PV260 Software Quality

Assignment 3 - Static Code Analysis, Unit Testing
Spring 2015

1 General Information

1.1 Dates

e Assignment start: 7.4.2015
e Task 1 and 2 deadline: 21.4.2015 23:59
e Task 3 deadline: 28.4.2015 23:59

1.2 Submission

Please submit your solution as three .jar files containing source files to the Homework vault
(Odevzddvarna) called Assignment 3: Testing, SCA (Groups 01, 02). Each jar should contain
solution for one of the tasks described below. The name of the archives should be as follows:
lastnamel-lastname2-assignment3-taskN.jar. The tasks should be solved in the groups of two
(exceptionally in groups of three). Include names of the group members in @author tag in every
class. Only one solution per group should be submitted.

1.3 Evaluation

This assignment is split into three parts evaluated separately as follows:

Task 1 - max 8 points, Task 2 - max 8 points, Task 3 - max 9 points.

The points will be distributed based on both fulfilling the functional requirements and compliance
of the code with SOLID and Clean Code principles.

2 Tasks

2.1 Task 1

e Using Checkstyle, write a Check module which will look for the Brain Method identity dishar-
mony as described in https://is.muni.cz/auth/el/1433/jaro2015/PV260/um/sem/54527454/
55007209/identity-disharmonies.pdf?studium=675598| page 92

e Your module should be configurable through the standard Checkstyle xml analysis configu-
ration file on all parameters mentioned in the Disharmony description:

— How many LOC the method must have to be considered excessively large

— How high cyclomatic complexity is allowed before the method can be considered a Brain
Method

How deep nesting of control logic is allowed in the method before it can be considered
a Brain Method

How many variables must be used inside the method before it can be considered a Brain
Method


https://is.muni.cz/auth/el/1433/jaro2015/PV260/um/sem/54527454/55007209/identity-disharmonies.pdf?studium=675598
https://is.muni.cz/auth/el/1433/jaro2015/PV260/um/sem/54527454/55007209/identity-disharmonies.pdf?studium=675598

2.2

2.3

It is not required that you write tests for the module. However, to prove your solution works,
write a few example dummy methods on which your module can be run and gives correct
results.

In the .jar file with your module also include the test file mentioned above and anything else
necessary for the module to be usable in Checkstyle.

Task 2

Solve the following challenge: http://www.reddit.com/r/dailyprogrammer/comments/3104wu/
20150401_challenge_208_intermediate_ascii/

In addition to fulfilling the functional requirements of the challenge, provide unit test suite
for your solution with at least 90% branch coverage.

We do not enforce the TDD startegy of programming, so it is up to you whether you write
your tests first or last. Nevertheless, the test-first strategy is highly recommended.

You are free to use whichever tool you prefer for test coverage calculation while working on
the solution. For evaluation JaCoCo will be used. If you decide to also use this tool, ant
script to run the analysis can be found here: https://is.muni.cz/auth/el/1433/jaro2015/
PV260/um/sem/54527454/55345625/jacoco . xm1?studium=675598

Task 3

Using the project ProductFilter: https://is.muni.cz/auth/el/1433/jaro2015/PV260/um/sem/
54527454/55345625/ProductFilter.zip?studium=675598also available through IS/Project as-
signments. Write unit tests for classes AtLeastNOfFilter and Controller which will test the

following behavior:
AtLeastNOfFilter:

The constructor throws the exceptions as documented

The filter passes if at least exactly n child filters pass
The filter fails if at most n-1 child filters pass

— Bonus: Try to only use the AtLeastNOfFilter class itself in the tests, do not depend on
other project classes

Controller:

— The controller sends exactly the products selected by the provided filter to Output
— The controller logs the message in documented format on success

— If exception occurs when obtaining the Product data, Controller logs this exception

If exception occurs when obtaining the Product data, nothing is passed to the Output

Bonus: In the Logger tests don’t depend on what the actual returned items are, e.g.
check the format against a regular expression
Use Mockito at least once to create one of the Test Doubles needed.

Create at least one Test Double manually (without the use of any mocking framework).
Do not modify the sources in any way. Only add your unit tests to the test folder.


http://www.reddit.com/r/dailyprogrammer/comments/3104wu/20150401_challenge_208_intermediate_ascii/
http://www.reddit.com/r/dailyprogrammer/comments/3104wu/20150401_challenge_208_intermediate_ascii/
https://is.muni.cz/auth/el/1433/jaro2015/PV260/um/sem/54527454/55345625/jacoco.xml?studium=675598
https://is.muni.cz/auth/el/1433/jaro2015/PV260/um/sem/54527454/55345625/jacoco.xml?studium=675598
https://is.muni.cz/auth/el/1433/jaro2015/PV260/um/sem/54527454/55345625/ProductFilter.zip?studium=675598
https://is.muni.cz/auth/el/1433/jaro2015/PV260/um/sem/54527454/55345625/ProductFilter.zip?studium=675598

	General Information
	Dates
	Submission
	Evaluation

	Tasks
	Task 1
	Task 2
	Task 3


