
6

Collaboration Disharmonies

6.1 Collaboration Harmony Rule

Collaboration disharmonies are design flaws that affect several enti-
ties at once in terms of the way they collaborate to perform a specific
functionality.

The principle of low coupling is advocated by all the authors that
propose design rules and heuristics for object-oriented programming.
Although having different forms or emphases they all converge in say-
ing that coupling of classes should be minimized. Yet, a tension exists
between the aim of having low coupled systems and the fact that an
amount of collaboration among objects (and thus coupling) is nec-
essary in all non-trivial systems. Responsibility-driven approaches
stress the fact that classes should implement well identified respon-
sibilities often by delegating work to others and collaborate with a
clearly identified and limited set of collaborators [WBM03].

A harmonious collaboration is one that maintains a balance be-
tween the inherent need for communication among the entities (i.e.,
methods and classes) of a system and the demand to keep this cou-
pling to a minimum. The collaboration harmony rule is:

Collaborations should be only in terms of method invocations
and have a limited extent, intensity and dispersion



116 6 Collaboration Disharmonies

Collaboration Rule

Collaborations should be only in terms of method
invocations and have a limited extent, intensity and

dispersion

Rationale

The idea behind this rule is summarized by Lorenz and Kidd 1:

You want to leverage the services of other classes, but you want
to have services at the right level, so that you want to know only
about a limited number of objects and their services. [...] If you
had to interact with all the indirectly related objects, we’d have
a tangled web of interdependencies and maintenance would be
a nightmare [LK94].

The rule refers both to outgoing and incoming dependencies. Ex-
cessive outgoing dependencies are undesirable because the more one
uses the others, the more vulnerable (to changes and malfunction)
one becomes. Excessive incoming dependencies are also undesirable
because the more one is used by the others, the more responsible
and thus immutable (i.e., rigid, stable, less evolvable) one becomes.
At the same time, note that excessive incoming dependencies may
also be a good sign of design and functionality reuse, with one con-
dition: the used interfaces are stable. An example is given by class
libraries implementing collections or common infrastructure. Addi-
tionally, it is important to take into account the important role of
stable interfaces to support changes. Interfaces play an important
role in shielding clients from specific implementation concerns hence
reducing the impact of changes.

Practical Consequences

• Limit collaboration intensity – Operations should collaborate
(mainly unidirectional) with a limited number of services provided
by other classes.

1 The rule is also very much related to Pelrines’s Object Manifesto which
states: Be private: do not let anybody touch your private data. Be lazy:
Delegate as much as possible



6.1 Collaboration Harmony Rule 117

• Limit collaboration extent – Operations (and consequently their
classes) should collaborate2 with operations from a limited number
of other classes.

This is a restatement of “A harmonious system must have services
defined at the proper level, so that you need to collaborate directly
only with a limited number of other abstractions” [LK94].

• Limit collaboration dispersion – The collaborators (i.e., invoked
and/or invoking operations) of an operation should have a limited
dispersion within the system. Thus, one should try to make an en-
tity collaborate closely only with a selected set of entities, with a
preference for entities (in decreasing order) located in the (0) same
abstraction; the (1) same hierarchy; the (2) same package (or sub-
system).

2 The term Collaborate refers both to the active (i.e., call another operation)
and to the passive (i.e., be called (invoked) by another operation) aspects.



118 6 Collaboration Disharmonies

6.2 Overview of Collaboration Disharmonies

Fig. 6.1. Correlation web of collaboration disharmonies.

The Collaboration Rule shows that, especially concerning outgoing
coupling, the problem is an excessive number of operations which are
called from the disharmonious operation. A second important aspect
is the distribution (dispersion) of these called operations on classes.

Considering the practical consequences above, we can say that
an operation is disharmonious in terms of collaboration if it has too
many invocations of many other methods.

We capture these collaboration disharmonies using two detec-
tion strategies, namely Intensive Coupling(120) and Dispersed Cou-
pling(127). While the former captures the case where the method in-
tensively uses a reduced number of classes (invoking lot of method
of a particular class), the latter deals with the situation where the
dependencies of the disharmonious method are very much dispersed
among many classes (invoking methods from too many classes).



6.2 Overview of Collaboration Disharmonies 119

In a collaboration, not only the server methods can be disharmo-
nious, but also the client code. Fowler [FBB+99] mentions the case
when a small change in a part of a system causes lots of changes to
many classes, dispersed all over the rest of the system. They call this
bad smell Shotgun Surgery. Inspired by this we captured the dishar-
mony in which a method is excessively invoked by many methods
located in many classes (Fig. 6.1), and as a tribute to our inspiration
source we called it Shotgun Surgery(133).

Fowler’s Shotgun Surgery smell can also take the form of a piece of
code which is replicated over and over again in various methods, be-
longing to various classes which might otherwise not look coupled to
each other. For example, when a class is a Data Class(88), its clients
often duplicate functionality that would be normally be under the re-
sponsibility of that class.Thus, for such cases the Duplication(102)
disharmony can also be considered a collaboration disharmony.



120 6 Collaboration Disharmonies

6.3 Intensive Coupling

One of the frequent cases of excessive coupling that can be improvedDescription
is when a method is tied to many other operations in the system,
whereby these provider operations are dispersed only into one or a
few classes (see Fig. 6.2). In other words, this is the case where the
communication between the client method and (at least one of) its
provider classes is excessively verbose. Therefore, we named this de-
sign disharmony Intensive Coupling.

Fig. 6.2. Illustration of Intensive Coupling

Operations i.e., methods or standalone functions.Applies To

An operation which is intensively coupled with methods from a hand-Impact

ful of classes binds it strongly to those classes. Oftentimes, Intensive
Coupling points to a more subtle problem i.e., the classes provid-
ing the many methods invoked by the Shotgun Surgery method do
not provide a service at the abstraction level required by the client
method. Consequently, understanding the relation between the two
sides (i.e., the client method and the classes providing services) be-
comes more difficult.



6.3 Intensive Coupling 121

The detection strategy is based on two main conditions that must Detection

be fulfilled simultaneously: the function invokes many methods and
the invoked methods are not very much dispersed into many classes
(Fig. 6.3).

Additionally, based on our practical experience, we impose a min-
imal complexity condition on the function, to avoid the case of config-
uration operations (e.g., initializers, or UI configuring methods) that
call many other methods. These configuration operations reveal a less
harmful (and hardly avoidable) form of coupling because the depen-
dencies can be much easily traced and solved.

The detection strategy is composed of the following heuristics (see
Fig. 6.3):

AND
Intensive

Coupling

Method calls too many methods from 

few unrelated classes 

MAXNESTING > SHALLOW

Method has few nested 

conditionals

Fig. 6.3. Intensive Coupling detection strategy.

1. Operation calls too many methods from a few unrelated classes.
The basic condition for a method or function to be considered as
having an Intensive Coupling is to call many methods belonging
to a few classes (Fig. 6.4). By “unrelated classes” we mean that
the provider classes are belonging to the the same class hierarchy
as the definition class of the invoking method. We distinguish two
cases:
a) Sometimes a function invokes many other methods (more than

our memory capacity) from different classes. Usually among
the provider classes there are two or three from which several
methods are invoked.

b) The other case is when the number of invoked methods does
not exceed our short-term memory capacity, but all the invoked
methods belong to only one or two classes. Thus, the number
of methods invoked from the same provider class is high.



122 6 Collaboration Disharmonies

Operation calls too 

many methods from few 

and unrelated classes 

CINT > Short Memory Cap

Operation calls too many 

methods

CDISP < HALF

Class are "dispersed" in 

few classes

CINT > FEW

Operation calls more than 

a few methods

CDISP < A QUARTER

Calls are "dispersed" in 

very few classes

AND

AND

OR

Fig. 6.4. In Intensive Coupling operation calls too many methods from a few
unrelated classes

Therefore, we have two branches: one for detecting intensive cou-
plings which are concentrated in one or two classes, and another
one dedicated to the more general case when the dispersion ratio
of the invoked methods is below 50%.

The used heuristics in the first case are:

a) Operation calls too many methods. Too many refers to a
number greater than the number of items that can be mem-
orized by the short-term memory. If the caller operation is a
method, than only those provider methods are counted that
are outside the scope of the caller’s definition class.

b) Calls are dispersed in a few classes. The methods invoked
by a client operation have a low grade of dispersion, i.e., the
provider methods belong to a few classes. The threshold tells
us that in average more than two methods are invoked from
the same provider class.

The used heuristics in the second case are:

a) Operation calls more than a few methods.



6.3 Intensive Coupling 123

b) Calls are dispersed in very few classes. The called methods
have a very low grade of dispersion, i.e., the threshold tells us
that in average more than two methods are called from the
same provider class.

2. Operation has nested conditionals. A function that calls many
methods, but is flat – in terms of the nesting level of its state-
ments – is less complex and from our experience this coupling
cases prove to be often less relevant. In many cases such methods
are initializers or configuration functions that are less interest-
ing for both understanding and improving the quality of a design.
Therefore, as mentioned earlier, we set this condition so that the
calling function should have a non-trivial nesting level.

In Fig. 6.5 we see that ClassDiagramLayouter is intensively coupled Example
with a few classes, especially with ClassDiagramNode. The blue edges
represent invocations between the methods in the classes. The red
nodes represent non-model classes, i.e., Java library classes.

The classes have been laid out according to the invocation se-
quence: above ClassDiagramLayouter we place all classes that use it,
while below it are all classes whose methods get used, i.e., invoked
by its methods.

In Fig. 6.6 we see that ClassDiagramLayouter is coupled to Class-
DiagramNode mainly because of four large methods, two of which
have previously been detected as a Brain Method(92): (1) layout, (2)
weightAndPlaceClasses (3) rankPackagesAndMoveClassesBelow and
(4) layoutPackages.

In more detail, the method weightAndPlaceClasses invokes 11
methods of the class ClassDiagramNode which by looking at its Class
Blueprint seems to be a mere data holder without complex function-
ality. The same goes for the method layout which uses 6 methods of
ClassDiagramNode. It looks as, after a few iterations, ClassDiagram-
Layouter could eventually become a God Class(80).

A strongly suggested refactoring in this case is splitting those
methods, since they do several things at once, as their names sug-
gest. For example, weightAndPlaceClasses could be split into a method
that weighs and another one that places the classes.

The prediction about ClassDiagramLayouter eventually becoming
a God Class(80) or at least a complex class is supported by the fact
that so far as the other classes in these figures are concerned, Class-
DiagramLayouter uses only small parts of them. This does not re-



124 6 Collaboration Disharmonies

Fig. 6.5. The class ClassDiagramLayouter is intensively coupled with a
few classes, especially ClassDiagramNode. The red classes are non-model
classes, i.e., belong to the Java library. The classes have been laid out ac-
cording to the invocation sequence: above ClassDiagramLayouter we place all
classes that use it, while below it are all classes whose methods get used,
i.e., invoked by its methods.

ally represent a problem, although some of the coupling relationships
seem to be very weak and probably do not require much work to be
cut off and decrease the couplings of ClassDiagramLayouter.



6.3 Intensive Coupling 125

Fig. 6.6. The class ClassDiagramLayouter is intensively coupling with a few
classes, especially ClassDiagramNode.

In the case of an operation with Intensive Coupling the intensity of Refactoring
coupling is high, while the dispersion is low. This guarantees that
we will find one or more clusters of methods invoked from the same
(provider) class. Therefore, a first refactoring action is to try to de-
fine a new (more complex) service in the provider class and replace
the multiple calls with a single call to the newly defined method (see
Fig. 6.7).

Fig. 6.7. The essence of the refactoring solution in case of Intensive Coupling

If this cluster of methods invoked from the same class consists
mainly of lightweight methods, some of which are affected by Shot-
gun Surgery(133), then it is highly probable that the aforementioned



126 6 Collaboration Disharmonies

refactoring will also have a positive impact on the design quality of
the class that contains those lightweight methods, in the sense that
the the provided class will offer higher-level services.

