \bigcirc

(A)

- Proxy
 - Something that takes place of real object
 - Cheaper than general mesh-mesh intersections
- Collision proxy (bounding volume) is piece of geometry used to represent complex object for purposes of finding collision
 - If proxy collides, object is said to collide
 - Collision points mapped back onto original object

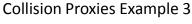
HCI

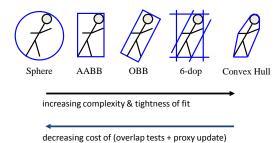
Collision Proxies .

- Good proxy
 - Cheap to compute collisions for, tight fit to the real geometry
- Common proxies
 - -Sphere, cylinder, box, ellipsoid
- Consider
 - Fat player, thin player, rocket, car ...

Collision Proxies Example 1

Collision Proxies Example 2




Trade-off in Choosing Proxies

 (Δ)

HCI

Trade-off in Choosing Proxies.

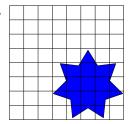
- AABB
 - Axis aligned bounding box
- OBB
 - -Oriented bounding box, arbitrary alignment
- k-dops
 - Shapes bounded by planes at fixed orientations
 - Discrete orientation

Pair Reduction

- Want proxy for any moving object requiring collision detection
- Before pair of objects tested in any detail, quickly test if proxies intersect
- When lots of moving objects, even this quick bounding sphere test can take too long:
 - N² times if there are N objects
- Reducing this N² problem is called pair reduction
 - Pair testing isn't a big issue until N>50 or so...

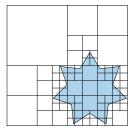
Spatial Data Structures

- Spatial data structures tell you what is close to object
 - Uniform grid, octrees, kd-trees, BSP trees
 - Bounding volume hierarchies
 - OBB trees
 - For player-wall problem, typically use same spatial data structure as for rendering
 - BSP trees most common



HCI

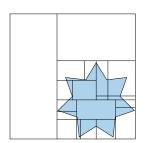
Uniform Grids



- Axis-aligned
- Divide space uniformly

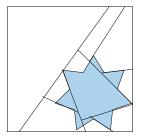
Quadtrees/Octrees

- Axis-aligned
- Subdivide until no points in cell

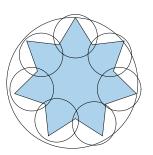

(A)

(A)

 (Δ)


KD Trees

- Axis-aligned
- Sub-divide in alternating dimensions



BSP Trees

- Binary Space Partitioning (BSP)
- Planes at arbitrary orientation

Bounding Volume Hierarchies

- Oriented bounding box (OBB)
- Applicable to a wide range of problems

BSP Trees Main Idea

- Binary Space Partition (BSP) Tree:
 - –Partition space with binary tree of planes
 - -Fuchs, Kedem and Naylor `80
- Main idea:
 - Divide space recursively into half-spaces by choosing splitting planes that separate objects in scene

(A)

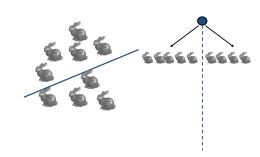
 (Δ)

\bigcirc

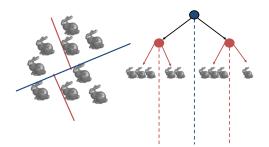
BSP Trees Methods.

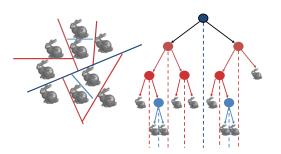
- More general, can deal with inseparable objects
- Automatic, uses as partitions planes defined by the scene polygons
- Method has two steps:
 - Building of the tree independently of viewpoint
 - Traversing the tree from a given viewpoint to get visibility ordering

-
- Preprocessing
 - Create binary tree of planes
- Second step
 - -Runtime
 - Correctly traversing this tree enumerates objects from back to front



Creating BSP Trees: Objects .




Creating BSP Trees: Objects ...

