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Motivation

● I completed graphical design and typography – 
this area interests me so what next?

● Recommender system for IS offering subjects 
similar to those I completed in development 
(Hana Bydžovská)

● Each cluster contains subjects similar to each 
other



  

Introduction

● 3-phase algorithm in which data preparation, 
distance measurement and making clusters 
takes place

● First two phases in Python language (own 
work), together about 45 KB

● Clustering algorithm is external application in 
Java language with author's persmission, from 
my side programming of common interface, 
cluster measurement metrics and 
understandable (for our purposes) output



  

Phase I – Data grabbing

● First version used given csv files – small set of 
subjects (63) and also not current

● Currently when list of subjects is changed (now 
all data about all subjects at faculty of 
informatics are included) information about 
literature, anotation, … should be downloaded

● For time reasons downloading of grades was 
removed / not completed as required url is 
different from semester to semester, faculty to 
faculty



  

Phase I – Parsing demo



  

Phase II – Distance matrix

● For each attribute – teachers, fields, 
prerequisites, field constraints, supervisors, 
literature, objectives and syllabus (and grades) 
distance of two subjects is calculated

● These parameters are then weighted and sum 
in just one number

● As bigger number means the better in this case 
it has to be converted then to distance values 
where smaller means the better



  

Phase II – Normalization

● For each row in matrix:

● First method uses similarity to itself as base 
number and all values are subtracted from it

● Second method tried to enhance first one by 
normalize these values into <0 + ε, 1>

● Third method uses logistic function 

to avoid getting close to 0 or 1

P (t)=
1

1+e−t



  

Calculating distance – Jaccard Index

●

● Simple metric used for most of attributes 
(authors of literature, fields, …)

● For teachers values of set have also weights – 
lecturer, deputy have 1, seminar tutor 0.5 and 
assistants have no value as they probably don't 
have relationship with subject area itself and 
fluctuate 

● At first also for text but then TF-IDF was added

J (A ,B)=
A∩B
A∪B



  

Calculating distance – TF-IDF

● TF-IDF of word in document is counted by 
number of its occurences divided by number 
computed by occurences of this word in all 
documents (in this context document is text 
from syllabus or objectives)

● This value is computed for every word in every 
document (even if it's zero)

● Then cosine similarity is launched on there 
vectors giving again only one similarity number



  

Calculating distance – text generally

● How to store words in czech fusional language?
– First simplistic approach uses only words longer 

than 3 letters and stores maximum of 6 letters

– Second, "smarter" approach uses stemming 
application I wrote several years ago

● After few tests it showed that TF-IDF is better 
than Jaccard and storing 6 letters is better than 
stemming (am I bad / dumb programmer?)

● However TF-IDF has high complexity of O(s²*w) 
(subjects, words) running then 20 minutes 
instead of 1,5 making it bad bottleneck



  

Calculating distance - prerequisites

● Problematic part of application – for example it 
sometimes produces higher similarity number 
for some other subject then to subject itself

● When one subject is prerequisite of some other 
subject, it's taking advantage by high weight 
into final sum

● Same for "banned" subjects – they have to be 
punished (by high weight)

● Subjects with no relationship have prerequisite 
weight set to 0



  

Normalization results

● After manual evaluation it seems that first 
method of "reverse values" is again better than 
other two "smarter" approaches

● On testing data the other two methods for 
example put "Artificial Intelligence I" next to 
"Essentials of General Logic", another example 
on full data is "Bioinformatics I" and "Computers 
and Ergonomy"

● Maybe sparsely distributed values are better 
than dense as it is done artificially



  

Phase III - Clustering

● After two phases application launches 
clustering algorithm based on Murtagh Average 
Clustering Linkage where the only input 
parameter is maximum cluster size (threshold)

● Davies-Bouldin and Dunn index were 
implemented to measure "quality" but it showed 
that it is not very usable in our context – these 
two measures went against each other many 
times, "good" numbers were for not very usable 
clusters, …



  

Results



  

Three methods



  

Future?

● Some improvement suggestions:
– Downloading grades and implement proper metric

– Jaccard Index can be matched with some more 
advanced and better statistic methods

– More cluster algorithms?



  

Thank you for your attention



  

Discussion helper I

● 6 letters, PV080-PV017 and PV080-IA101
– TF-IDF 0,319536851569 0,0131464657433

– JI syllabus 0,148648648649 0,0112359550562

– JI objectives 0,149253731343 0,0173913043478

● Basic stemming, same subjects
– TF-IDF 0,227518352002 0,00310845584597

– JI syllabus 0,121495327103 0,0462962962963

– JI objectives 0,148936170213 0,030303030303



  

Discussion Helper II

● Threshold 3.0 3.5 4.0 4.5 5.0
– Biggest cluster 11 23 54 127 350

– Davies-Bouldin 0.01 0.031 0.078 0.201 0.416

– Dunn 0.015 0.014 0.014 0.013 0.224

● Threshold 0.35 0.45 0.55 0.65 0.75 0.85 0.95
– Biggest cluster 11 20 52 106 133 150 418

– Davies-Bouldin 0.007 0.016 0.046 0.089 0.120 
0.146 0.563

– Dunn 0.107 0.107 0.102 0.1 0.191 0.409 0.546
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