The main reasons for reducing coupling are not that the code will
look cleaner after. Most of the time reducing coupling is required to
be able to use one component without the others or to make easier
the replacement of one component by another one. Therefore having
smaller communication channels is an important task. However, re-
ducing coupling between classes is a complex task. Indeed we can
reduce the metrics values by grouping or factoring the methods be-
longing to the same class and tunnelling thus the communication be-
tween the classes. However such a practice even if it can improve the
overall design of the system by making more precise the communica-
tion channel between the classes should not hide that often reducing
coupling is a more complex. Indeed either a dependency was useless
and this is easy to fix it or it is necessary and moving it around will
not solve the root of the problem. To reduce coupling often requires
to change the flow of the application or to introduce extra indirec-
tions. In addition the coupling can change over time and run-time
registration mechanisms such as Transform Type Checks to Registra-
tion [DDN02] may be the solution to decouple clients and providers
of services.

Finally, coupling or dependencies are often the results of mis-
placed operations, therefore it is worth checking if the Law of Deme-
ter [LH89] or reengineering patterns like Move Behavior Close to the
Data and Eliminate Navigation Code [DDN02] can be applied.



6.4 Dispersed Coupling 127

6.4 Dispersed Coupling

This disharmony reveals a complementary aspect of coupling than Description
the one described as Intensive Coupling(120). This is the case of an
operation which is excessively tied to many other operations in the
system, and additionally these provider methods that are dispersed
among many classes (see Fig. 6.8). In other words, this is the case
where a single operation communicates with an excessive number of
provider classes, whereby the communication with each of the classes
is not very intense i.e., the operation calls one or a few methods from
each class.

Fig. 6.8. Illustration of Dispersed Coupling

Operations, e.g., methods or standalone functions. Applies To

Dispersively coupled operations lead to undesired ripple effects, be- Impact

cause a change in an dispersively coupled method potentially leads
to changes in all the coupled and therefore dependent classes.



128 6 Collaboration Disharmonies

The detection rule is defined in the same terms as the the one definedDetection

for Intensive Coupling(120), with only one complementary difference:
we capture only those operations that have a high dispersion of their
coupling (Fig. 6.9). The detection strategy in detail is:

AND
Dispersed

Coupling

Operation calls a few methods from 

each of a large number

of unrelated classes

MAXNESTING > SHALLOW

Operation has few nested 

conditionals

Fig. 6.9. Dispersed Coupling detection strategy

Operation calls a few 

methods from each of a large 

number of unrelated classes

CINT > Short Memory Cap

Operation calls too many 

methods

CDISP ! HALF

Calls are dispersed in 

many classes

AND

Fig. 6.10. In Dispersed Coupling operation calls a few methods from each of
a large number of unrelated classes.

1. Operation calls a few methods from each of a large number
of unrelated classes. This term of the detection rules imposes
two conditions: an intensive coupling, i.e., the invocation of many
methods from other classes (CINT - Coupling Intensity), and a
large dispersion among classes of these invoked operations (CDISP
- Coupling Dispersion). The metrics used in this case are the same
as those already used in the context of detecting Intensive Cou-
pling(120).



6.4 Dispersed Coupling 129

2. Operation has few nested conditionals. Exactly as for Intensive
Coupling(120), we also set the condition that the calling operation
should have a non-trivial nesting level, to make sure that irrele-
vant cases (like initializer functions) are skipped.

Fig. 6.11. The class ActionOpenProject is coupled with many classes. The
red classes are non-model classes, i.e., belong to the Java library. The blue
edges represent invocations.