Splitting Objects

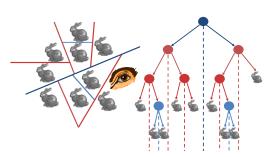
- No bunnies were harmed in previous example
- But what if a splitting plane passes through an object?
 - -Split the object; give half to each node

Traversing BSP Trees

- · Tree creation independent of viewpoint
- Preprocessing step
- Tree traversal uses viewpoint
- Runtime, happens for many different viewpoints
- · Each plane divides world into near and far
 - For given viewpoint, decide which side is near and which is far
 - Check which side of plane viewpoint is on independently for each tree vertex
 - Tree traversal differs depending on viewpoint!
 - Recursive algorithm
 - Recurse on far sideDraw object
 - Recurse on near side

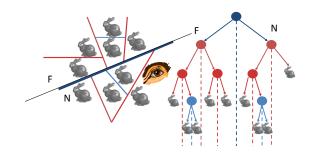
 (Δ)

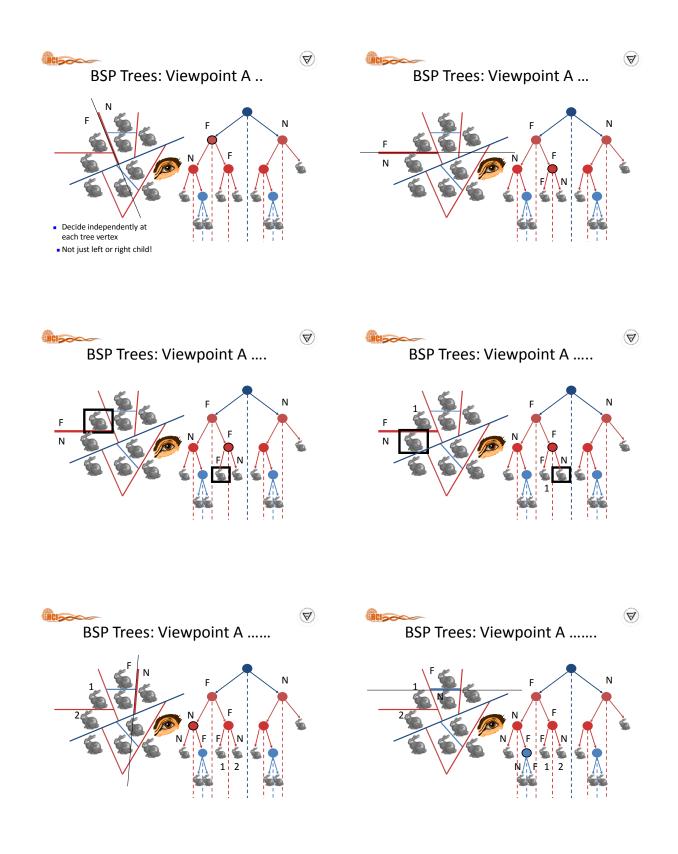
 (Δ)

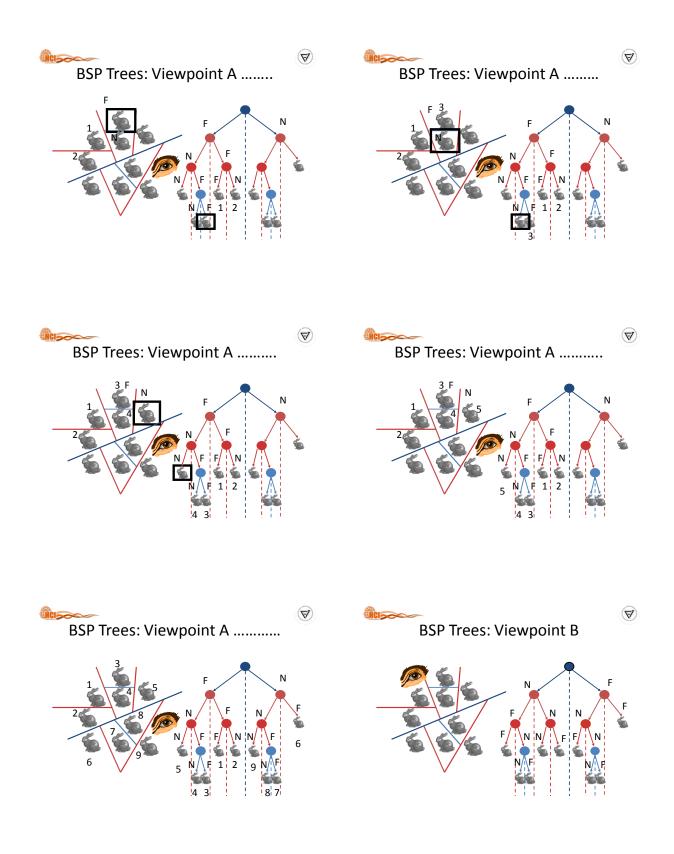

Traversing BSP Trees Pseudo Code

 Query: given a viewpoint, produce an ordered list of (possibly split) objects from back to front

