PB167 /PB167/ Exercise #6 Linux threads & inter-process
synchronization.

Meet important types & functions:
e thread type: pthread_t
e int pthread_create(pthread_t *restrict thread, const
pthread_attr_t *restrict attr, void *(*start_routine)(void *), void
*restrict arg);
e int pthread_join(pthread_t thread, void **value_ptr);

Process Multithreaded Process

Process State: PC,

Process State: PC, Thread | | Thread | | Thread
registers, SP, etc... SHiE] Ipatais State

registers, 5P, etc...

—
Ll i
¢
-
—e

Code Segment
Data Segment

Heap

*

-
Threads contain only necessary information, such as a stack (for local variables, function
arguments, return values), a copy of the registers, program counter and any thread-specific

data to allow them to be scheduled individually. Other data is shared within the process
betweenallthreads.

) Alfred Park, http://randu.org/tutorials/threads

C

I
L

http://randu.org/tutorials/threads/images/process.png

e Simple thread example:
http://www.csc.villanova.edu/~mdamian/threads/badcnt. txt
e Compile with no optimization -O0 (so we have race condition)

e In order to slow down computation, add printf(“.”); after cnt
modification.

https://is.muni.cz/auth/el/1433/jaro2013/PB167/
http://www.csc.villanova.edu/~mdamian/threads/badcnt.txt

Tasks:
a. Only a single value can be passed to the main thread function,
modify it so we can pass a structure.
b. Modify a given program so we can start N threads (given as an
argument in argv[]).
int numThreads = atoi(argv([l]);

Mutex

Basic primitive for implementation of a critical section.

e pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

Task:
a. Edit badcnt.txt,
i. Declare a global integer volatile variable startCond, set
default value to 0.
ii. Each thread will wait in a for-loop (busy-waiting) for a
startCond to became 1.
iii. Set startCond to 1 after all threads have been created in
the main().
b. Start badcnt.txt with 15 threads and observe given numeric
values.
c. Try to fix the program with use of mutex on correct places.
i. You will need one pthread_mutex_t mutex variable.

http://www.csc.villanova.edu/~mdamian/threads/badcnt.txt
http://www.csc.villanova.edu/~mdamian/threads/badcnt.txt

Semaphore

Generalized mutex, with counter inside.
Counter has to be non-negative.
Counter can be atomically decremented.
Of is 0, decrementing threads blocks until counter can be
decremented to non-negative value.
Counter can be atomically incremented.
O Does not block, we can always increment.
O|If a thread X is waiting to decrement counter, inc operation
causes X thread wake-up.

Mutex can be implemented with a semaphore with counter set to
1.

Lock = decrement.

Unlock = increment.

Important types & functions:

Task:
o

sem_t sem_name;

int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

int sem_getvalue(sem_t *sem, int *valp);

int sem_destroy(sem_t *sem);

Use semaphore as a signaling primitive.
Example:
O We have a working thread which produce some data. E.g., 5
working threads.

O We have a consumer thread which needs produced data.
Consumer thread needs at least 3 results.

e Start 5 worker threads producing data.
O For loop, sleep 1 second, increment globally shared counter
value (protected by mutex).
e Start consumer thread, which writes a line after at least 3
results were produced -- 3 consecutive sem_wait() calls...

Condition variable

Condition variables allow threads to synchronize to a value of a
shared resource. Typically, condition variables are used as a
notification system between threads.

e Condition variable is tied to a mutex.
e pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
e int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t
*mutex);
O When calling wait, mutex has to be owned by a calling
thread. Logic: lock the mutex, check for a condition safely
(in a loop), wait for condition trigger.
O Has to be done in a loop in order to avoid spurious wakeups
- verify condition once again after wakeup, just to be sure.
O When wait is triggered, mutex is again owned by waiting
thread so we can check condition safely. (re-acquire).
M lock the mutex (sanity)
M while(condition) pthread_cond_wait(cond, mutex);
e int pthread_cond_signal(pthread_cond_t *cond);
O Wakes up one (out of many possible) waiting thread(s).
O Locks that other threads could be waiting on should be
released before you signal or broadcast.
e int pthread_cond_broadcast(pthread_cond_t *cond);
O Wakes up all waiting threads on this condition variable.

void *thr funcl(void *arg) {

1
2 /* thread code blocks here until MAX COUNT is reached */
3 pthread mutex lock(&count lock);
4 while (count < MAX COUNT) ({
5 pthread cond wait(&count cond, &count lock);
6 }
7 pthread mutex unlock(&count_ lock);
8 /* proceed with thread execution */
9
10 pthread exit (NULL);
11 }
12
13 /* some other thread code that signals a waiting thread that MAX COUNT has been reached */
14 | woid *thr func2(void *arg) {
15 pthread mutex lock(&count lock);
16
17 /* some code here that does interesting stuff and modifies count */
18
19 if (count == MAX COUNT) ({
20 pthread mutex unlock(&count lock);
21 pthread cond signal(&count cond);
22 } else {
23 pthread mutex unlock(&count lock);
24 }
25
26 pthread exit (NULL);
27 }
Task:

Implement buffer-bound (fixed buffer - resembles PIPE)
producer/consumer, with 10 producer and 5 consumer threads. Size
of a buffer = 6.
e Buffer type: unsigned long *.
e Producers produce a random odd numbers to a buffer of size 6.
e Consumer will test numbers in the input buffer for primality.
O Use either naive division up to sqrt(X) or Google up
Rabin-Miller primality test.
O When prime is detected, consumer writes it to a shared
file, protected by a mutex.

e Cheat: http://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf

