
7

Classification Disharmonies

7.1 Classification Harmony Rules

The object-oriented programming paradigm captures the is-a-kind-of
relationship among classes with inheritance. This allows developers
to write flexible and reusable code, but it can lead to disastrous de-
signs if misused.

It is not enough for a class to be in harmony with itself; it also
needs to be in harmony with its its ancestor and its descendant
classes. The major cause of classification disharmonies is the mis-
conception that inheritance is mainly a vehicle of code reuse (i.e.,
subclassing) rather than a means to assure that more specific ob-
jects can substitute more general ones (i.e., subtyping) [LP90, LW93a,
Mar02b]. When inheritance is used solely for code reuse purposes
maintenance can become painful because abstractions are not de-
rived consistently.

The classification harmony rules are:

Classes should be organized in hierarchies having harmonious
shapes

The identity of an abstraction should be harmonious with re-
spect to its ancestors

Harmonious collaborations within a hierarchy are directed only
towards ancestors, and serve mainly the refinement of the in-
herited identity



140 7 Classification Disharmonies

Proportion Rule

Classes should be organized in hierarchies having
harmonious shapes

Rationale

Inheritance is at the same time a curse and a blessing of the object-
oriented paradigm. The one extreme is given by applications where
basically inheritance is ignored and the application is a flat collec-
tion of classes, leading to limited code reuse. The other extreme is
overuse of inheritance, where the code is so heavily decomposed in a
hierarchy that reading the code is equivalent to browsing excessively
up and down the classes and methods in the hierarchy. Inheritance
should be used with care and style.

Practical Consequences

• Avoid wide hierarchies – Class hierarchies should not become too
wide, i.e., avoid inflation of subclasses.

Excessively wide hierarchies oftentimes appear because of copy-
paste-and-adapt patterns: the developers prefer to copy and mod-
ify existing code instead of refactoring the existing code. Since de-
velopers do not get to see such things they underestimate the
effect of copy-paste practices.

• Avoid tall hierarchies – Class hierarchies should not become too
tall. Avoid very narrow and deep hierarchies.



7.1 Classification Harmony Rules 141

Presentation Rule

The identity of an abstraction should be harmonious with
respect to its ancestors

Rationale

The concept of inheritance allows for writing compact code and also
for the reuse of the code already implemented in one of its ancestor
classes. In this sense a descendant should always be in sync with
what has been defined by its ancestors, and not reinvent the wheel
or duplicate the code.

Practical Consequences

• Extend interface smoothly – Keep an harmonious proportion be-
tween tradition and novelty. In other words, keep a balance be-
tween the inherited interface and its extension (through addition of
new services).

• Specialize behavior smoothly – Keep an harmonious proportion
between evolution and revolution of behavior. In other words, do
not refuse (deny, “cut off”) any parts of an ancestor’s interface and
specialize rather than override the inherited services (i.e., the inher-
ited public methods).

• Decrease abstractness smoothly – The abstractness level for the
set of services of a class (together with their “inheritable” helper
methods i.e., the protected ones) should be inversely proportional to
the distance to the top of the hierarchy. Thus, root classes should
be rather abstract or the other way around: abstract classes should
be situated close to the top of a hierarchy and not somewhere in the
middle of a hierarchy.



142 7 Classification Disharmonies

Implementation Rule

Harmonious collaborations within a hierarchy are directed
only towards ancestors, and serve mainly the refinement of

the inherited identity

Rationale

This rule could be rephrased as: The implementation dependency of a
class on its ancestor should be unidirectional and serve the refinement
of the inherited services. The rule states that a subclass should not
depend on its ancestors just for the sake of code reuse (i.e., by calling
methods from its base classes (only) from newly defined methods).

Practical Consequences

• Dependencies go bottom-up – Base classes should not depend
on their descendants.

Despite the truth behind this, there is a hidden world of horrors
where developers who do not have a “complete picture” of the sys-
tem just reuse pieces of code whenever they see something useful
to them.

• Dependencies serve specialization – Inherited operations should
be used (i.e., redefined, called, specialized) most of the time in the
context of refining (specializing) the inherited services, rather than
calling them from newly added services.



