
Seminar 5 - Optimization

PV260 Software Quality

March 24, 2015



Context

We have working application with clean code following SOLID
principles - the Regex Fractals generator as we left it at the end of
the refactoring seminar. It can be used to generate images as large
as 1024*1024 when using the options described below. However
we want it to run on arbitrarily large image size (say as least
16384x16384)
For the purposes of this exercise we limit the resources the JVM
can use. When running the program we supply these flags:

I -Xmx512m maximum memory available to JVM, in megabytes

I -Xss104k thread stack size, in kilobytes

I -Xverify:none workaround for a profiler bug in NetBeans

In NetBeans: right click project → Properties → Run → VM Options



Instrumentation

Instrumentation is the addition of byte-codes to
methods for the purpose of gathering data to be utilized
by tools. Since the changes are purely additive, these
tools do not modify application state or behavior.
Examples of such benign tools include monitoring agents,
profilers, coverage analyzers, and event loggers.

Extra info for the curious:

I http://docs.oracle.com/javase/7/docs/api/java/lang/

instrument/Instrumentation.html

I http://www.javamex.com/tutorials/memory/

instrumentation.shtml

http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html
http://www.javamex.com/tutorials/memory/instrumentation.shtml
http://www.javamex.com/tutorials/memory/instrumentation.shtml


Classmexer agent
http://www.javamex.com/classmexer/

Classmexer is a simple Java instrumentation agent
that provides some convenience calls for measuring the
memory usage of Java objects from within an application.

Installation:

I Download the agent from
http://www.javamex.com/classmexer/classmexer-0_03.zip

I Add the agent jar to project classpath

I Add the JVM flag -javaagent:path/to/classmexer.jar

Usage:

I MemoryUtil.memoryUsageOf(object) size of the object
itself, without taking into account sizes of its children

I MemoryUtil.deepMemoryUsageOf(object) size of the
object and whole child hierarchy under it (note that when the
object is GCd, some of its children might not be GCd if they are
also referenced from elsewhere, so not all deep memory is released)

http://www.javamex.com/classmexer/
http://www.javamex.com/classmexer/classmexer-0_03.zip


Profiler

Profiling techniques:

I Samplig:

Periodic queries to the VM, provides less accurate
aproximation but causes less overhead.

I Instrumentation:

Inserts own code into compiled bytecode of the profiled
application, which means performance can be significantly
affected by the profiling itself (Observer effect). However for
situations where exact counts (method calls, memory
used . . . ) are required, this technique is preferable.

Profiling targets:

I CPU:

Measures how much time is spent in parts of the program.

I Memory:

Measures how much space objects take on the heap, how
many instances of a class there are etc.



Overhead of Recursion
revisions 1, 2

I When generating the signatures grid the data we care about
are the Grid containing computed Signatures

I However when the computation is in progress there is the
overhead of:

I the signatures are held in the Fragments themselves before
being copyed into the final Grid

I the extra space taken by every Frame that is not the signature
(position, collection of children etc.)

I because we have the whole recursive structure from the root to
the leaves, we dont have size*size Fragments but rather ∼
1.33*size*size Fragments

I That means if we want to compute 2048*2048 signatures, the
String signatures themselves take ∼ 256MB, our algorithm
however takes at least 2x that, for reasons mentioned above
however it would be MUCH more as the signatures in the
Fragment structure would take ∼ 256MB*1.33 and the
overhead of all the Fragments themselves is huge, about as
much space as the signatures themselves.



Overhead of Recursion
revisions 1, 2

I We need algorithm that doesnt duplicate all the data during
the generation and has much lower overhead

I Possible solution is to transform the recursive algorithm to
iterative, so that it:

I avoids all the object creation, only the signatures are kept
I doesnt create the signatures in some intermediate structure

from which it then copyes them into the grid (requiring at
least 2x the size of the signatures in memory), instead it writes
directly into the grid

I Such implementation is the IterativePermutationsFractalGrid

I Notice how it doesnt follow the way we would solve the task
intuitively as well as the recursive algorithm does



Intermezzo - Sizes of Objects

byte, boolean byte
short, char 2 bytes
int, float 4 bytes
long, double 8 bytes

reference 4 bytes
plaint Object 16 bytes
Byte, Integer . . . 16 bytes
Long, Double 24 bytes
empty String 40 bytes

I Every Object has ∼ 12 bytes of metadata (implementation
specific)

I All sizes are aligned to next multiple of 8 (so that if you use
17 bytes, your object takes 24 bytes of heap space)

Extra info for the curious:

I http://www.javamex.com/tutorials/memory/string_memory_

usage.shtml

I http://java-performance.info/

overview-of-memory-saving-techniques-java/

http://www.javamex.com/tutorials/memory/string_memory_usage.shtml
http://www.javamex.com/tutorials/memory/string_memory_usage.shtml
http://java-performance.info/overview-of-memory-saving-techniques-java/
http://java-performance.info/overview-of-memory-saving-techniques-java/


Minimizing Space Used by Signatures
revision 3

Lets consider the case of 2048 ∗ 2048 image.