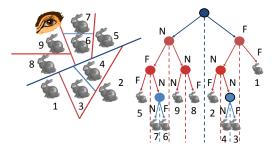
renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)
 near = T->left; far = T->right;
else
 near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)
 renderObject(T)
renderBSP(near);

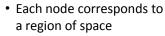




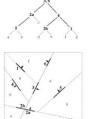


BSP Trees: Viewpoint A .





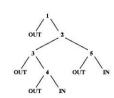
BSP Trees: Viewpoint B .



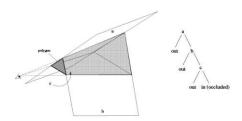
BSP as a Hierarchy of Spaces

- -The root is the whole of Rⁿ
- The leaves are homogeneous regions

BSP Tree Traversal: Polygons


- Split along the plane defined by any polygon from scene
- Classify all polygons into positive or negative half-space of the plane
 - If a polygon intersects plane, split polygon into two and classify them both
- Recurse down the negative half-space
- Recurse down the positive half-space

(A)


Representation of Polygons

Representation of Polyhedra

BSP Trees for Dynamic Scenes

- When an object moves the planes that represent it must be removed and reinserted
- Some systems only insert static geometry into the BSP tree
- Otherwise must deal with merging and fixing the BSP cells

 (Δ)

 (Δ)

 (\triangle)

 (Δ)

BSP Trees Pos

• Simple, elegant scheme

HCI

- · Correct version of painter's algorithm back-to-front rendering approach
- · Popular for video games

BSP Trees Cons

Slow to construct tree

(A)

 (\triangle)

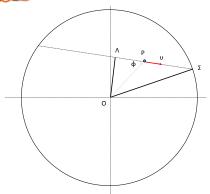
 (Δ)

- -O(n log n) to split, sort
- Splitting increases polygon count
 - -O(n2) worst-case
- Computationally intense preprocessing stage restricts algorithm to static scenes

BSP Demo

http://www.symbolcraft.com/graphics/bsp/

- https://www.youtube.com/watch?v=WAd7vzw
- https://www.youtube.com/watch?v=jF2a4imSu
- http://www.youtube.com/watch?v=JJjyXRvokE4


Collision Detection Approach

Introduction to 3D Breakout

- Most important thing is ball-wall collision detection
- Can be used in:
 - Ball-wall collisions
 - Ball-bat collisions
 - · Apart from some cases
 - Ball-Well collisions
 - Apart from some cases (similarly to ball-bat)

HCIS

 \bigcirc

HCI

Calculate Collision With Wall

- We are interested in finding the
 - Distance travelled (PΣ)
 - Collision time (t_{collision})
 - Final velocity (v_{final})

From the previous diagram:

$$P\Sigma = \Lambda\Sigma - \Lambda P$$
 eq. 1

HCIS

Pythagoras Theorem

• From Pythagoras:

$$\begin{split} O\Sigma^2 &= O\Lambda^2 + \Lambda\Sigma^2 \Rightarrow \\ \Lambda\Sigma^2 &= O\Sigma^2 - O\Lambda^2 \Rightarrow \\ \Lambda\Sigma &= \text{sqrt}(O\Sigma^2 - O\Lambda^2) \end{split} \qquad \text{eq. 2}$$

HCI

Calculate Distance Travelled

 \bigcirc

• Also:

$$\Lambda P = OP\cos\phi$$
 eq. 3

• So from eq. 1, eq. 2 and eq. 3:

$$PΣ = sqrt(OΣ^2 - OΛ^2) - OPcosφ$$
 eq. 4

HCIS

Calculate Distance Travelled.

• But:

$$sin \varphi = O\Lambda/OP \rightarrow O\Lambda = OPsin \varphi$$

• And:

$$O\Lambda^2 = OP^2 \sin \varphi^2$$
 eq. 5

 \bigcirc

Calculate Distance Travelled ..