7.2 Overview of Classification Disharmonies 143

7.2 Overview of Classification Disharmonies

Fig. 7.1. Correlation web of classification disharmonies.

Considering the three harmony rules presented above, and based on
our experience with analyzing object-oriented systems, we defined a
set of patterns that capture the most disturbing classification dishar-
monies.

We have to mention Duplication(102) again, this time between in-
heritance-related classes. So, this is the first disharmony we are go-
ing to consider. This is often a symptom that goes together with other
disharmonies. But even if there is no duplication in a hierarchy, it
still needs to be harmonious with respect to its ancestors, as stated
by the Presentation Rule (see Sect. 7.1). Distortions of this harmo-
nious relation to the parent class(es) 7.1 appear as:



144 7 Classification Disharmonies

1. The derived class denies the inherited bequest [FBB+99] (Refused
Parent Bequest(145)).

2. The derived class massively extends the interface of the base class
with services that do not really characterize that family of abstrac-
tions (Tradition Breaker(152))

The shape of the hierarchy itself says a lot about the classifica-
tion harmony. As we will see, in most cases the Refused Parent
Bequest(145) and Tradition Breaker(152) disharmonies appear in an
over-bloated hierarchy with an inflation of classes.

In conclusion, while inheritance is (also) a powerful mechanism to
reuse code, subtyping is the actual point because it supports a better
understanding of a hierarchy than subclassing, since a subclass is a
more specialized version of its ancestor and not an unrelated concept
that is there because it can reuse some code.

Another difficult issue related to inheritance is when is it useful
to introduce a new class in the system. Often developers are afraid
of having many small classes and prefer to work instead with fewer
but larger classes. Developers often believe that they will have less
complexity to manage if they have to deal with fewer classes. It is
better to have more classes conveying meaningful abstractions than
having a single large one. However, having useless classes or classes
without meaningful behavior is not good either because they pollute
and complicate the abstraction space: The challenge is to find the
right level of abstraction.



7.3 Refused Parent Bequest 145

7.3 Refused Parent Bequest

Inheritance is a mechanism dedicated to support incremental changes. Description
Consequently, the relation between a parent class and its children is
intended to be an intimate one, more special than the collaboration
between two unrelated classes. This special collaboration is based on
a category of members (methods and data) especially designed by the
base class to be used by its descendants, i.e., the protected members.
But if a child class refuses to use this special bequest prepared by its
parent [FBB+99] then this is a sign that something is wrong within
that classification relation.

Classes. The Following conditions are assumed: Applies To

1. the inspected class has a superclass;
2. the superclass is neither a third-party class (e.g., library class),

nor is it an interface.

The primary goal of inheritance is certainly code reuse. However, ex- Impact

tending base classes without looking at what they have to offer in-
troduces duplication and in general class interfaces that become in-
coherent and non-cohesive. An often overlooked part of the process
when adding or extending subclasses is to study the superclasses
and determine what can be reused, what must be added and finally
what could be pushed into the superclasses to increase generality.

Refused Parent 

Bequest

Child class ignores bequest

Child class is not 

too small and simple

AND

Fig. 7.2. Detection strategy for Refused Parent Bequest.



146 7 Classification Disharmonies

As illustrated in Fig. 7.2 the detection of such disharmonious classesDetection

is based on two main conditions: (1) a low usage of inheritance-
specific members from the base class and (2) the detected class must
have at least an average size and complexity, otherwise the finding
is irrelevant as the bequest refusal might be due to its small size. In
other words, the second condition ensures that the bequest refusal is
an intentional rather than a circumstantial fact. The detection strat-
egy in detail is:

1. Child class ignores bequest. What do we mean by “a child class
uses the parent’s bequest”? We mean that it does one of the fol-
lowing:
• it calls a protected method defined in the parent class
• it accesses a protected attribute defined in the parent class
• it overrides or specializes a method defined in the parent class
To assess how much a child class depends on its parent class in
an inheritance-specific way, we used two metrics: (1) The Base-
class Usage Ratio (BUR), which quantifies the usage of protected
members; and (2) the Base-class Overriding Ratio (BOvR), which
quantifies the degree of overriding and specialization of base class
methods. The third metric we use, Number of Protected Members
(NPrM), just makes sure that there is a specific bequest to use,
i.e., that there are at least several protected members. We use
these metrics in the following way:
a) Parent provides more than a few protected members. The

bequest prepared by the parent class should be significant i.e.,
the base class has more than a few members declared as pro-
tected (in other words, members intended to be used specifi-
cally in the context of the inheritance relation).

