

Motion Capture Data

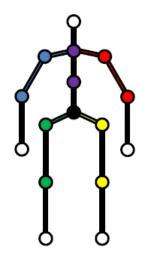
Similarity | Classification

PETR ELIÁŠ 03/2015

DISA LABORATORY FACULTY OF INFORMATICS MASARYK UNIVERSITY

Contents – Motion Capture Data

- I. Introduction and Challenges
- I. Classification and Current approaches
- III. Our approach Principles and Challenges
- **IV**. Our approach Results and Future work



Introduction

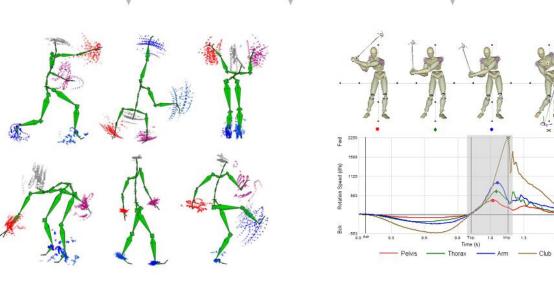
Motion Capture (MOCAP) Data

Digital approximation of **motions** carried out by **observed subjects** that are **captured** for further **inspection** and **applications**.

- **Digital approximation** (x, y, z) coordinate for each tracked joint and each frame (<120fps)
- Motions such as gait (walking), facial expression, interactions, whole-body actions
- **Observed subjects** are so far commonly individual humans
- Captured by devices based on various technologies (Kinect, OptiTrack, xSens, ...)
- **Inspected** for analysis, action detection, action recognition, classification, reconstruction
- Applications in medicine, sports, security, entertainment (movies, games), robotics ...

0.3

1.5 Fin 1.8



General Challenges

- Too much information on input (complexity)
- High cost of processing the original data (efficiency)
- Feature extraction and dimension reduction (effectivity)
- Various scenarios, various lengths of motions, various data sets (adaptability)

• Applications are highly scenario-dependant no general definition of MOCAP data similarity no accepted universal solution for action recognition or classification

Motion Data Classification

Identifying a category/categories of observed instance on the basis of observations whose category membership is known.

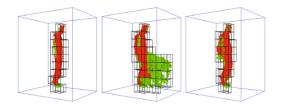
Challenges

- Different actions are performed differently by different actors
- Scope ranging from microgestures (mimics) to complex exercises (dancing)
- Relative vs absolute moves (jog vs jog on place)
- Rotation of actor (run vs run in circle)
- Various frame rates, body sizes, data quality, number of tracked joints, ...

Classification Approaches

Features (generally simple)

relative distances or angles between joints, most informative joints, velocity changes, absolute coordinates, space-time occupancy, skeletal quads, covariance of 3D Joints, flexible dictionary of action primitives, ...



combined with

Classifier (generally complex)

Distance Based: Dynamic Time Warping, k-NN, ... **and Machine learning based:** Support Vector Machines, Neural Networks, Hidden Markov Models, Boltzman machines, ...

1) Find effective transformation
from (dynamic) motion capture data into (static) images.