• From eq. 4 and eq. 5

$$PΣ = sqrt(OΣ^2 - OP^2sinφ^2) - OPcosφ$$
 eq. 6

• Also from:

$$\sin \phi^2 + \cos \phi^2 = 1 \rightarrow \sin \phi^2 = 1 - \cos \phi^2$$
 eq. 7

(Δ)

Calculate Distance Travelled ...

• From eq. 6 and eq. 7

$$P\Sigma = sqrt(O\Sigma^2 - OP^2 + OP^2cos\phi^2) - OPcos\phi$$

• Since OP•υ = (OP)υ/|υ|cosφ, so the above equation will become:

PΣ = sqrt(OΣ² - OP² + (OP
$$\upsilon$$
/| υ |cos φ)²) - (OP) υ /| υ |cos φ

Calculate Distance Travelled

• From the dot product the previous equation will become

$$P\Sigma$$
 = sqrt($OΣ^2$ - OP^2 + ($OP • υ/|υ|)^2$) - $OP • υ/|υ|$ eq. 8

• Must take absolute value in case $\phi > 90$

$$P\Sigma = |(\operatorname{sqrt}(O\Sigma^2 - OP^2 + (OP \bullet \upsilon / |\upsilon|)^2) - OP \bullet \upsilon / |\upsilon| |$$
eq. 9

HCIS

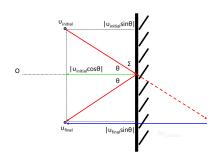
Calculate Collision Time

• From motion equation:

$$S = U_{collision} t_{collision}$$

• But S = PΣ, so:

$$P\Sigma = \upsilon_{\text{collision}} t_{\text{collision}} \rightarrow t_{\text{collision}} = P\Sigma/\upsilon_{\text{collision}} \qquad \text{eq. 10}$$



A P D E

HCIS

Calculate Final Velocity

Calculate Final Velocity.

 (Δ)

• The change in ball velocity from the collision:

$$|\Delta v_{\text{collision}}| = |v_{\text{final}} - v_{\text{initial}}|$$
 eq. 11

• From the above figure:

$$\begin{split} |\Delta \upsilon_{collision}| &= 2 \, |\, \upsilon_{initial} cos\theta \, | \text{ or } &= \text{eq. } 12 \\ |\Delta \upsilon_{collision}| &= 2 \, \upsilon_{initial} \bullet (O\Sigma/|O\Sigma|) &= \text{eq. } 13 \end{split}$$

Calculate Final Velocity ..

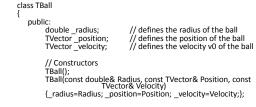
- But $\Delta \upsilon$ is anti-parallel to $O\Sigma$ and we want to make Δυ_{collision} a vector
- From eq. 12 we do:

$$\Delta v_{collision} = -2 |v_{initial} cos \theta | (O\Sigma) / |O\Sigma| \rightarrow$$

• From eq. 13 we do:

$$\Delta v_{\text{collision}} = -2(O\Sigma) (v_{\text{initial}} \bullet O\Sigma) / |O\Sigma|^2$$

(A)


Class TBall.h

 (Δ)

Some Tips

- · Important 3D objects for collision detection in 3D Breakout Assignment
 - Invisible ground (optional)
 - Ball
 - Bat
 - Well

};

 (Δ)

Class TBall.h.

```
// Selectors
double GetBallRadius() const {return _radius;};
TVector GetBallVelocity() const {return _velocity;};
void DrawBall();
                                    // Draws the ball
void CalculateVelocity(const TVector& velocity, const double& seconds); // Assigns the ball a velocity
TVector CalcDistanceTravelled(const double& seconds) const; // Calculates the distance traveled
void MoveBall(const double& seconds); // Moves the ball
```


Default Constructor for the Ball

```
TBall::TBall()
{
      // Assign default values for the attributes
      // of the ball
      radius = 4.0;
      _{\rm position} = TVector(0.0, 0.0, 0.0);
      _velocity = TVector(1.0, 0.0, 0.0);
}
```

 (\triangle)

 (Δ)

HCI

Function to Draw the Ball

```
void TBall::DrawBall()
{
    glPushMatrix();
    glTranslatef(_position.X(),
    _position.Y(), _position.Z());
    glutSolidSphere(_radius, 20, 20);
    glPopMatrix();
}
```


