
Seminar 8 - Mockito

PV260 Software Quality

April 9, 2015



Mocking in Unit Testing

I Unit testing is simple for classes with no dependencies

I How do we test an object which depends on many other
things (many of which might not even be implemented yet) ?

I We create stand-in objects which share interface with the
required dependency

I Inside, instead of some complex behavior, these are hard-wired
to work in the one particular test case

I We can create these substitutes either by hand or use a
mocking framework



Mockito
http://mockito.org/

We decided during the main conference that we
should use JUnit 4 and Mockito because we think they
are the future of TDD and mocking in Java.
(Dan North - author of BDD)

I Interaction verification

I Input stubbing (data, exceptions. . . )

I Test Spy wrappers

I Mock both classes and interfaces

I Lightweight API



Working Example

I Model for an app doing basic math on Roman numerals

I We only care about the inner logic, the UI doesn’t concern us



Working Example - Structure

I We already have the design done, all interfaces are prepared

I DataInput and DataOutput represent the textboxes

I Clicking the Calculate button calls the solve method



Working Example - Structure

I Lexer tokenizes the raw input

I Number tokens are translated by the RomanTranslator and
sent to EquationBuilder

I Tree representation of the equation is assembled

I The decimal result is translated to Roman numerals

I Formated result is sent back to output



Test Doubles Hierarchy
http://xunitpatterns.com/Test%20Double.html

I There are many types of stand-in objects used in testing

I Each plays a different role, the simplest type possible should
be used (That is dont use a Mock if all you need is a Dummy)



Dummy Object
RomanCalculatorTest#testExceptionFromInput

I We need to provide real object (that is not null), but at the
same time we know it will never be used during the test

I Even better, we pass null to the test which helps readability
as we are clearly signalling that the value is not used

I This is of course not possible with null-checks in constructors,
so we have to use dummies instead.



Test Stub
RomanTranslatingTokenStream#testConvertsToDecimalTokens

I We want one of SUT’s dependencies to provide specific input
to the SUT when queried



Test Spy
RomanTranslatingTokenStream#testRecognizesRomanNumeral

I We want to know SUT’s interacts with one of its dependencies
I The spy only records the interaction, it is checked manually



Mock Object
RomanTranslatingTokenStream#testCorrectInputSingleOperator

I Similar task as Test Spy, but checks the validity of SUT’s
interaction with the mock on the fly



Fake Object
No Example

I Has the same functionality as its real counterpart, but
implements it in a more test friendly way

I e.g. an in-memory database instead of disk-based one



Task 1

I Write tests for the class exercise/spy/ComplicatedClass
I Test the following scenarios:

I Input for the doSomethingUseful method is int lower or equalt
to 10, thus nothing is logged

I The input is 11 or more, thus there are two invocations on the
logger, setLevel and log

I As a bonus try to verify that the methods on the Logger are
called in this exact order



Task 2

I Write tests for the class exercise/stub/EmployeeManager
I Test the following scenarios:

I The Database provides valid result, at least two rows
I The Database throws an exception
I The Database returns some invalid data. These are thrown

away, however all valid data are still processed


