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Metric-based Similarity
● generic similarity search 

○ applicable to many domains
data modeled metric space (D, δ), where D is a domain of objects 
and δ is a total distance function δ : D × D → R+

0
 satisfying 

postulates of identity, symmetry, triangle inequality

● search - query by example
● K-NN(q) query returns K objects 

x with the smallest δ(q,x)



disk storage

query

Similarity Indexing

● objective: organize the dataset  X ⊆ D
○ so that similarity queries are processed efficiently

disk storage

● data volumes can be large
● distance δ can be demanding



Objectives

● Distributed, horizontally scalable architecture
● ... for generic similarity search
● ... in Big data collections (hundreds of millions)
● ... single query efficiency 
● … high query throughput



Outline

● motivation 
● specific distributed systems

○ building blocks
○ our existing solutions (M-Chord, distributed M-Index)
○ other possible solutions

● analytical approach: 
○ system model + cost model  (just basic ideas)

● future work



Building Blocks - Notation
PPP-Tree (Pivot Permutation Prefix)
●  recursive Voronoi tree

PPP-Tree with leaves pointing to 
buckets with data (disk or memory)

PPP

PPP

data data data

PPP

IDs IDs IDs

PPP-Tree with leaves storing only IDs 
of objects (typically memory)



M-Index
● simple PPP-Tree + memory 

or disk storagePPP

data data

● given an approximate query 
k-NN(q)

q  uery

datadata

● most relevant buckets are 
(read from disk) and refined

data



Multi M-Index
● λ independent PPP-Trees
● data in buckets

○ either in memory (shared)
○ or on disk (replicated)

● given query k-NN(q)
● most relevant buckets from 

each tree are accessed

1

PPP

data datadata
2

PPP

data datadata

3

PPP

data datadata

q  uery



● λ independent PPP-Trees
○ IDs in leaf nodes (memory)

● ID-object storage
○ SSD disk

● given query k-NN(q)

q  uery

1

PPP

IDs IDs IDs

2

PPP

IDs IDs IDs

3

PPP

IDs IDs IDs

PPP-Rank algorithm

data objs.

ID-obj index

1. relevant leaves from each tree 
accessed (λ priority queues of IDs)

2. PPP-Rank merges the ID queues
○ final candidate set is “very” small

3. refine candidate set one-by-one

PPP-Codes



PPP-Code: Pros & Cons
● Weak points

○ if dataset large, requires SSD (not feasible on HDD)
○ PPP-Trees with IDs take some memory
○ PPP-Rank algorithm takes some time

● Strong points
○ candidate set can be much smaller (2 orders of mgn.)

■ important for larger objects or expensive distance
○ data stored in ID-object store

■ a shared store for other indexes...



Distributed Indexes

● M-Chord (2006)
● Distributed M-Index (2012)

● Future organizations

basic component of distributed 
system is a “node”



PPPPPP

M-Chord
● basic component is “fixed-

level” PPP mapping
○ static

● PPP mapping determines 
query-relevant buckets

PPP

data data

PPP

data data

data data

data

data

data

data

q  uery

● these buckets are accessed 
and refined on nodes

PPP

data data



M-Chord: Pros & Cons

● The fixed (static) PPP is not that precise as 
dynamic PPP-Tree

● ..but it allows easy replication

PPP PPP



Distributed M-Index
● Space partitioning by 

dynamic PPP-Tree

● PPP mapping determines 
query-relevant bucketsdata data

data data

data data

data data

data

data

data

q  uery

● these buckets are accessed 
and refined on nodes

PPPPPP



Distributed M-Index (Local Indexes)

data data

data data

data data

data

data

q  uery

PPPPPP

● Data buckets can be 
organized by local indexes

PPP

PPP



PPP

Distributed M-Index (Multiple PPPs)
● Space partitioning by λ 

PPP-Trees

data data

data data

data data

data

data

data

q  uery

PPPPPP

● Search in all PPP spaces

● Data replicated λ-times 

data

data data



M-Chord + Distribute M-Index

● Relatively large candidate set
○ but navigation on the bucket level - few messages

● Data distributed by the similarity space
○ data retrieved by sequential reads (HDD)

■ ...but difficult to build secondary indexes on the 
same data

■ e.g. ID-object index



data objs.

ID-obj hash

data objs.

ID-obj hash

data objs.

ID-obj hash

data objs.

ID-obj hash
data objs.

ID-obj hash

PPP-Rank algorithm

Distributed PPP-Codes: Variant 1

IDs

IDsIDsIDs

q  uery

1

PPP

IDsIDs

2

PPP

IDsIDsIDs

3

PPP
PPP-Codes

candidate set CX of IDs1

distributed 
refinement of CX

2

merge partial answers3

● PPP-Codes can be bottleneck
● all nodes participate on each search

● all advantages of ID-obj approach
○ data on one place
○ multi-modal search

key-value store (ID-object) on dataset X 

ID-obj hash



data objs.