HCI

More Functions

- Functions for the TBall Class:
 - -CalculateVelocity
 - -CalcDistanceTravelled
 - -MoveBall
- Function for TDisplayImp
 - -Idle
- TBat Class

HCI

Calculate Velocity Function

```
void TBall::CalculateVelocity(const TVector&
  velocity, const double& seconds)
{
    _velocity = velocity;
}
```


CalcDistanceTravelled Function

```
TVector TBall::CalcDistanceTravelled(const double& seconds) const {
    TVector new_velocity, new_position;
    new_velocity = _velocity;
    new_position = _position +
    new_velocity*seconds;
    return new_position;
```


MoveBall Function

```
void TBall::MoveBall(const double& seconds)
{
    _position = CalcDistanceTravelled(seconds);
}
```


HCI

Idle Function

```
void TDisplayImp::idle(void)
{
    // Set the time for the simulation
    _scene->CalculateSimulations();
    glutPostRedisplay();
}
```

HCI

\Diamond

HCI

(A)

 (Δ)

Class TBat

Class TBat.

void DrawBat(); // Draws the bats
void MoveBatRight(); // Moves bat on the right
void MoveBatLeft(); // Moves the bat on the right
int BatCollisions(const TBall &ball, const double&
seconds);
int BatCollisionsSides(const TBall &ball, const double&
seconds);
int BatCollisionsEdges(const TBall &ball, const double&
seconds);

HCI

Class TBat ..

TVector Bat_Faces_Reflection(TBall &ball, const double& seconds, const double& distance);

TVector Bat_Left_Side_Reflections(TBall &ball, const double& seconds, parameter);

TVector Bat_Right_Side_Reflections(TBall &ball, const double& seconds, const double& parameter);

Class TBat ...

TVector Bat_Edge12_Reflections(TBall &ball, const double& seconds);

TVector Bat_Edge15_Reflections(TBall &ball, const double& seconds);

TVector Bat_Edge13_Reflections(TBall &ball, const double& seconds);

TVector Bat_Edge11_Reflections(TBall &ball, const double& seconds);

};

HCI

TBat Constructor

TBat::TBat(double rotation_angle)
{
 TVector initial vector, upper_vector, construction_vector;

 // Define a vector for the construction of the ground points of the bats initial_vector = TVector(1.0, 0.0, 0.0);

 // Define a vector for the construction of the upper points of the bats upper_vector = TVector(0.0, 10.0, 0.0);

HCI

TBat Constructor.

// Define the rotation axis TVector rotation_axis(0.0,1.0,0.0);

// Define the three rotation matrices for the bats TMatrix33 bat_construction = TMatrix33(rotation_axis, rotation_angle);

// Define the vector used for the construction of the bats construction_vector = bat_construction*initial_vector;

// Define the rotation matrix for the constuction of the bats TMatrix33 bat_rotation = TMatrix33(rotation_axis, angle);

TBat Constructor ..

```
// Construct the 16 points of the bats points[0] = construction_vector* bat_radius1; points[1] = bat_rotation*_points[0]; points[2] = bat_rotation*_points[2]; points[3] = bat_rotation*_points[2]; points[6] = construction_vector*bat_radius2; points[6] = bat_rotation*_points[6]; points[5] = bat_rotation*_points[6]; points[8] = points[0] + upper_vector; points[9] = points[1] + upper_vector; points[10] = points[2] + upper_vector; points[11] = points[1] + upper_vector; points[11] = points[1] + upper_vector; points[11] = points[1] + upper_vector; points[14] = points[6] + upper_vector; points[14] = points[6] + upper_vector; points[14] = points[6] + upper_vector; points[12] = points[6] + upper_vector; points[12] = points[6] + upper_vector;
```


(A)

HCI

Drawing Front Side of Bats

```
glBegin(GL_QUAD_STRIP);

// Front face, normal of first surface
__normal[0] = ((_points[8] - _points[0])*(_points[1] - _points[0])).unit();
glNormal3f(_normal[0].X(), _normal[0].Y(), _normal[0].Z());
// Construct first quad
glVertex3f(_points[0].X(), _points[0].Y(), _points[0].Z());
glVertex3f(_points[8].X(), _points[8].Y(), _points[8].Z());

// Front face, second surface
__normal[1] = ((_points[9] - _points[1])*(_points[2] - _points[1])).unit();
glNormal3f(_normal[1].X(), _normal[1].Y(), _normal[1].Z());
```

