
Metrics in Software Quality

PV260 Software Quality

Stanislav Chren, Václav Hála

24. 2. 2015



Outline

1. Overview Pyramid



Overview Pyramid

The Overview Pyramid is a graphical template for presenting and
interpreting system-level measurements

I proposed by Michele Lanza and Radu Marinescu1

I set of direct and derived metrics divided into three categories

I statistical thresholds for derived metrics

1Object Oriented Metrics in Practice, Springer 2006



Size and Complexity

Direct metrics

I NOP - Number of packages (Java)/namespaces (C++)

I NOC - Number of classes

I NOM - Number of methods

I LOC - Lines of code (only lines of code with functionality is
counted)

I CYCLO - Sum of McCabe’s cyclomatic number (number of
possible executions paths) for all methods.



Size and Complexity

Computed proportions
I High-level structuring (NOC/Package)

I indicates if packages tend to be coarse grained or fine grained

I Class Structuring (NOM/Class)
I provides hint about quality of class design
I high values - sign of missing classes

I Operation structuring (LOC/Method)
I how well is the code distributed among operations
I high value - ”heavy” operations written in procedural style

I Intrinsic operation complexity (CYCLO/Code line)
I how much conditional complexity we can expect in operations



Coupling

Direct metrics
I CALLS - Number of operation calls

I total number of distinct operation calls in the project
I sum of the number of methods called by user-defined methods.

I FANOUT - Number of called classes
I number of classes from which methods are called
I information how dispersed operation calls are in classes



Coupling

Computed proportions
I Coupling intensity (CALLS/Method)

I how many methods are called on average from each method
I high values - excessive coupling

I Coupling dispersion (FANOUT/Method call)
I how much the coupling involves many classes
I indicates the average number of classes involved in method

calls



Inheritance

Direct metrics
I ANDC - Average Number of Derived Classes

I average number of direct subclasses of a class
I inheritance width

I AHH - Average Hierarchy Height
I average of the maximum path length from root to its deepest

subclasses
I inheritance depth



Thresholds

Metric Low Average High

CYCLO/LOC 0.16 0.20 0.24

LOC/NOM 7 10 13

NOM/NOC 4 7 10

NOC/NOP 6 17 26

CALLS/NOM 2.01 2.62 3.2

FANOUT/CALLS 0.56 0.62 0.68

ANDC 0.25 0.41 0.57

AHH 0.09 0.21 0.32



Task 1

1. Download the ArgoUML source from svn:
I svn checkout

http://argouml.tigris.org/svn/argouml/trunk/src

http://argouml.tigris.org/svn/argouml/trunk/tools

argouml --username guest

2. Parse it with Infamix

3. Load the MSE file into Moose 4.3 (and optionally to ver.5.0)



Polymetric Views



System Complexity View

Nodes Edges Layout Width Height Color
Classes Inheritance Tree NOA NOM LOC



Class Blueprint

I Visualization of the internal static structure of a class

I Helps to understand and develop a mental model of class
implementation

I Can be used to spot design disharmonies



Class Blueprint - Methods and Attributes



Software Disharmonies



Identity Disharmonies

Rules of Identity Harmony

I Operations and classes should have harmonized size

I Each class should present its identity by a set of services.
which have one single responsibility and which provide unique
behaviour

I Data and operations should collaborate harmoniously within
the class to which they semantically belong

I keep data close to operations
I distribute complexity
I operations use most attributes



God Class

I A class that centralizes intelligence of the system
I heavily accesses data of other classes
I large and complex
I several services involving disjunct sets of attributes

I Violates single responsibility principle of OO design

I Affects maintainability and evolution of the sw (not a problem
if it is located in a stable/untouched part of the system)

I Refactored by incrementally redistributing its responsibilities
to other classes



God Class - Detection Strategy



Brain Method

I A method which centralizes functionality of a class
I long methods
I excessive branching
I many local variables

I Negative impact on understandability and reusability

I Refactored by method extractions



Brain Method - Detection Strategy



Collaboration Disharmonies

Collaboration Harmony Rule
I Collaboration should be only in terms of method invocations

and have limited extent, intensity and dispersion
I limit collaboration intensity
I limit collaboration extent
I limit collaboration dispersion



Examples of Collaboration Disharmonies

Figure: Intensive coupling
Figure: Dispersed coupling



Classification Disharmonies

Classification Harmony Rules
I Classes should be organized in hierarchies having harmonious

shapes
I avoid wide hierarchies
I avoid tall hierarchies

I The identity of abstraction should be harmonious with respect
to its ancestors

I do not add too many new services
I do not refuse ancestor interface and specialize rather than

override services
I the more abstract class/method, the shorter distance to the

root

I Harmonious collaborations within a hierarchy are directed only
towards ancestors and serve mainly the refinement of the
inherited identity

I base classes should not depend on their descendants
I inherited operations should be redefined/called/specialized

rather than called from newly added services



Tradition Breaker

I A class which does not specialize ancestors operations but
introduces many new services

I excessive increase of child class interface
I child class has substantial size and complexity
I parent class is not trivial

I Usually indicates a misuse of inheritance



Tradition Breaker - Detection Strategy



Disharmony Identification Tools

Moose

I System complexity view and Class blueprints can be used to
detect the identity/classification disharmonies

I Does not have built-in metrics based detection strategies (can
be scripted)

I Included metrics often have non-standard names

iPlasma
I http://loose.upt.ro/reengineering/research/iplasma

I Automated detection of disharmonies based on metrics

I Includes System complexity views and Class blueprints

Infusion

I http://www.intooitus.com/products/infusion

I More advanced user friendly version of iPlasma

I Commercial, trial version limited to projects up to 100K of
LOC

http://loose.upt.ro/reengineering/research/iplasma
http://www.intooitus.com/products/infusion


Task 3

1. Select one of your Java projects and use Infamix to generate
its meta-model.

2. Compute Overview pyramid in Moose

3. Using the System complexity view, determine the five biggest
classes in the project

4. Examine their class blueprints

5. Download the iPlasma tool

6. Load the source code in iPlasma and try to detect any
disharmonies



Dependency Structure Matrix

Dependency Strucure Matrix (DSM) is a tool to capture
dependencies between entities (modules, packages, classes,
tasks,...)



Task 3

1. Compile the ArgoUML source
I cd argouml\src

build.bat run

2. Download the sonar project file from study materials and copy
it to the argomuml\src folder

3. Download SonarQube Runner
I http://www.sonarqube.org/downloads/

4. Download the sonar-runner.properties file from study
materials and replace the original in the conf folder

5. In CMD, navigate to the argomuml\src folder and execute the
sonnar-runner.bat from the Sonnar Runner bin folder

http://www.sonarqube.org/downloads/

	Overview Pyramid