b) Child uses only little of parent’s bequest.
c) Overriding methods are rare in child. Overriding or special-

izing methods from the base class is a rare case in the derived
class. Thus, the fraction of base class methods that are over-
ridden or specialized is very low.

2. Child class is not too small and simple. We say about a child
class that it intentionally refuses a bequest if it is large and com-
plex enough; otherwise the child class can have the excuse of re-
fusing the bequest because it is too small. Therefore, this term
finds those classes that are both significantly large (in terms of
methods (NOM)) and complex (Fig. 7.3).
There are two alternative conditions for considering the complexity
of the class significant: either the average CYCLO/method is high



7.3 Refused Parent Bequest 147

NProtM > FEW

Parent provides more 

than a few protected 

members

Child class 

ignores bequest

Child class is not 

too small and 

simple

BUR < A THIRD

Child uses only little of 

parent's bequest

BOvR < A THIRD

Overriding methods 

are rare in child

AND

OR

AMW > AVERAGE

Functional complexity 

above average

WMC > AVERAGE

Class complexity not 

lower than average

NOM > AVERAGE

Class size is above 

average

OR

AND

Fig. 7.3. Main components of the Refused Parent Bequest detection strategy.

enough, or the class is large and thus the cumulative complexity
(WMC) makes it relevant. The used metrics are:

a) Functional complexity above average.
b) Class complexity not lower than average.
c) Class is above average.

The unusual form of this hierarchy (see Fig. 7.4) already gives us a Example
first hint that its classes are afflicted by some problems. Moreover,
the fact that there is an abstract class (called ToDoPerspective) in the



148 7 Classification Disharmonies

Fig. 7.4. A System Complexity view of the PerspectiveSupport hierarchy.

Fig. 7.5. A Class Blueprint view of the PerspectiveSupport hierarchy.

middle of the hierarchy also gives us hints about potential problems
related to inheritance. The Class Blueprint of this hierarchy depicted
in Fig. 7.5 shows a suspicious regularity in size among the meth-
ods implemented in the six leaf classes, hinting at duplication. The



7.3 Refused Parent Bequest 149

class TreeModelComposite is affected by Refused Parent Bequest: it
basically ignores what is implemented in the two superclasses.

If we want to remove a Refused Parent Bequest disharmony from a Refactoring
class then we need to follow the detailed (inspection and refactoring)
process depicted in Fig. 7.6. The figure has three areas (labeled A,
B and C) corresponding to one of the three identified causes for a
Refused Parent Bequest. Notice that some of the three causes might
co-exist. Next, we are going to describe these three cases in detail.

Refused Parent Bequest (RPB) 

Class

RPB has inheritance-
specific dependencies with 

parent class

Extract whole class from the 

hierarchy

Make all unused protected 

members private

Extract protected members with 

loose dependencies to new class

Solve initial dependencies by 

delegation to new class

Place class in former hierarchy 

as descendant of ancestor or 

merge with ancestor

Solve renaming dependencies 

with former parent class
Any usages

Assess usage in all subclasses 

of protected members defined in 

RPB's parent class

Assess dependencies of 

protected members in definition

class

New class has inheritance-
specific dependencies with 

a former ancestor

Still has RPB STOP

YES

YES

YES

YES

NO

NO

NO

NO

A

B

C

Fig. 7.6. Inspection and refactoring process for a Refused Parent Bequest.



150 7 Classification Disharmonies

Case A: False Child Class

In this case the cause of the problem is that the child class simply
does not belong in the hierarchy; in other words, the hierarchy might
be ill-designed. The more relevant symptom for this case is when
the child class has no inheritance-specific dependencies on the parent
class.