$$70\%$$

 70%
 70%
 $2)$
 30%
Cartwheel
 30%

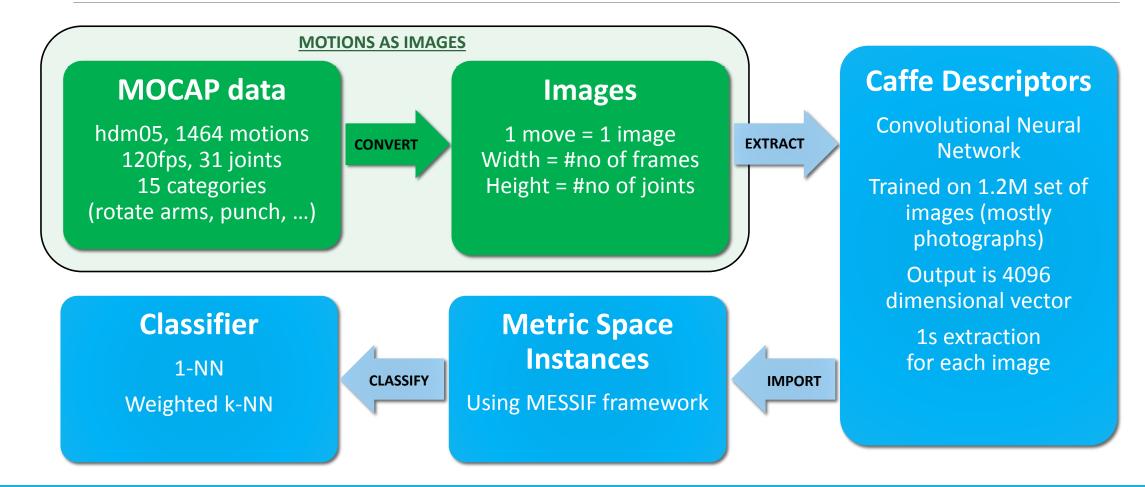
Our Approach – Main Idea

2) Classify image based on their visual similarity to others based on known approaches (k-NN classifier on Caffe descriptors)

Our Approach – Motivation

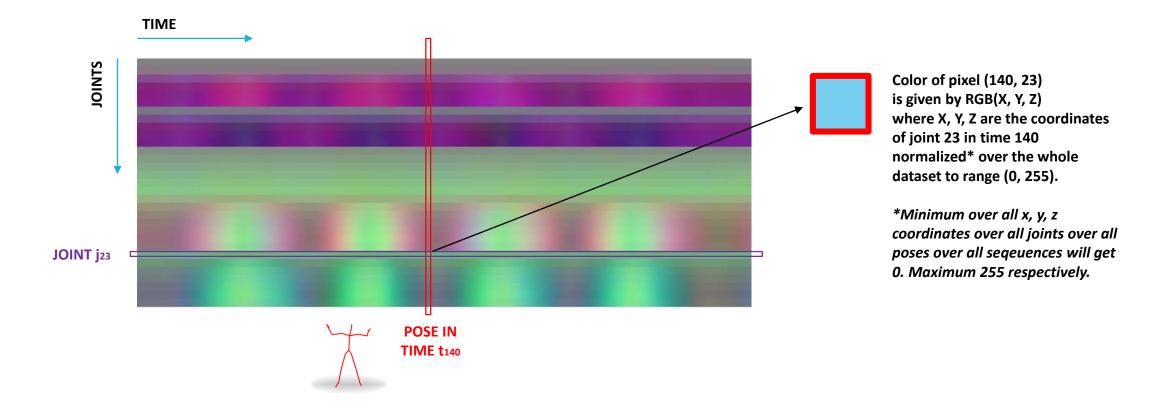
- Visualization of motion data provides humans with better understanding compared to set of high-dimensional vectors
- Comparing visual similarity of images is a known concept nowadays it achieves high precision and many techniques might be employed
- Instead of finding complex solution to a problem sometime it is easier to reduce the problem into another problem that already has known solution
- Universality (scenario independance) of this approach by selecting a proper transformation function that visually differentiates target classification categories

Our Approach – Process

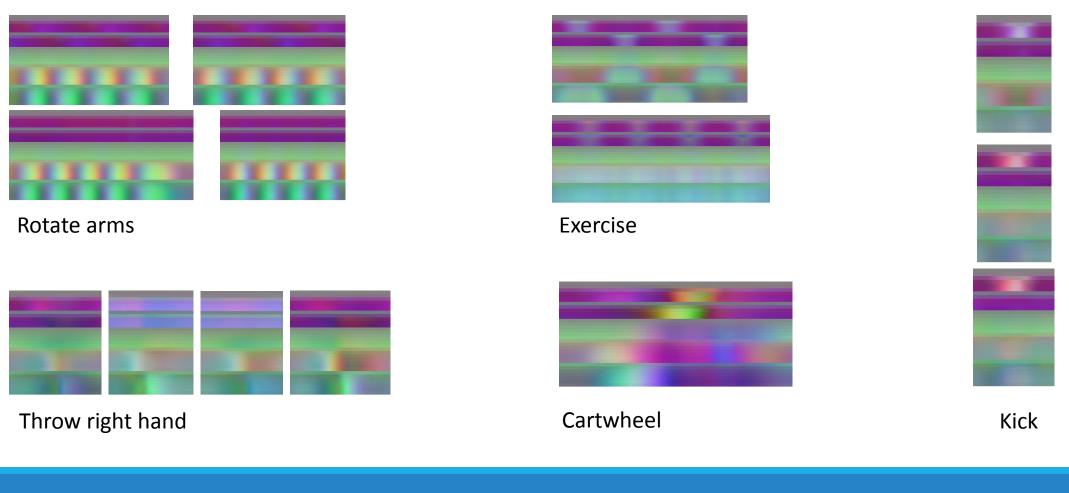


Our Approach – Motions as Images

Every motion is a time series of (x, y, z) coordinates of all tracked joints.