An interesting example of Dispersed Coupling is found in class Ac- Example
tionOpenProject. We see in Fig. 6.11 that the class is coupled with
many other classes. Even ignoring the calls to non-model classes (col-
ored in red) we still see that this methods of this class invoke meth-
ods located in many other classes, resulting in a great dispersion of
the invocations. Looking closer at the methods of ActionOpenProject
we discover that most of the coupling in this class is caused by two



130 6 Collaboration Disharmonies

Fig. 6.12. The class Modeller is coupled with many classes and suffers itself
from many other problems.

methods, i.e., actionPerformed and loadProject, both revealed by the
detection strategy as being affected by Dispersed Coupling. By looking
closer at these two methods we identify another interesting aspect:
each of them is also a Brain Method(92). Moreover, some fragments
of actionPerformed (exactly those fragments where many invocations
appear) are also duplicated in three methods from sibling classes of
ActionOpenProject. All these facts determine us to believe that the
cause of the excessive coupling is the improper distribution of func-
tionality among the methods of the system. In other words, the Dis-
persed Coupling detected in these methods is an additional sign that
the two methods are doing more than one single task.

Another relevant example of Dispersed Coupling is found in a class
already mentioned in the context of the Brain Method(92) dishar-
mony, i.e., Modeller. This class has two methods affected by Dis-
persed Coupling. Again, one of the two methods (addImport) is a Brain
Method(92); the other one (addClassifier) is also significantly large
and complex. As we see in Fig. 6.12, Modeller is indeed dispersively
coupled with many classes and especially coupled with ParseState,



6.4 Dispersed Coupling 131

CoreFactory and UMLFactory. A manual analysis of both these two
methods has revealed two different causes:

1. Methods are too large and not focused on a single task. As a re-
sult, in each method, we find a portion of code that reveals an
intensive coupling towards the ParseState class. Furthermore, in-
specting ParseState we found out that this class provides only very
simple services, which are composed into higher-level services by
the client methods. This partially explains the need for many dif-
ferent methods invocations from that class.

2. In addClassifier apart from the aforementioned aspect, we found
that the Dispersed Coupling disharmony is partially due to invo-
cation chains that break the Law of Demeter [LH89]

Refactoring an operation affected by Dispersed Coupling is not a Refactoring
straight forward action. It needs more contextual information to pro-
ceed, but here are a few hints from our experience in dealing with
this problem:

• In many cases the operation that exhibits Dispersed Coupling is
also a Brain Method(92). In this case, the detailed knowledge about
coupling will support the refactoring of the operation in terms
of Brain Method(92). In other words, if you encountered a Brain
Method the refactoring should address both aspects simultane-
ously.

• For the other cases (rather rare) the refactoring process should
be centered on identifying called methods that are lightweight
and/or affected by Shotgun Surgery(133), always with the ques-
tion in mind: Isn’t there anything in the client method (i.e., the
one affected by Dispersed Coupling)that could be moved to one of
the lightweight methods that it invokes.

• Calling many methods from lots of classes might also have an-
other cause than the excessively large size of the invoker method.
The cause might be that the operation invokes the wrong classes,
i.e., that it it is coupled to classes that are at lower abstraction
level than the client method [Rie96]. Thus, it would be necessary
to identify the proper abstraction and let the client function com-
municate with that class. Although this sounds easy, it is hard to
accomplish because it requires a good understanding of the sys-
tem domain to be able to introduce a new abstraction into the
system.



132 6 Collaboration Disharmonies

As mentioned while discussing refactoring solutions for Intensive
Coupling(120), eventually coupling or dependencies are often the re-
sults of misplaced operations, therefore it is worth checking if the
Law of Demeter [LH89] or the reengineering patterns Move Behavior
Close to the Data and Eliminate Navigation Code [DDN02] can be
applied.



6.5 Shotgun Surgery 133

6.5 Shotgun Surgery

Not only outgoing dependencies cause trouble, but also incoming Description
ones. This design disharmony means that a change in an opera-
tion implies many (small) changes to a lot of different operations and
classes [FBB+99] (see Fig. 6.13). This disharmony tackles the issue
of strong afferent (incoming) coupling and it regards not only the cou-
pling strength but also the coupling dispersion.

Fig. 6.13. Illustration of Shotgun Surgery

Operations, e.g., methods or functions. Applies To

An operation affected by Shotgun Surgery has many other design en- Impact

tities depending on it. Consequently, if a change occurs in such an
operation myriads of other methods and classes might need to change
as well. As a result, it is easy to miss a required change causing thus
maintenance problems.