ID-obj hash

data objs.

ID-obj hash

data objs.

ID-obj hash

data objs.

ID-obj hash

Distributed PPP-Codes: Variant 2

● PPP-Codes index is 
somewhat distributed
○ “no” bottleneck

● but complex 
communication 
during PPP-Ranking 

data objs.

ID-obj hash

PPP-Rank

3

1
2

q  uery

candidate set CX⊆ X1

key-value store (ID-object) on dataset X 

distributed 
refinement of CX

2

merge partial answers3



data objs.

ID-obj hash

data objs.

ID-obj hash

data objs.

ID-obj hash

data objs.

ID-obj hash

PPP-Codes on Local Data

● no central point
● all m nodes 

participate
● uniform load 

distribution
data objs.

ID-obj hash

q  uery

local refinement of 
partial cand. set

2

key-value store (ID-object) on dataset X 

local PPP-Rank 
at each node

1

PPP-Codes

PPP-Codes

PPP-Codes PPP-Codes

PPP-Codes

merge partial answers3

● replication of each 
partition (3-times)

● query: access btw.
m/3 to m nodes 



System Model

1. What global metric approach is used?
○ fixed/dynamic Voronoi, PPP-Codes, other (sketches)
○ result: data partitions (buckets, single objs., sketches)

2. How are the data partitions distributed?
○ using the metric partitioning, independent hash, …

3. Other questions:
○ replication of partitions
○ local indexes on the level of partitions or nodes
○ communication among nodes (log n or direct)



Cost Model

Analytical evaluation of:
● time of a one query processing
● query throughput

○ number of queries per second

1. Derive formulas for different system settings
2. Simulate costs for various parameters



Cost Model: Variables
● size of dataset: n objects
● number of nodes: m
● time(d) of d(q,x) comp. [ms], size of each objects [B]
● I/O speed [B/s], network latency [ms] & bandwidth [B/s]

For each approach (get from papers or measure)
● # of partitions
● size of candidate set |C(q)| for given query recall
● time of C(q) generation
● distribution of partitions and candidate parts. to nodes



Cost Model: Query Processing
1. processing on the coordinating node:

#pivots * time(d) + cand_generation_time(|C(q)|)   [ms]
2. communication:

latency + (message_size / bandwidth)  [ms]
3. slowest node processing:

#objects_to_process = max_cand_frac * |C(q)|
○ read the data: 

#objects_to_process * size(x) / I/O_speed      [ms]
○ refine the data:

#objects_to_process * time(d)        [ms]
4. communication back: latency + (0 / bandwidth)
5. merge of the answers and return





Thank you for your attention



Distributed M-Index (Local Indexes)

data data

data data

data data

data

data

q  uery

PPPPPP

● Data buckets can be 
organized by local indexes

PPP

PPP



Advantages of ID-object store
● ID-object queries (w/o another database)

○ all data in one places (good for consistency)

● efficient access by multiple modalities
○ data not partitioned by a single similarity modality
○ enables indexes on other attributes/modalities
○ final ranking by combination of modalities + filtering

● multiple collections use common ID-obj. store



M-Chord + Distribute M-Index

● Relatively large candidate set
○ but navigation on the bucket level - few messages

○ e.g. ID-object index could be built, but:
■ global part of the index + local on each bucket
■ as index grows, data is redistributed

● data objects moved to other buckets
■ another similarity index almost impossible

● Data distributed by the similarity space
○ data retrieved by sequential reads (HDD)

■ ...but difficult to build secondary indexes



Distributed PPP-Codes: Other Indexes

● other indexes:
○ multi-modal search: combination, filtering, re-ranking

key-value store (ID-object) on the whole dataset X

worker worker

similarity 
index IXi

field inverted file 
index IXi

field2

attribute 
index IXi

field3
similarity 
index IXj

field

worker

worker

worker



PPP-Rank: the Details
q  uery

1

PPP

IDs IDs IDs

2

PPP

IDs IDs IDs

3

PPP

IDs IDs IDs

PPP-Rank algorithm

data objs.

ID-obj index



data objs.

ID-obj hash

data objs.

ID-obj hash

data objs.

ID-obj hash

data objs.

ID-obj hash

Distributed PPP-Codes: Variant 3

● The PPP-Ranking 
is fully distributed
○ to all nodes

● Communication is 
“one-way”

● PPP-Trees can be 
replicated

● Size of ψq
j must be 

set a priori

data objs.

ID-obj hash

3

1
2

q  uery

generate ψq
j1

local refinement of 
partial cand. set

4

merge partial answers5

PPP-
Rank

PPP-
Rank

PPP-
Rank

PPP-
Rank

PPP-
Rank

employ ID hash 
+ reshuffle IDs2

key-value store (ID-object) on dataset X 

local PPP-Rank 
at each node

3


