
Seminar 7 – FitNesse

PV260 Software Quality

Stanislav Chren, Václav Hála

7. 4. 2015



Introduction

I Framework for Intgrated Testing and a wiki system

I Used for acceptance testing

I Easy way to capture user requirements (e.g. in terms of user
stories)

I Test cases are written in natural language - both users and
developers can write the tests

I Available for various programming languages (Java, C++,
C#, Ruby, ...)

I Offers additional extensions for testing of GUI, REST API, ...



How It Works



SLIM

I Slim (Simple List Invocation Method) is a lightweight test
engine for Fitnesse.

I In the test wiki page, use !define TEST SYSTEM{slim}
I Allows to use various kinds of test tables:

I Decision table
I Query table
I Script table
I Scenario table
I ...



Decision Table

I Basic table for comparing inputs with expected outputs

Concatenate strings

first second concatenate?

hello world hello world

PV260 Software Quality Software Quality

Concatenate strings

first second concatenate?

hello world hello world

PV260 Software Quality Software Quality



Decision Table - Fixture

I The text in the first cell is mapped to the fixture class name

I Input column names are mapped to the setter methods

I Output column names are mapped to the output methods

I Additional optional methods can be implemented
(beginTable(), endTable(), reset(), execute(),

table() )
I The execution flow for each table is as follows:

1. First, the Fixture object is contructed
2. table() method is called

3. beginTable() is called (e.g. for initialization)
4. For each row:

4.1 reset() is called

4.2 All set methods are called
4.3 execute() is called
4.4 All output methods are called and the return values are

compared to the table values

5. endTable() is called (e.g. for clean up)



Query Table
I Begins with keyword Query:
I The rows in a query table represent the expected results of a

query.
I The fixture must contain a parametrized constructor and a

query() method
I The query() method returns list of rows. Each row is a list of

result properties. Each result property is list of property name
(based on table headers) and property values.

I The result is compared to the table. Missing and surplus
results are marked.

I If the table does not specify all values for the properties, they
are filled form the query result

Query: employees hired before 1-Dec-2014
comp number emp number name hire date
488868 123 Bill Mitchell 1-Nov-2000
488868 456 Jan Novak 1-Aug-2014

Query: employees hired before 1-Dec-2014
comp number emp number name hire date
488868 123 Bill Mitchell 1-Nov-2000
488868 [missing] 125 Janko Hrasko 30-Nov-2014
488868 456 Jan Novak 1-Aug-2014



Download and Running

1. Download fitnesse-standalone.jar from
http://fitnesse.org/FitNesseDownload

2. Run the fitnesse on default port (8080) from cosole by
java -jar fitnesse-standalone.jar

You can use a different port with -p portNumber parameter

3. Access the wiki from the web browser (http://localhost)

http://fitnesse.org/FitNesseDownload
http://localhost


Task 1

1. Download the LibraryFitnesse project from IS

2. Create new test page on the wiki.

3. Copy the contents of the testPage.txt (from study
materials) to the page.

4. Adjust the !path variables to point to your project path. Try
to avoid paths with whitespaces. Make sure the provided tests
are passing.

5. Create a new decision table and associated fixture for testing
the fees for overdue loans. The example headers are:

reader name book name loan date return date loan type total overdue fee?



Task 1 Cont.

I There are two types of loans:
I Short - loan is for 8 hours. Fine for each overdue hour is 10

CZK.
I Long - loan is for 30 days. Fine for each overdue day is 5 CZK.

Additionally, each overdue week (7 days) is further fined with
20 CZK.

I The test should contain at least 5-6 test cases (rows)

I Use the StaticLibrary singleton in order to access the
books and readers from previous tables.

I In the fixture, use only the public Library methods

I In test cases, assume that given book can be loaned only to
one person at given time.

I The timestamp string is in the format dd/mm/yyyy hh:mm



Task 2

1. Use the following table to initialize the loans in the library
system. Implement the related fixture class. Additionally, use
it to delete the loans from the previous tests.

Book Loan Setup
reader name book name loan date return date loan type
Jan Novak Book 1 01/01/2015 12:00 long
Janko Hrasko Book 2 01/01/2015 08:00 01/01/2015 16:00 short
Janko Hrasko Book 2 05/01/2015 08:00 short

2. Write a Query table and fixture that should verify the loans
that are still open at 5/1/2015 00:00.

3. The table should explicitly specify only the loan start time,
the reader and book names should be filled by the fixture.

4. You can use the Arrays.asList() method to build the
resulting lists.



Further Reading

I The FitNesse documentation is also available offline through
the downloaded wiki server.

I http://www.fitnesse.org/FitNesse.UserGuide.

WritingAcceptanceTests.SliM

I http://schuchert.wikispaces.com/FitNesse.Tutorials

http://www.fitnesse.org/FitNesse.UserGuide.WritingAcceptanceTests.SliM
http://www.fitnesse.org/FitNesse.UserGuide.WritingAcceptanceTests.SliM
http://schuchert.wikispaces.com/FitNesse.Tutorials