In some cases this goes together with the Tradition Breaker(152)
disharmony. An interesting aspect is that in some cases the “false
child” does belong to the hierarchy, but as a child class of another
parent (i.e., an initial “grandparent” or ancestor). This can be found
out by analyzing the dependencies between the disharmonious class
and the other ancestors.

Case B: Irrelevant Bequest

In this case the Refused Parent Bequest design flaw appears as a
result of the fact that the space of inheritance-specific members is
over-populated with methods and attributes that have no relevance
in the context of the inheritance relation.

But how do we detect that a (part of the) bequest is irrelevant? We
have to count, for each protected member, the number of usages from
derived classes; in case of protected methods, this includes overriding
or specialization of that method in derived classes). If the number of
dependencies is null, i.e., if a member is used only from inside the
definition class, then it should be moved to a private scope.

Case C: Discriminatory Bequest

The third case, probably the most interesting one, is when the parent
class has many child classes, and the bequest offered by it is relevant
only for some of these siblings, but not for the class affected by Re-
fused Parent Bequest. By cumulating the bequest needed by various
subsets of descendants, the total bequest becomes excessively large.
Consequently, the main symptoms in this case are:

• A large number of descendants.
• Often, there is more than one class exhibiting Refused Parent Be-

quest in the same hierarchy.
• Each descendant uses a small, non-overlapping portion of the to-

tal bequest.



7.3 Refused Parent Bequest 151

Fig. 7.7. Refactoring for Refused Parent Bequest in case of Discriminatory
Bequest.

At first sight we could improve the design in this case by splitting
class B in two classes, (B” derived from B’) adding an intermediary
layer in the inheritance tree and letting each initial subclass of B be
derived either from B’ or B” depending on which bequest they need
to inherit. Unfortunately, this applies only for simple cases which
involve few protected members used in common by only subsets of
the derived classes.

For the general case, the situation can be improved by extracting
the parts that are not used by all descendants to a helper class, and
letting the parent class have a reference to an instance of the helper
class (see Fig. 7.7). If this refactoring is applicable, then this could be
also the sign that the base class was capturing more than a single
abstraction. This way, the base class is easier to understand because
it does contain less protected members which do not characterize the
entire hierarchy.



152 7 Classification Disharmonies

7.4 Tradition Breaker

This design disharmony strategy takes its name from the principleDescription
that the interface of a class (i.e., the services that it provides to the
rest of the system) should increase in an evolutionary fashion. This
means that a derived class should not break the inherited “tradition”
and provide a large set of services which are unrelated to those pro-
vided by its base class.

Of course, it is OK for a child class to contain more intelligence than
its parent i.e., to offer more services. But if the child class hardly
specializes any inherited services and only adds brand new services
which do not depend much on the inherited functionality, then this
is a sign that something is wrong either with the definition of the
child’s class interface or with its classification relation. In the Sug-
gested Refactoring (155) section we analyze in more detail the possi-
ble causes and solutions for this problem.

Classes. If C is the name of the class, the following conditions areApplies To
assumed: (1) C has a base class B, (2) B is not a third-party class and
(3) B is not an interface.

When adding subclasses without examining the functionalities imple-Impact

mented in the superclass(es) one might break the tradition kept up
by the superclasses. This could be called “disrespectful” inheritance.

Tradition

Breaker

Excessive increase of child 

class interface

Substantial size and 

complexity of child class

Parent class is neither small 

nor dumb

AND

Fig. 7.8. The Tradition Breaker detection strategy.



7.4 Tradition Breaker 153

NAS ! AVERAGE (NOM)

More newly added 

services than average 

NOM / class

PNAS ! TWO THIRDS

Newly added services are 

dominant in child class

AND

WMC ! VERY HIGH

Functional complexity of 

child class is very high

AMW > AVERAGE

Method complexity in 

child class above average

NOM ! HIGH

Class has substantial 

number of methods

Child class has 

substantial size 

and complexity

Excessive

increase of child 

class interface

OR

AND

AMW > AVERAGE

Parent's functional 

complexity above 

average

NOM > HIGH/2

Parent has more than half 

of child's methods
Parent class is 

neither small nor 

dumb

WMC ! VERY HIGH/2

Parent's complexity more 

than half of child

AND

Fig. 7.9. Main components of the Tradition Breaker detection strategy

In Fig. 7.8 we see a high-level view of the detection rule for a Tradition Detection

Breaker. There are three main conditions that must be simultane-
ously fulfilled for a class to be put on the blacklist of classes that



154 7 Classification Disharmonies

break the inherited tradition by the interface that they define. These
conditions are:

• The size of the public interface of the child class has increased
excessively compared to its base class.

