

Subjects clustering

Jakub Vonšovský
Brno 2015

Motivation

● I completed graphical design and typography –
this area interests me so what next?

● Recommender system for IS offering subjects
similar to those I completed in development
(Hana Bydžovská)

● Each cluster contains subjects similar to each
other

Introduction

● 3-phase algorithm in which data preparation,
distance measurement and making clusters
takes place

● First two phases in Python language (own
work), together about 45 KB

● Clustering algorithm is external application in
Java language with author's persmission, from
my side programming of common interface,
cluster measurement metrics and
understandable (for our purposes) output

Phase I – Data grabbing

● First version used given csv files – small set of
subjects (63) and also not current

● Currently when list of subjects is changed (now
all data about all subjects at faculty of
informatics are included) information about
literature, anotation, … should be downloaded

● For time reasons downloading of grades was
removed / not completed as required url is
different from semester to semester, faculty to
faculty

Phase I – Parsing demo

Phase II – Distance matrix

● For each attribute – teachers, fields,
prerequisites, field constraints, supervisors,
literature, objectives and syllabus (and grades)
distance of two subjects is calculated

● These parameters are then weighted and sum
in just one number

● As bigger number means the better in this case
it has to be converted then to distance values
where smaller means the better

Phase II – Normalization

● For each row in matrix:

● First method uses similarity to itself as base
number and all values are subtracted from it

● Second method tried to enhance first one by
normalize these values into <0 + ε, 1>

● Third method uses logistic function

to avoid getting close to 0 or 1

P (t)=
1

1+e−t

Calculating distance – Jaccard Index

●

● Simple metric used for most of attributes
(authors of literature, fields, …)

● For teachers values of set have also weights –
lecturer, deputy have 1, seminar tutor 0.5 and
assistants have no value as they probably don't
have relationship with subject area itself and
fluctuate

● At first also for text but then TF-IDF was added

J (A ,B)=
A∩B
A∪B

Calculating distance – TF-IDF

● TF-IDF of word in document is counted by
number of its occurences divided by number
computed by occurences of this word in all
documents (in this context document is text
from syllabus or objectives)

● This value is computed for every word in every
document (even if it's zero)

● Then cosine similarity is launched on there
vectors giving again only one similarity number

Calculating distance – text generally

● How to store words in czech fusional language?
– First simplistic approach uses only words longer

than 3 letters and stores maximum of 6 letters

– Second, "smarter" approach uses stemming
application I wrote several years ago

● After few tests it showed that TF-IDF is better
than Jaccard and storing 6 letters is better than
stemming (am I bad / dumb programmer?)

● However TF-IDF has high complexity of O(s²*w)
(subjects, words) running then 20 minutes
instead of 1,5 making it bad bottleneck

Calculating distance - prerequisites

● Problematic part of application – for example it
sometimes produces higher similarity number
for some other subject then to subject itself

● When one subject is prerequisite of some other
subject, it's taking advantage by high weight
into final sum

● Same for "banned" subjects – they have to be
punished (by high weight)

● Subjects with no relationship have prerequisite
weight set to 0

Normalization results

● After manual evaluation it seems that first
method of "reverse values" is again better than
other two "smarter" approaches

● On testing data the other two methods for
example put "Artificial Intelligence I" next to
"Essentials of General Logic", another example
on full data is "Bioinformatics I" and "Computers
and Ergonomy"

● Maybe sparsely distributed values are better
than dense as it is done artificially

Phase III - Clustering

● After two phases application launches
clustering algorithm based on Murtagh Average
Clustering Linkage where the only input
parameter is maximum cluster size (threshold)

● Davies-Bouldin and Dunn index were
implemented to measure "quality" but it showed
that it is not very usable in our context – these
two measures went against each other many
times, "good" numbers were for not very usable
clusters, …

Results

Three methods

Future?

● Some improvement suggestions:
– Downloading grades and implement proper metric

– Jaccard Index can be matched with some more
advanced and better statistic methods

– More cluster algorithms?

Thank you for your attention

Discussion helper I

● 6 letters, PV080-PV017 and PV080-IA101
– TF-IDF 0,319536851569 0,0131464657433

– JI syllabus 0,148648648649 0,0112359550562

– JI objectives 0,149253731343 0,0173913043478

● Basic stemming, same subjects
– TF-IDF 0,227518352002 0,00310845584597

– JI syllabus 0,121495327103 0,0462962962963

– JI objectives 0,148936170213 0,030303030303

Discussion Helper II

● Threshold 3.0 3.5 4.0 4.5 5.0
– Biggest cluster 11 23 54 127 350

– Davies-Bouldin 0.01 0.031 0.078 0.201 0.416

– Dunn 0.015 0.014 0.014 0.013 0.224

● Threshold 0.35 0.45 0.55 0.65 0.75 0.85 0.95
– Biggest cluster 11 20 52 106 133 150 418

– Davies-Bouldin 0.007 0.016 0.046 0.089 0.120
0.146 0.563

– Dunn 0.107 0.107 0.102 0.1 0.191 0.409 0.546

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19