Our Approach – Motions as Images



2015 | PETR ELIAS | DISA | FI MU

Our Approach – Challenges

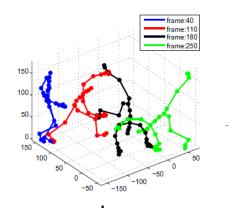
- Notion of time
 - Various speed of performances
 - Various lengths of actions
- Normalization
 - Initial rotation of subject (rotate by hips, first frame, all frames)
 - Centering in space (put root joint in (0, 0, 0), first frame, all frames)
 - Human skeleton size (infant vs adult, bones size normalization)
 - Range normalization (into RGB or other target space)
- Segmentation
- Action recognition in longer sequences

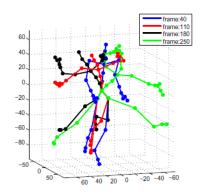
Normalization

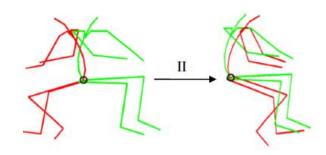
I. Pose centering Root joint to (0, 0, 0)

II. Pose rotation by angle φ Rotation along y-axis by angle φ is determined as an angle between z-axis and straight line connecting left and right hip in a y-projected 2D space (x, z)

III. Coordinates values normalization Reduction to desired range such as RGB or (0, 1)







Results – Confusion Matrix

hdm05 1464 motions		15	cate	1-	1-NN classification						93.17% precision						
ID	MOVE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	#Ns
1	cartwheel	100															(
2	grabDepR		96		4												10
3	kick			98	2												49
4	move		0,2		93		2				0,5					4	43
5	punch					100											48
6	rotateArms				11		89										4
7	sitLieDown		2		2			95									43
8	standUp				2				95							2	43
9	throwR				4					96							2
10	jump				12						84	4					2
11	hopOneLeg				6							94					18
12	neutral												83	1		16	7!
13	tpose								1				2	98			19
14	exercise				11						5				84		19
15	turn		0,3		2								7			91	33

Other Approach Comparison

Action	N_s	N_{f}	pos	pw	cen	kev	rotateArmsLBack	16	1725	93.8	93.8	43.8	100
cartwheelLHandS	$\frac{118}{21}$	8627	100	100	100	100	rotateArmsRBack		1685		56.3		100
				100		$100 \\ 100$	sitDownChair (2)	$\frac{10}{20}$	6377		70.0		90
clapAboveHead(1)	14	6102	100		100								
depositLowR	28		100	75.0	100	100	sitDownFloor (3)	20	8154	95.0		80.0	100
elbowToKnLeS (7)	13	5756	100	100	100	100	sitDownKnTS(10)	17	10978	100	100	100	100
hitRHandHead	13	2943	84.6	92.3	7.69	92.3	sitDownTable	20	5411	85.0	60.0	35.0	85.0
hopBothLegs	36	3462	61.1	91.7	41.7	91.7	skierLstart	30	4240	100	100	90.0	100
hopLLeg	41	3080	100	100	95.1	100	squat (8)	13	7619	100	100	100	100
hopRLeg	42	3107	100	100	100	100	staircaseDownRS	15	3338	100	100	86.7	100
jogLeftCircleRS	17	4142	100	94.1	100	100	standUpKnTS (9)	17	3094	100	100	82.4	100
JumpingDown	14	3952	92.9	7.14	76.5	92.9	standUpSitChair	20	5919	90.0	85.0	100	100
jumpingJack (6)	13	5589	100	100	0	100	$\operatorname{standUpSitFloor}$	20	8060	90.0	100	95.0	95.0
kickLFront (5)	14	6422	78.6	78.6	0	78.6	$\operatorname{standUpSitTable}$	20	5000	85.0	65.0	30.0	70.0
kickLSide	26	6063	76.9	88.5	92.9	88.5	throwBasketball	14	5710	78.6	92.9	0	78.6
kickRFront	15	6728	100	86.7	53.9	86.7	throwSitHighR	14	4192	100	100	78.6	100
kickRSide	15	7020	93.3	100	80.0	66.7	throwStandingLR	14	4957	100	85.7	0	100
punchLFront	15	5924	80.0	73.3	67.7	86.7	turnLeft	30	5882	76.7	43.3	40.0	80.0
punchLSide	15	5324	86.7	66.7	53.3	26.7	turnRight	30	5908	93.3	86.7	70.0	86.7
punchRFront (4)	15	6450	93.3	86.7	60.0	73.3	walkLstart	31	4818	96.8	93.6	83.9	96.8
punchRSide	14	5140	85.7	85.7	28.6	78.6	walkRightCrossF	16	5369	100	100	93.8	100
${\bf rotateArmsBBack}$	16	5111	100	100	100	100	Average			92.7	86.5	66.9	91.1