• The child class as a whole has a considerable size and complexity.
• The base class, even if not as large and complex as its child, must

have a “respectable” amount of functionality defined, so that it can
claim to have defined a tradition.

1. Excessive increase of child class interface. To quantify the evo-
lution of a child’s public interface compared to that of its par-
ent, we use two measures: (1) Newly Added Services (NAS) tells
us in absolute values how many public methods were added to
the class; and (2) the Percentage of Newly Added Services (PNAS)
which shows us the percentile increase, i.e., how much of the
class’s interface consists of newly added services. We used these
metrics in the following way:
a) More newly added services than average number of meth-

ods per class. This threshold is based on the statistical in-
formation related to the number of methods per class (see Ta-
ble 2.1), using the following logic. If a class adds more new
methods than the average number of methods (public or not)
of a class then the measured class is an outlier with respect to
NAS. For Java this average value1 is 6.5.

b) Newly added services are dominant in child class. We use
this metric to make sure that the absolute value provided by
the NAS is a significant part of the entire interface of the mea-
sured class. Therefore, PNAS is a normalized metric and we set
the threshold so that NAS represents at least two-thirds of the
public interface.

2. Child class has substantial size and complexity. To speak about
a relevant Tradition Breaker the child class must contain a sub-
stantial amount of functionality. This means that it must have a
substantial size (measured in this case by the number of meth-
ods) and accumulate a significant amount of logical complexity.
Therefore we require either the average complexity or the total
complexity of the class to be high. An additional requirement is
that the child class has a significant number of methods (NOM).
We use the following metrics (see Fig. 7.9):

1 Computed as the average between the lower value and upper value of
NOM/Class.



7.4 Tradition Breaker 155

a) Method complexity in child class above average.
b) Functional complexity of child class is very high.
c) Class has a substantial number of methods.

3. Parent class is neither small nor dumb. We cannot say that a
child class breaks a tradition if the tradition defined by the parent
class is insignificant. In other words, this term sets a minimal
condition on the size and complexity of the parent class, i.e., this
must satisfy at least half of the requirements imposed on the child
class. Additionally, its average complexity must be higher than the
average value. In this context, AMW and WMC are the two metrics
used to quantify the average and the total amount of functional
complexity respectively, while NOM quantifies the size of the class
in terms of method number. The used metrics are:

a) Parent’s functional complexity above average.
b) Parent has more than half of child’s methods With respect

to NOM, the parent class should satisfy at least half of the
requirements we set for the child (see term “Child class has
substantial size and complexity”).

c) Parent’s complexity more than half of child With respect to
Weighted Method Count (WMC), the parent class should satisfy
at least half of the requirements we set for the child (see term
“Child class has substantial size and complexity”).

In Fig. 7.10 we see a System Complexity view of the hierarchy whose Example
root class is named FigNodeModelElement. Visually striking is that
the hierarchy is top-heavy (the root class is by far the largest in terms
of methods and attributes) and unbalanced (there is a sub-hierarchy
on the left). Moreover, many direct subclasses of FigNodeModelEle-
ment look similar “from the outside” (i.e., they have a similar shape,
pointing to a possible duplication problem), and as we will see also
from the inside.

From the point of view of the disharmonies, nearly half of the
classes of this hierarchy are afflicted by at least one of two classifica-
tion disharmonies: Refused Parent Bequest(145) or Tradition Breaker.

Among the subclasses of FigNodeModelElement there is one in
particular which is striking because it is the only one which is both af-
fected by Refused Parent Bequest(145) and is also a Tradition Breaker,
namely FigObject. Additionally this class is also a Brain Class(97) that
contains two methods which are Brain Method(92).