I If we use String:
2048 is 211 so we need signatures with length 11.
String with length 11 takes 64 bytes of space:
12b header, 4B int cached hash, 4B int cached hash32, 4B
reference to char[] value, which itself has 12B header, 11*2
chars, aligned to nearest multiple of 8 we get 40 for char[] +
24 String = 64B
2048 ∗ 2048 ∗ 64B ∼ 260MB

I If we use Long:
We know the signature will always be only numbers.
With this extra information we can use more efficient way of
storing the signature value.
Max possible value of Long is 9223372036854775807, so we
can save signature of size up to 19 in it.
2048 ∗ 2048 ∗ 24B ∼ 96MB



Minimizing Space Used by Signatures
revision 3

I For signatures of size at most 9 we want to use Integer (16B)
I For signatures of size at most 19 we want to use Long (24B)
I For even larger signatures we can use the String (>72B)

To shield client code from this optimization we use the following:



Minimizing Space Used by Signatures
revision 3

Now the code is still reasonably maintainable while the
performance has improved dramatically.

I We deal with abstraction of Signature, new implementations
can easily be added. As an example see SignatureBitwiseInt
which uses bits inside an int to store signatures up to the size
of 14 while taking only 16B of space (2 /3 of how much the
Long implementation takes). The bitwise implementation is
however slowest of them all (We trade low storage cost for
higher computational difficulty of extracting the data we store)

I We could use array of long directly inside the FractalGrid
further reducing the space required, HOWEVER:

I we would impose hardset limit of max possible size of images
the program can deal with (max storable signature has length
19)

I even if we managed to store signatures in as little as 1 byte per
signature, with larger images (32768 ∗ 32768 ∗ 1 ∼ 1GB >
512MB we have) the problem would persist.



Minimizing Space Used by Signatures
revision 3

If for whatever reason we needed to do this optimization and use
raw primitives, it would be preferable to use some collection which
encapsulates this behavior rather than dealing with the arrays
directly for reasons described in previous seminars. One possibility
would be to use the Trove library which provides primitive backed
Collections using the native Java Collections interface.
http://trove.starlight-systems.com/

http://trove.starlight-systems.com/


Intermezzo - Compile time Optimizations

Which of the following would you use?

public String A(String a, String b) {

return "a=" + a

+ ",b=" + b

+ ", something";

}

public String B(String a, String b) {

return new StringBuilder()

.append("a=").append(a)

.append(",b=").append(b)

.append(", something").toString();

}



Intermezzo - Compile time Optimizations

I They are compiled to identical bytecode, so A is much better
as it is more readable and the performance is the same.

I To decompile a .class file use the javap command with a
flag -c. So the whole command in cmd would be
javap -c SomeClass.class.

I StringBuilder is to be used when the concatenation doesnt
happen in a single pass, so for example in a loop.

I Loop using ’+’ creates a new StringBuilder on every pass,
appends the result so far and the new part. This can indeed
be a performance killer on long concatenations.



Towards Lazy Computations
revision 4

I Our problem is that we store the whole grid in memory.

I This solution is not scalable, only way to keep up with
increasing grid sizes is adding more physical memory.

I The requirements grow exponentially, so if we start with X
memory required to produce image size 2048, we will need 4X
to produce 4096, but at least 16X to produce 8192

I Now imagine that apart from big images we also want to run
10 generations at the same time in parallel. Or 100, 1000. . .



Towards Lazy Computations
revision 4

I Our program doesnt need to have the whole grid
precomputed, we merely need to know what is the signature
of [x,y] when asked.

I Solution is to compute this signature based on the [x,y] when
asked.

I That is compute it at the latest time possible - lazily

I Using this technique we only ever need to have enough
memory for computation of a single Signature.



Towards Lazy Computations
revision 4

See OnDemandFractalGrid for such implementation.
We already know the positives of this implementation, some
negatives are:

I The code is far less readable than the original recursive
version and it doesn’t reflect the domain concept as well.

I With the original solution any subsequent call to
signatureOf(x,y) after creation would be O(1) as all the
signatures are precomputed, with the OnDemand solution the
signature has to be recomputed every time.



Adapting Instead of Copying
revisions 5,6

Now that we have the signatures calculated, or rather a way to
calculate them when needed, we need to represent them as a
Grid<String>as that is what the rest of the program works with.

I One way would be to simply copy the signatures into a new
Grid, but that would bring us back to square one as we would
need to hold all the signatures in memory

I Working solution is to create an adapter which implements a
Grid, has a backing FractalGrid and delegates all get() calls to
the FractalGrid’s signatureOf()

I This solution breaks the LSP, however at the moment it seems
to be the only way to meet the requirements so we have to go
with it



Adapting Instead of Copying
revisions 5,6

I The same approach can be used to make the GridColorizer
return Grid adapter which behaves as follows:



Optimization at the Cost of Violating SOLID
revision 7

The last bottleneck in outputing ASCII image is again the fact we
need to have the whole image stored in memory to use the current
classes and methods.

I We need to write directly into a non-memory-based stream,
file in our case

I This can’t be achieved with the current ImageConverter
directly, so we have to break the LSP again to reach our goal

I By implementing ImageConverter<Void>we at least signalize
that our converter will always return null

I With the current design it is not possible to both meet our
requirements and have perfectly clean code

I Now that we have fulfilled the requirements in the simplest
possible way we can refactor the project again to make it
clean again



Helicopter View of the Program Flow Change


