
Seminar 7 - JUnit Extensions, TDD

PV260 Software Quality

April 6, 2015



JUnit extensions

I JUnit is an extremely powerfull tool and virtually anything can
be done using only the pure JUnit core functionality

I In some cases however we might benefit from using extensions
of the basic functionality, syntactic sugar . . .

I These allow us to work faster, reduce the boilerplate code
which brings no value, and making the test suite easier to
maintain

I For most common needs both third party libraries and native
JUnit extensions (some only in experimental branch) exist



JUnit extensions

I Property testing using randomized input

I JUnit Theories http://junit.org/apidocs/org/junit/

experimental/theories/Theories.html

I junit-quickcheck
https://github.com/pholser/junit-quickcheck

I Fluent API for assertions

I Hamcrest (striped down version included in JUnit)

https://code.google.com/p/hamcrest/wiki/Tutorial

I FEST https://github.com/alexruiz/fest-assert-2.x/

wiki/One-minute-starting-guide

I Parametrized /Data-Driven tests

I JUnit Parametrized http://junit.sourceforge.net/

javadoc/org/junit/runners/Parameterized.html

I Zohhak runner https://code.google.com/p/zohhak/

http://junit.org/apidocs/org/junit/experimental/theories/Theories.html
http://junit.org/apidocs/org/junit/experimental/theories/Theories.html
https://github.com/pholser/junit-quickcheck
https://code.google.com/p/hamcrest/wiki/Tutorial
https://github.com/alexruiz/fest-assert-2.x/wiki/One-minute-starting-guide
https://github.com/alexruiz/fest-assert-2.x/wiki/One-minute-starting-guide
http://junit.sourceforge.net/javadoc/org/junit/runners/Parameterized.html
http://junit.sourceforge.net/javadoc/org/junit/runners/Parameterized.html
https://code.google.com/p/zohhak/


Zohhak
https://code.google.com/p/zohhak/

Allows us to run one test on many sets of data, provided in
annotation next to the testcase

@TestWith({

"1,2,3",

"-19,7,-12"

})

public void testAdd(int a, int b, int expected) {

Calculator sut = new Calculator();

int result = sut.add(a,b);

assertEquals(expected, result);

}



Zohhak - Setup

To run the basic Zohhak example do the following:

I Download both zohhak jar and its dependency
apache.commons-lang3 and place them on your test classpath

I Annotate the test class where you wish to use Zohhak with
@RunWith(ZohhakRunner.class)

I Annotate the tests you wish to use zohhak with
@TestWith({...}), this annotation will contain input data

I Run the test file as usual (Run Focused Test Method doesn’t
work for zohhak tests in NetBeans)



Zohhak - Data

I The Strings inside the @TestWith({...}) each represent one
test input

I Inside each of these input Strings individual arguments for the
test are separated by commas (’,’)

I Types of the arguments are infered from the parameters of the
test method and the arguments are coerced to these types
before being passed to the test

I Coercion of basic primitive types comes out-of-th-box
I Custom coercion for any type can be written



Zohhak - Coercions

For more complex types we have to teach zohhak how to convert
from String (the String in data annotation) to our type

@Coercion

public Person toPerson(String input) {

String[] split = input.split(";");

Person person = new Person(split[0], split[1]);

return person;

}

We can then use Person in our tests

@TestWith({

"John;Doe",

"Frank;Perceval"

})

public void testWithPerson(Person person){



Test Coverage

In computer science, test coverage is a measure used
to describe the degree to which the source code of a
program is tested by a particular test suite.

I High coverage does not necasarilly mean that your project has
quality tests (there could be tests with no assertions, hardly
maintainable tests . . . )

I However, low coverage can point to parts of insufficiently
tested code which has a high chance of containing all kinds of
bugs and other problems



Types of Coverage

Consider this code:

public int doIt(boolean c1, boolean c2, boolean c3) {

int x = 0;

if (c1)

x++;

if (c2)

x--;

if (c3)

x+=3;

return x;

}



Types of Coverage

I Statement coverage
I Check that all statements in the code are executed
I For 100% coverage single test input required (true, true, true)

I Branch coverage
I Check that all possible results of conditions occur
I For 100% coverage two test inputs required (true, true, true),

(false, false, false) or any other combination with both true

and false for all conditionals

I Path coverage
I Every possible path through the code is executed
I For 100% coverage all possible combinations of inputs (and

values for member attributes if there were any) must be used,
thats 8 cases for this example



TDD - Overview
Test Driven Development: By Example, Kent Beck

Test-driven development (TDD) is a software
development process that relies on the repetition of a
very short development cycle: first the developer writes
an (initially failing) automated test case that defines a
desired improvement or new function, then produces the
minimum amount of code to pass that test, and finally
refactors the new code to acceptable standards.

I Quickly add a test.

I Run all tests and see the new one fail.

I Make a little change.

I Run all tests and see them all succeed.

I Refactor to remove duplication.

I Repeat . . .



Tennis Game Kata - Scoring

I Each player starts with 0 points

I The scoring then goes like this 0 → 15 → 30 → 40

I If A has 40 and scores, and B doesn’t have 40, A wins

I If both have 40 and A scores, A has Advantage

I If A has Advantage and scores, they win

I If A has Advantage, B has 40 and scores, both are at 40 again

I Scores are written in the format ’A - B’, e.g. ’30 - 15’

I When A has Advantage, the score is written as ’A - 40’

I If scores are equal, e.g. both have 30, it is called ’30 all’

I If both players have 40 points, it is called ’deuce’



Tennis Game Kata - Task

I Try to not skip ahead and always have passing tests for
existing functionality before moving forward

I We want to create a TennisGame which has scoredA(),
scoredB() and showScore()

I The show method should return score in format defined
above, if there is a winner it gives ’winner: A/B’

I Also if there is a winner already and either scoredA() or
scoredB() is called, exception should be thrown