134 6 Collaboration Disharmonies

We want to find the classes in which a change would significantly af-Detection

fect many other places in the system. In detecting the methods most
affected by this disharmony, we consider both the strength and the
dispersion of coupling. In contrast to Intensive Coupling(120) and Dis-
persed Coupling(127), here we are interested exclusively in incoming
dependencies caused by function calls. In order to reveal especially
those cases where dependencies are harder to trace, we will count
only those operations (and classes) that are neither belonging to the
same class nor to the same class hierarchy with the measured oper-
ation.

Shotgun Surgery

CM > Short Memory Cap

Operation is called by too many 

other methods

CC > MANY

Incoming calls are from 

many classes

AND

Fig. 6.14. Shotgun Surgery detection strategy

Based on all the considerations above, the detection technique is
now easy to describe (see Fig. 6.14). First, we pick up those functions
that have a strong change impact, and from these we keep only those
that also have a high dispersion of changes. The detection strategy in
detail is:

1. Operation is called by too many other operations. When a
change in the measured operation occurs we must fix all the other
operations that depend on it. If this exceeds our short-term mem-
ory capacity the risk of missing a dependency increases This jus-
tifies both the selection of the metric and of the threshold.
An alternative way to quantify the strength of incoming dependen-
cies is to count the number of calls instead of the number of callers
(like CM (Changing Methods) does). The metric called Weighted
Changing Method (WCM) defined it [Mar02a] does just that.

2. Incoming calls are from many classes. Using this metric and
this threshold has the following rationale: assuming that we have



6.5 Shotgun Surgery 135

two operations, and that a change in each of them would affect 20
other operations, from these two, the one for which the 20 clients
are spread over more classes is worse than the other one. In other
words, if all dependencies were to come from methods of a few
classes then the potential changes that need to be operated on
these client methods would be more localized, reducing thus the
risk of missing a needed change. As a consequence, the mainte-
nance effort (and risk) involved in managing all changes would be
more reduced. Therefore, we use the CC (Changing Classes) met-
ric to quantify the dispersion of the changes, so that only those
Shotgun Surgery functions causing most maintenance problem are
detected.

Fig. 6.15. Project provides an impressive example of a class with several
methods affected by Shotgun Surgery(133). Due to these methods, Project is
coupled with 131 classes (ModelFacade has been elided from the screen-
shot). Furthermore, the class has cyclic invocation dependencies with Pro-
jectBrowser and CoreFactory. In the figure, the classes above Project depend
on it, while Project itself depends on (i.e., invokes methods of) the classes
below it.

In Fig. 6.15 we see an extreme case of Shotgun Surgery(133) that in- Example
volves several methods of class Project. The class is coupled with 131
classes (10% of ArgoUML ) and has cyclic invocation dependencies
with the classes ProjectBrowser and CoreFactory (the second largest
class in the system). The classes above Project depend on it, while
Project itself depends on (i.e., invokes methods of) the classes below



136 6 Collaboration Disharmonies

it. The view reveals how fragile the system is if a major change is per-
formed on the class Project. Lots of classes in the whole system are
potentially affected by changes.

How should we deal with Shotgun Surgery? We identified a number ofRefactoring
refactoring options:

• Move more responsibility to the classes defining Shotgun Surgery
methods, from the client classes of these functions. Do this espe-
cially when the definition classes of the Shotgun Surgery methods
is small and/or not complex and/or it is or has a tendency to be-
come a Data Class(88). Move Behavior Close to the Data [DDN02]
presents step by step how to move behavior close to the data it
uses and can be helpful here.

• The Shotgun Surgery methods that are very large and complex
(e.g., tending to become a Brain Method) should be especially ana-
lyzed and taken care of by the maintainers of the system (e.g., by
increasing the number of test cases for the method, or by trying
to refactor it). We recommend this as such methods have a higher
potential for change and/or malfunction potentially having a se-
vere impact on the rest of the system. Identifying clearly the stable
interfaces in the system is a good way to reduce the candidates for
refactorings.