If we want to remove a Tradition Breaker then we need to follow the Refactoring



156 7 Classification Disharmonies

Fig. 7.10. A System Complexity view of the FigNodeModelElement hierarchy.

detailed (inspection and refactoring) process depicted in Fig. 7.11.
The figure has four areas (labeled A, B, C and D) corresponding to
one of the four identified cases, which may also co-exist, for a Tradi-
tion Breaker: irrelevant tradition in subclass, denied tradition in base
class, double-minded subclass, or misplaced subclass.



7.4 Tradition Breaker 157

Tradition Breaker (TB) Class

Any external clients Moved unused NAS to a 

more hidden scope

STOP

Assess external usage of 

Newly Added Services (NAS)

Still is TB

Any other TB among 
siblings

Any common NAS Push up all common NAS to 

parent class

TB has inheritance-
specific dependencies on 

parent class

Build group of NAS with no 

direct or indirect inheritance-

specific dependencies on 

parent class

Still is TB

Split TB and extract 

independent part as new 

class

Extract whole class from the 

hierarchy

New class has 
inheritance-specific
dependencies on a 

former ancestor

Place class in former 

hierarchy as descendant or 

ancestor or merge with 

ancestor

Solve renaming 

dependencies with former 

parent class

NO NO

NO NO

NO

NO

NO

YES

YES YES

YES

YES

YES

YES

A

B

C

D

Fig. 7.11. Inspection and refactoring process for a Tradition Breaker.

Case A: Irrelevant Tradition

In this case the derived class has an excessively large interface, i.e.,
it includes in its interface methods that should have been declared



158 7 Classification Disharmonies

protected or private. In other words, the methods newly added in
the interface of the Tradition Breaker class are just helper methods,
mistakenly declared public. This can be be found out by analyzing
the usages of the method from other classes.

Case B: Denied Tradition

The base class does not include a set of services that are implemented
in all (or most) derived classes. Consequently, it is common that some
of the Tradition Breaker’s siblings also show the symptoms of a Tradi-
tion Breaker. In most of these cases Duplication(102) is also present.

Fig. 7.12. Extracting the “second mind” of a Tradition Breaker to a separate
class.

Case C: Double-Minded Descendant

In this case the problem is that the derived class is “double-minded”,
whereby only a part of its interface (and implementation) belongs to
the hierarchy where it was placed. The part of the class that wants
to stay in the hierarchy can be identified by a set of methods that
override/specialize/use methods of the base class. The “other mind”
of the class breaks the tradition, by doing something totally different,
that has nothing in common with the base class. In this case, the
part that does not belong to the hierarchy could be moved outside
the hierarchy to a separate class (see Fig. 7.12).

Case D: Misplaced Descendant

The extreme case of Case C is when the whole Tradition Breaker de-
fines a behavior that is not extending (specializing) in any way the
behavior found in its base class. Thus, the interfaces of the base
class and of the derived class are totally different and there is no real
inheritance-specific dependencies on the base class. When this is the
case, it is highly probable that the class is also affected by Refused
Parent Bequest(145).



7.5 Recovering from Classification Disharmonies 159

7.5 Recovering from Classification Disharmonies

Where to Start

In order to recover from from classification disharmonies (i.e., design
problems related to inheritance) it is insufficient to look at the indi-
vidual suspect classes; hierarchies must be analyzed as a whole. In
this context it becomes important to know how to group the different
classes identified as affected by various disharmonies and also, how
to prioritize the hierarchies that need more urgent attention. In prac-
tice, we use the following criteria in selecting the hierarchies with the
most significant amount of classification disharmonies:

• Hierarchies with more classes affected by classification dishar-
monies have priority.

• If the disharmonies are distributed on many hierarchy levels (i.e.,
if the sub-hierarchy affected by disharmonies is deep) the inspec-
tion priority for the hierarchy increases.

• Hierarchies where most distinct classification disharmonies ap-
pear have a higher priority.

• Hierarchies where other types of disharmonies (i.e., identity and
collaboration) co-exist with violations of classification harmony
must also be regarded with increased interest.

For the purpose of prioritizing the hierarchies to be inspected first,
we mainly use the following quantification means:

• Number (and Percentage) of Classes with Classification Dishar-
monies. These numbers tell us how much the classification dishar-
monies are spread within the hierarchy. In addition to the abso-
lute number of classes, we also display the percentage of dishar-
monious classes, as this indicator is more relevant and easier to
interpret for larger hierarchies. The higher these numbers are, the
higher also is the probability that the whole hierarchy must be
restructured.

• Hierarchy Depth of Disharmonious Classes. In addition to the pre-
vious values, we found that it is important to know also how deep
in the hierarchy (rooted by the class in the table) we find dishar-
monies. If disharmonies are propagated on many inheritance lev-
els then such hierarchies must be definitely revisited.

• Distinct Classification Disharmonies in Hierarchy. Often the same
disharmony (Tradition Breaker(152)) affects many subclasses of a



160 7 Classification Disharmonies

hierarchy. But if the number of distinct problems in the same hier-
archy is high then the hierarchy has a more complex problem that
needs to be addressed. At the same time the co-existence of some
classification disharmonies (e.g., Refused Parent Bequest(145) and
Tradition Breaker(152)) could help us in addressing the problem
properly.

• Distinct Number of Other Disharmonies in Hierarchy. To have an
even better overview of all possible disharmonies that appear in
the same hierarchy, we also count how many distinct design prob-
lems, other than the classification ones (i.e., problems related to
identity or collaboration), can be found.

How to Start

Assessing and improving the classification harmony of a system is
a complex process, because a large number of classes are involved
(i.e., all (or most) of the classes in the hierarchy) and also because
the real cause of such design problems is not localized in one single
class (e.g., a child class is detected, but the real cause of the problem
is in the base class). Additionally, the inspection and refactoring pro-
cess is painful because of the existence of various correlated design
disharmonies (see Fig. 4.12) that might occur in the classes of the
hierarchy and that must be solved at the same time.

Because of all these reasons, for each of the two classification
disharmonies discussed in this chapter, i.e., Refused Parent Be-
quest(145) and Tradition Breaker(152), we addressed in detail the po-
tential refactoring solutions. We noticed that the order in which the
problems are addressed is very important. Therefore, we recommend
inspecting and refactoring each disharmonious hierarchy in your sys-
tem using the sequence described in Fig. 7.13.

Doing the refactorings in this order is important because on the
one hand the refactoring action for one disharmony can have positive
consequences with respect to the following ones (in the sense that
the refactoring effort is reduced); but on the other hand they can also
introduce additional cases of classification disharmonies that must
be addressed as well.

Let us see how it happens. We start by solving the Duplication(102)
problem. By doing so, it could be possible that methods are extracted
from some siblings and moved to their parent class. This can con-
tribute in some cases to a reduction – or even a total elimination
– of the Tradition Breaker(152) disharmony. But at the same time,



7.5 Recovering from Classification Disharmonies 161

Flawed Hierarchy

Hierarchy affected by 
Significant Duplication

Extract commonality to base 

class (and sometimes introduce 

Template Method)

Hierarchy affected by 
Refused Parent Bequest

Hierarchy affected by 
Tradition Breaker

Extract commonality to new 

class, and solve dependencies 

by delegation 

(sometimes create new base 

classes to factor out 

commonality for siblings)

Duplication appears in 
(almost) all sibling classes 

Solve each case 
of Refused Parent 

Bequest

Solve each case 
of Tradition

Breaker

STOP

YES

YES

YES

YES

NO

NO

NO

NO

Fig. 7.13. How to address classification disharmonies.

as we move new methods to a parent class, we might cause a Re-
fused Parent Bequest(145) disharmony for some other siblings, as the
bequest provided by the parent class has increased as a result of
the refactoring. Thus, it is important to deal with Duplication(102)
before addressing the Refused Parent Bequest(145) and the Tradition
Breaker(152) disharmonies.



162 7 Classification Disharmonies

Now, which one of these two problems should we address next? We
suggest dealing first with Refused Parent Bequest(145), because by
refactoring a part of the class (or even the whole child class) needs to
be removed from the hierarchy. Thus, this provides a new perspective
in dealing with the cases of Tradition Breaker(152).