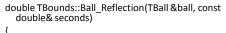

Drawing Front Side of Bats.

```
// Construct second quad gilvertex3f_points[1],X(), points[1],X()); gilvertex3f_points[2],X(), points[9],Y(), points[9],Z()); 
// Front face, third surface __normal[2] = ((_points[10] -_points[2])*(_points[3] -_points[2])).unit(); 
glNormal3f(_normal[2],X(), _normal[2],Y(), _normal[2],Z()); 
// Construct third quad gilvertex3f_points[2],X(), _points[2],Y(), _points[2],Z()); 
glNormal3f(_normal[2],X(), _normal[2],Y(), _normal[2],Z()); 
glNormal3f(_normal[2],X(), _normal[2],Y(), _normal[2],Z()); 
// Construct fourth quad gilvertex3f(_points[3],X(), _points[3],Y(), _points[3],Z()); 
glVertex3f(_points[3],X(), _points[11],Y(), _points[11],Z());
```

glEnd()

Drawing the Rest of the Bats

- In the same way you will have to draw the:
 Left side of the bat
 - -Back side of the bat
 - -Right side of the bat
 - Night side of the bat
 - Up side of the bat



Bat Collisions

- · At least three checks:
 - Check for collisions between the ball and the three bats like ball-wall
 - Check for collisions between the ball and the side of the bats
 - Check for collisions between the ball and the edges of the bats
- Repeat the same procedure for reflections of the ball after collisions

Calculate the reflection of the ball after collision

TVector ball_velocity_after_collision, previous_ball_position, collision_vector, final_velocity;

// Perform calculations for the previous time step
previous_ball_position = ball.GetBallPosition() ball.GetBallVelocity()*seconds;

double absBallVelocity =
sqrt(ball.GetBallVelocity().dot(ball.GetBallVelocity()));

(A)

(A)

 \triangle

 (Δ)

Calculate the reflection of the ball after collision.

// Calculate the Ri*V to calculate the collision time double RV = previous ball_position.dot(ball.GetBallVelocity())/absBallVelocity;

// Absolute RV double abs_RV = abs(RV);

// Define the initial distance = 100 - 4 = 96 double initial distance = 100.0 - ball.GetBallRadius();

Calculate the reflection of the ball after collision ..

// Calculate the determinant double Determinant = ((RV*RV) - previous ball position.dot(previous_ball_position) + initial_distance*;

// Calculate the collision time double collision time = abs(-abs RV + sqrt(Determinant))/absBallVelocity;

// Calculate the collision vector (normal vector) from: R = r + v*t collision_vector = previous_ball_position + ball.GetBallVelocity()*collision_time;

// Make the collision vector (normal vector) unit vector TVector unit_collision_vector = TVector::unit(collision_vector);

Calculate the reflection of the ball after collision ...

// Define velocity by: Vreflected = (Vinitial*Normal.unit)*Normal.unit ball velocity_after_collision = unit_collision_vector*(ball.GetBallVelocity().dot(unit_collision_vector));

// Calculate the velocity of the ball after collision with the invisible wall final_velocity = ball.GetBallVelocity() - ball_velocity_after_collision*2.0;

 $ball. Calculate Velocity (final_velocity, collision_time);$

return collision_time;

HCI

(A)

(A)

 (Δ)

References

- http://www.cs.wisc.edu/~schenney/courses/c s679-f2003/lectures/cs679-22.ppt
- http://graphics.ucsd.edu/courses/cse169_w05 /CSE169_17.ppt

Links

- http://en.wikipedia.org/wiki/Bounding volume
- http://nehe.gamedev.net/data/lessons/lesson.asp?
 lesson=30
- http://web.cs.wpi.edu/~matt/courses/cs563/talks/ bsp/bsp.html
- http://www.devmaster.net/articles/bsp-trees/
- http://maven.smith.edu/~mcharley/bsp/createbspt ree.html
- http://www.cs.unc.edu/~geom/
- http://www.cs.ox.ac.uk/stephen.cameron/distances/

Questions