Luo, J., Wang, W., & Qi, H. (2014). Spatio-Temporal Feature Extraction and Representation for RGB-D Human Action Recognition. *Pattern Recognition Letters*. doi:10.1016/j.patrec.2014.03. 024

Summary

Advantages

- Difference between motions can be observed directly by visual comparison
- Interesting approach combining known technologies to solve challenging problem
- Potential for scenario independent solution
- Sub motion and repetitive action recognition using NN
- Quite robust and toletant to various lengths (even 50x resized images still obtain similar precision)

Disadvantages

- No solution for segmentation
- Not suitable for online action recognition
- Computationally and time demanding computing of image descriptors (order of minutes)

Future Work

- Action recognition based on segmentation
- Motion classification using Convolutional Neural Network trained on subset of motion images or better Convolutional Neural Network trained on MOCAP data
- Comparison with DTW approach (centered, rotated, normalized poses)
- Optimize the speed of feature extraction Caffe descriptor is a current bottleneck

Sources

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., & Bajcsy, R. (2014). Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition. *Journal of Visual Communication and Image Representation*, *25*(1), 24–38. doi:10.1016/j.jvcir.2013.04.007

Poppe, R., Van Der Zee, S., Heylen, D. K. J., & Taylor, P. J. (2014). AMAB: Automated measurement and analysis of body motion. *Behavior Research Methods*, *46*, 625–33. doi:10.3758/s13428-013-0398-y

Chen, X., & Koskela, M. (2013). Classification of RGB-D and Motion Capture Sequences Using Extreme Learning Machine. *Image Analysis*, 640–651. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-38886-6_60

Luo, J., Wang, W., & Qi, H. (2014). Spatio-Temporal Feature Extraction and Representation for RGB-D Human Action Recognition. *Pattern Recognition Letters*. doi:10.1016/j.patrec.2014.03.024

Vieira, A. W., Nascimento, E. R., Oliveira, G. L., Liu, Z., & Campos, M. F. M. (2012). STOP: Space-Time Occupancy Patterns for 3D action recognition from depth map sequences. In *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* (Vol. 7441 LNCS, pp. 252–259). doi:10.1007/978-3-642-33275-3_31

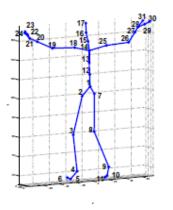
Evangelidis, G., Singh, G., & Horaud, R. (2014). Skeletal Quads : Human Action Recognition Using Joint Quadruples. doi:10.1109/ICPR.2014.772

Hussein, M. E., Torki, M., Gowayyed, M. a., & El-Saban, M. (2013). Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations. *IJCAI International Joint Conference on Artificial Intelligence*, 2466–2472.

We denote the k -th body pose in a motion sequence of length T as a vector:

 $p^t = (j_1^t, \dots, j_n^t)$ with $t \in \{1, \dots, T\}$ for a recording with T frames.

Each component j_i^t of the vector p^t corresponds to a joint $i \in \{1, ..., n\}$ position measurement, and is denoted by a triplet (x, y, z).



Let

$$s = \{p^{t_1}, p^{t_2}, \dots p^{t_T}\}$$

be a sequence of poses constituting some motion and let

 $img_{\gamma(\alpha,\beta)} \in \{\alpha \times \beta \times \gamma(\alpha,\beta)\} \alpha \in \{1, \dots, maxWidth\}, \beta \in \{1, \dots, maxHeight\}, \gamma \in RGB$

be an image of size $maxWidth \times maxHeight$ and $\gamma(\alpha, \beta)$ is an information how to color pixel at position (α, β) .

Finally we seek to find a transformation function $\varphi: |TIME| \times |JOINTS| \times |\mathbb{R}^3| \rightarrow |\mathbb{N}^2| \times |RGB|$

Such that

$$\varphi(s) = img_{\gamma(\alpha,\beta)}$$