6.6 Recovering from Collaboration Disharmonies 137

6.6 Recovering from Collaboration Disharmonies

Where to Start

As already mentioned in the previous chapter, in practice we need
some criteria to prioritize the collaboration harmony offenders, so
that we know which classes and methods are the most dangerous
ones, the ones that require most our attention and that need a refac-
toring action to would improve the design. We use the following crite-
ria in prioritizing the classes which host classification disharmonies:

• Classes that contain a higher number of disharmonious methods
have priority

• Classes that are affected by other types disharmonies go first in
order to reveal relation to other aspects of harmony.

How to Start

The three collaboration disharmonies Shotgun Surgery(133), Inten-
sive Coupling(120) and Dispersed Coupling(127) address the issue
of coupling from two complementary perspectives: While the issue
of excessive coupling is addressed by Shotgun Surgery(133) from the
provider’s viewpoint, the other two tackle the same issue from the
client’s perspective. These two perspectives are like the two faces of
the same coin: therefore, they cannot be addressed separately in a
refactoring process.

Next we will provide some advice on how to approach the problem
of coupling using the aforementioned detection strategies.

1. For each operation affected by Intensive Coupling group the in-
voked methods by their definition class. There will be one or more
such groups containing 3 or more methods from one single class.

2. After that, collect the groups of “3-or-more-methods” (from the
same provider class) from all operations affected by Intensive Cou-
pling, and try to identify common groups. For those groups of
methods that are used together in several client operations, try
to introduce a new method in the provider class, and replace the
multiple calls with a single call of the new method. Such a refac-
toring could have multiple beneficial consequences:
• If these groups contain methods affected by Shotgun Surgery

(and they usually do) the refactoring would reduce the number
of clients for these methods, and thus reduce their incoming
coupling. In many cases such a refactoring would help them
recover from the Shotgun Surgery(133) disharmony.



138 6 Collaboration Disharmonies

• Provider classes for groups of “3-or-more-methods” are often
lightweight classes, i.e., they do not have very much function-
ality, sometimes even being reported as being a Data Class; ad-
ditionally, such classes may participate in violations of the Law
of Demeter. Such refactorings would move some of the func-
tionality to them, thus improving also the identity harmony.

3. Dispersed Coupling is a design problem that oftentimes affects
Brain Method(92), because of the following reason: An excessively
large and complex operation is almost always non-cohesive, doing
more than one thing; and therefore there will be many invoca-
tions to methods from many classes. Thus, methods affected by
Dispersed Coupling should be first checked to see whether they
are also detected as Brain Method. If so, the Brain Method problem
should be solved first, as this might eliminate as well the Dispersed
Coupling.

4. Assume now that we consider the Brain Method problem as solved,
but there are still methods affected by Dispersed Coupling. In this
case, collect the groups of invoked methods from all the opera-
tions affected by Dispersed Coupling. Look at these groups trying
to identify clusters of methods invoked from multiple client opera-
tions (affected by Dispersed Coupling(127)). For each such cluster,
check if this is not an invocation chain, thus violating the Law
of Demeter [LR89], and try to remove it [DDN02]. After all, you
should check for such invocation chains in all methods affected
by Dispersed Coupling, as in our experience these violations of
the Law of Demeter are (apart from the operation being a Brain
Method(92)) the primary cause of this disharmony.

As a final remark, note that if the aforementioned detection strategies
will not flag anymore certain classes or methods as being affected by
Shotgun Surgery– as a result of applying the proposed refactorings
– it does not necessarily mean that you will be safe. We consider the
proposed refactoring as a first step towards often more challenging is-
sues. Rationalizing the communication between classes is a good ap-
proach to better understand deeper problems. As we already pointed
out, changing the coupling between classes is not simple, since one
dependency may still force you to load a complete package and mov-
ing dependencies around is often not as trivial as it seems. Some
solutions may lead you to rethink totally the flow of the communica-
tion within your application or to introduce dynamic mechanisms to
deal with the temporal aspects of the dependencies [DDN02].




