
PB167 /PB167/​ Exercise #6 Linux threads & inter-process
synchronization.

Meet important types & functions:

● thread type: ​pthread_t
● int ​pthread_create​(pthread_t *restrict thread, const

pthread_attr_t *restrict attr, void *(*start_routine)(void *), void
*restrict arg);

● int ​pthread_join​(pthread_t thread, void **value_ptr);

http://randu.org/tutorials/threads/images/process.png

● Simple thread example:

http://www.csc.villanova.edu/~mdamian/threads/badcnt.txt
● Compile with no optimization -O0 (so we have race condition)
● In order to slow down computation, add printf(“.”); after cnt

modification.

https://is.muni.cz/auth/el/1433/jaro2013/PB167/
http://www.csc.villanova.edu/~mdamian/threads/badcnt.txt

Tasks:
a. Only a single value can be passed to the main thread function,

modify it so we can pass a structure.
b. Modify a given program so we can start N threads (given as an

argument in argv[]).
int numThreads = atoi(argv[1]);

Mutex
Basic primitive for implementation of a ​critical section​.

● pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
● int pthread_mutex_lock(pthread_mutex_t *mutex);
● int pthread_mutex_trylock(pthread_mutex_t *mutex);
● int pthread_mutex_unlock(pthread_mutex_t *mutex);
● int pthread_mutex_destroy(pthread_mutex_t *mutex);

Task:

a. Edit ​badcnt.txt​,
i. Declare a global integer ​volatile​ variable startCond, set

default value to 0.
ii. Each thread will wait in a for-loop (busy-waiting) for a

startCond to became 1.
iii. Set startCond to 1 after all threads have been created in

the main().
b. Start ​badcnt.txt​ with 15 threads and observe given numeric

values.
c. Try to fix the program with use of ​mutex​ on correct places.

i. You will need one pthread_mutex_t mutex variable.

http://www.csc.villanova.edu/~mdamian/threads/badcnt.txt
http://www.csc.villanova.edu/~mdamian/threads/badcnt.txt

Semaphore
● Generalized mutex, with counter inside.
● Counter has to be ​non-negative​.
● Counter can be atomically ​decremented​.

○ If is 0, decrementing threads blocks until counter can be
decremented to non-negative value.

● Counter can be atomically ​incremented​.
○Does not block, we can always increment.
○ If a thread X is waiting to decrement counter, inc operation

causes X thread wake-up.

● Mutex can be implemented with a semaphore with counter set to
1.

● Lock = decrement.
● Unlock = increment.

Important types & functions:

● sem_t sem_name;
● int sem_init(sem_t *sem, int pshared, unsigned int value);
● int sem_wait(sem_t *sem);
● int sem_post(sem_t *sem);
● int sem_getvalue(sem_t *sem, int *valp);
● int sem_destroy(sem_t *sem);

Task:

● Use semaphore as a signaling primitive.
● Example:

○We have a working thread which produce some data. E.g., 5
working threads.

○We have a consumer thread which needs produced data.
Consumer thread needs at least 3 results.

● Start 5 worker threads producing data.

○For loop, sleep 1 second, increment globally shared counter
value (protected by mutex).

● Start consumer thread, which writes a line after at least 3
results were produced -- 3 consecutive sem_wait() calls...

Condition variable

Condition variables allow threads to synchronize to a value of a
shared resource. Typically, condition variables are used as a
notification system between threads.

● Condition variable is tied to a mutex.
● pthread_cond_t​ cond = PTHREAD_COND_INITIALIZER;
● int ​pthread_cond_wait​(pthread_cond_t *cond, pthread_mutex_t

*mutex);
○When calling wait, mutex has to be owned by a calling

thread. Logic: lock the mutex, check for a condition safely
(in a loop), wait for condition trigger.

○Has to be done in a loop in order to avoid spurious wakeups
- verify condition once again after wakeup, just to be sure.

○When wait is triggered, mutex is again owned by waiting
thread so we can check condition safely. (re-acquire).

■ lock the mutex (sanity)
■while(condition) pthread_cond_wait(cond, mutex);

● int ​pthread_cond_signal​(pthread_cond_t *cond);
○Wakes up one (out of many possible) waiting thread(s).
○Locks that other threads could be waiting on should be

released before you signal or broadcast.
● int ​pthread_cond_broadcast​(pthread_cond_t *cond);

○Wakes up all waiting threads on this condition variable.

Task:
Implement buffer-bound (fixed buffer - resembles PIPE)
producer/consumer, with 10 producer and 5 consumer threads. Size
of a buffer = 6.

● Buffer type: unsigned long *.
● Producers produce a random odd numbers to a buffer of size 6.
● Consumer will test numbers in the input buffer for primality.

○Use either naive division up to sqrt(X) or Google up
Rabin-Miller primality test.

○When prime is detected, consumer writes it to a shared
file, protected by a mutex.

● Cheat: http://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf

