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Abstract—Architecture-based software reliability analysis
methods shall help software architects to identify critical
software components and to quantify their influence on the
system reliability. Although researchers have proposed more
than 20 methods in this area, empirical case studies applying
these methods on large-scale industrial systems are rare. The
costs and benefits of these methods remain unknown. On
this behalf, we have applied the Cheung method on the
software architecture of an industrial control system from
ABB consisting of more than 100 components organized in
nine subsystems with more than three million lines of code.
We used the Littlewood/Verrall model to estimate subsystems
failure rates and logging data to derive subsystem transition
probabilities. We constructed a discrete time Markov chain as
an architectural model and conducted a sensitivity analysis.
This paper summarizes our experiences and lessons learned.
We found that architecture-based software reliability analysis
is still difficult to apply and that more effective data collection
techniques are required.

Keywords-Software reliability growth, software architecture,
Markov processes

I. INTRODUCTION

Software reliability is defined as the ability of a soft-

ware system to operate without failures. Analyzing software

reliability during early design stages bears the potential

for significant cost savings of future testing activities. Re-

searchers have proposed several architecture-based software

reliability analysis (ABSRA) methods [1]. They allow to

predict system reliability based on formal, stochastic soft-

ware models (e. g., Markov chains). Using these models,

developers can identify critical software components and

quantify their influence on the overall system reliability to

optimize future testing activities.

ABB is continuously developing new release of indus-

trial control systems. Engineering the software architectures

of these systems for high reliability is a major priority.

Thus, applying an ABSRA method based on failure data

taken from former systems can potentially support design

decisions for new systems. However, empirical research on

ABSRA methods is sparse and the true benefits are widely

unknown. A major issue of these methods is the complicated

data collection for the models (i.e., determining component

failure rates and transition probabilities), which is time-

consuming and error-prone.

Multiple surveys [1]–[3] describe more than 20 methods

for ABSRA. Only a handful of case studies have been

reported for these methods, most of them under laboratory

conditions and performed by the authors of the methods

themselves [4]–[9]. The systems under study are typically

small (<40 KLOC) and therefore avoid many practical

problems for large-scale systems. Most of these studies

use debatable techniques for determining component failure

behavior (e. g., manual fault injection), and none of them

provides a cost-benefit analysis. The validation is inherently

difficult, because it is hard to measure system reliability.

Thus, it is hard for third party users to assess whether the

effort for such an analysis is justified.

This paper presents an industrial case study on ABSRA.

We construct a coarse-grained discrete-time Markov chain

(DTMC) model [10], [11] for a large scale industrial control

system (>3 MLOC) comprising more than 100 components,

which are structured into 9 subsystems. The system has

been in use by customers for several years. We estimate

the current subsystem failure rates from customer failure

reports of the system using the Littlewood/Verrall software

reliability growth model (SRGM) [12], which provided

the best fit to the available data. To determine transition

probabilities, we have instrumented the system and filtered

large amounts of logging data. With the model, we perform

a sensitivity analysis identifying the components critical for

system reliability. Finally, we evaluate the model for its

suitability to support design decisions for future releases of

ABB control systems.

The contribution of this paper is an independent, em-

pirical evaluation of ABSRA methods. To the best of our

knowledge, the system under study is the largest system

that any of these methods has ever been applied to. In

contrast to former studies and due to the size of the system,

we use different data collection techniques, provide insight

on the applicability of the ABSRA, and perform an initial

cost/benefit analysis. We discuss the advantages and draw-

backs of different data collection techniques proposed in

literature. Our study can help other practitioners in assessing
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the benefits of these methods and direct future research to

build better data collection techniques.

The paper is structured as follows. Section 2 surveys

related work, before Section 3 provides a rough overview

of our case study and characterizes the system under study.

Section 4 describes the implementation of the case study

in detail and discusses the advantages and drawbacks of

different data collection techniques. Section 5 presents the

results of the case study and a sensitivity analysis. Section 6

discusses the validity of the model, the overall applicability

of the method, an initial cost-benefit analysis, and lessons

learned. Section 7 concludes and sketches future work.

II. RELATED WORK

Seminal research on software reliability engineering fo-

cused on system testing and system-level reliability growth

models [13], but did not take software architecture into

account. However, multiple recent surveys ( [1]–[3]) review

more than 20 methods for ABSRA (e. g., [11]). Gokhale [2]

pointed out in 2007 that ”very little effort has been devoted

to the validation of ABSRA techniques”.

To assess the situation with more detail, Tab. I compares

case studies with goals similar to ours. The following para-

graphs describe the techniques used in these case studies.

Table I
OVERVIEW OF EXISTING CASE STUDIES

Name Year Language Lines of Code Components /
Subsystems

SHARPE [4] 1998 C 35,000 30 / -
ESA [5] 2001 C 10,000 3 / -
GCC [7] 2005 C 350,000 13 / -
SMS [8] 2006 C/C++ 13,000 15 / -
IDN [9] 2006 C 11,000 6 / -
ABB CS 2010 C++ > 3, 000, 000 > 100 / 9

Gokhale et al. [4] analyzed the SHARPE tool (35 KLOC,

C-code) for stochastic modeling by constructing a DTMC.

For estimating component failure rates, they used the en-

hanced non-homogeneoues Poisson process model that in-

corporates the failure intensity of a component (i.e., 4 errors

per 1 KLOC in this study) and the expected time spent in

each component. The latter was determined by profiling the

system with the ATAC tool while executing 735 test cases

from a regression test suite. The study found that the system

reliability could be increased from 0.9903 to 0.9950 if the

fault density per component was reduced from 4 to 1 error

per 1 KLOC.

Goseva et al. [5] performed a case study on a system (10

KLOC, C-code) of the European Space Agency (ESA). They

divided the system into three subsystems and constructed

a DTMC according to Cheung [11]. For estimating failure

probabilities, faults discovered during integration testing and

runtime were re-inserted into the software. The authors then

executed random tests and estimated the reliability of each

component with the ratio of failed tests versus successful

tests. Finally, they used the DTMC model in a sensitivity

analysis.

The largest case study reported in literature so far is

also from Goseva et al. [7]. Here, the authors divided the

implementation of the GCC C-compiler into 13 software

components. They executed 2126 test cases from GCC 3.3.3

on GCC 3.2.3, so that 111 failures could be detected in the

old version of the software, for which test cases had been

added in the new version. The authors used the tool gprof

to record a number of execution profiles into a database

and filtered this data to determine transition probabilities

between components. Finally, a DTMC was constructed

and solved. The authors compared the system reliability

prediction (0.9997) to the actual system reliability (0.9724).

The same authors applied a similar approach on a smaller

system (11 KLOC) [9].

Wang et al. [8] analyzed the so-called stock market system

(SMS), which is widely used in industry (13 KLOC, C/C++

code, 15 components). They executed 13,596 test cases

against the system and observed 121 failures, which they

mapped to component failure probabilities. They recorded

transitions between components via manual instrumentation

of the the code and derived transition probabilities from

this data. The authors constructed a DTMC and predicted

the system reliability. None of the existing studies analyzed

how the system under study could be improved and what

the benefits of the model were.

Compared to existing case studies, our study analyzes a

significantly larger system and thus offers more insight into

the industrial applicability of ABSRA methods. Due to the

size of the system, we use different methods for determining

component failure probabilities and transition probabilities

as in former studies. We put more emphasis on exploiting the

analysis results and perform a sensitivity analyses. Our focus

is on determining the cost-effectiveness of these methods.

Several other studies analyzed failure behavior in large

software systems, but had other goals than ABSRA. Kanoun

et al. [14] estimated the failure rates of four components

in a telephone switching system but did not incorporate

software execution profiles. Podgurski et al. [15] partitioned

the execution profiles of different systems (1-17 KLOC) and

combined them with non-architectural reliability prediction

models. Ostrand et al. [16] predicted fault-prone files in an

inventory control system (500 KLOC) without involving the

software architecture.

Some recent approaches have advanced the model expres-
siveness in ABSRA. Reussner et al. [17] computed com-

ponent reliabilities as a function of reliabilities of required

services. Cheung et al. [18] proposed a new method for

determining component reliabilities by constructing state

models with explicit failure behavior. Brosch et al. [19]

introduced parameter dependencies into component reliabil-

ity models. However, these approaches provide only limited

empirical validation.
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III. METHOD FOR ARCHITECTURE-BASED RELIABILITY

ANALYSIS

This section describes the objectives of our case study,

sketches the system under study, and provides a quick

overview of the activities performed. Details about the data

collection steps follow in Section IV, while details about

the sensitivity analyses with the constructed model follow

in Section V.

The objective of our study was to assess the applicability

(i. e., in terms of learnability, modeling effort, tool support,

etc.) of architecture-based software reliability engineering

methods to improve architectures and reliability of software

systems continuously being developed at ABB. We decided

to construct an architectural reliability model based on the

current version of one of these systems to evaluate different

architectural alternatives for future releases of the system.

The current version of the selected ABB control system

(CS) manages production processes for several industries

(e. g., power generation, pulp and paper). This ABB CS is

in customer use for several years. Customer failure reports

can be used for modeling. The core of the system consists

of more than 3,000,000 lines of C++ code and is structured

into 9 subsystems, which are decomposed into more than

100 components. Because we want to start with a cost-

effective model and because subsystem failure reports are

available, we decided to construct a coarse-grained model

on the subsystem-level, which can be refined later.

We perform our investigation in the context of the EU-

project ’Quality Impact Prediction for Evolving Service-

oriented Systems’ (Q-ImPrESS). For reliability analysis,

the project’s method requires constructing a discrete time

Markov chain (DTMC) according to the Cheung model [11].

Such a model reflects the components of the CS and their

call relationships. As input it requires component failure

rates and component transition probabilities.

Figure 1 depicts our method for collecting the necessary

input data. First, we obtained access to the documentation

to incorporate existing architectural documentation (step 0).

To derive component failure rates (steps 1-5), we exploited

the system’s bug tracker and fitted a SRGM against failure

report data for each subsystem (Sec. IV-A). To derive

component transition probabilities (steps 6-11), we executed

the system using two representative workloads and exploited

internal logging facilities of the system to detect control flow

among the subsystems (Sec. IV-B). The resulting DTMC is

analyzed using the ’Probabilistic Symbolic Model Checker’

(PRISM) [20] (step 12) (Sec. IV-C).

IV. IMPLEMENTATION OF THE CASE STUDY

This section details on the estimation of failure probabil-

ities (Sec. IV-A), the derivation of transition probabilities

(Sec. IV-B), and the creation of the model (Sec. IV-C). For

each activity, we discuss different data collection methods

known from literature.

1. Obtain
Bugtracker Access

Bugtracker
Access

0. Obtain
Documentation 6. Install System

Architecture
Documentation

Installed
System

2. Analyze
Literature

Selected
SRGM

3. Filter Data
(EXCEL)

Failure Reports
per Component

4. Apply SRGM
(CASRE)

Failure Rates
per Component

5. Validate
Data

7. Define
Workload

Runnable
System

8. Configure
System Logging

Instrumented
System

9. Run System,
Record Logs

Execution
Profiles

10. Process Data
(self-coded scripts)

Transition
Probabilities

12. Analyze
DTMC (PRISM)

11. Validate
Data

Evolution Scenario Reliability,
Sensitivity Analyses

Figure 1. Process Model of the Case Study

A. Estimating Component Failure Rates

The DTMC model to be used for predictions requires

component failure rates. Literature provides several methods

to obtain component failure rates (see also [1]–[3], [18]):

• Defect prediction based on code metrics [21], [22]:
compute code metrics, such as lines of code, inheritance

depth, or cyclomatic complexity to estimate the number of

component defects (e. g., four defects per 1 KLOC [4]).

Given source code this method is easy to execute, but

its validity is not proven [22] and even debated in litera-

ture [21].

• Reliability growth modeling [13], [23]: assume that

software reliability grows over time due to bug fixes and

extrapolate curves of field failure report dates to predict

future failures using statistical regression. Many SRGM

are available from literature [13]. However, this method

is reasonably applicable only on already completed or

almost completed software. Applying the method on indi-

vidual components is often not possible because of limited

failure reports.

• Random/statistical testing [24]: generate random test

data for individual components and incorporate the num-

ber of successfully executed tests into a statistical failure

rate estimation model. This method is applicable to any

type of software and does not require source code or

historical data. However, the effort for generating and

executing a sufficient number of test cases is high and

the method might not scale. Because of inter-component

relationships, it is difficult to test components in isolation.

• Fault injection [4], [5]: manually insert faults into the

source code or use test cases from fixed bugs on former

versions of the software. The failure rates can then be

estimated as the number of failed vs. the number of
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(a) Monotonic growth
from begining

(b) Alternating growth
and decrease periods

(c) Growth after
monotonic decrease

Figure 2. Three exemplary cases summarizing the reliability characteristics
encountered in most of the subsystem of our study

successful test case executions. This method is accurate

for former versions of the software and the effort can

be low if suitable test cases are available. However, this

method does not determine the current component failure

rate. Additionally, it is often difficult to attribute test case

failures to component faults [7].

• Explicit failure modeling [18]: construct a state-based

behavior model per component explicitly including manu-

ally specified transition probabilities for failure states. To

create such a model, user requirements, domain knowl-

edge, and/or experience with similar software can be

used. While this method is useful for newly developed

components, it requires manual estimation of failure rates

and its accuracy is not proven.

ABB systematically records all problems that a software

product experiences during its entire life cycle in a bug

tracker database. Thus, from our point of view, a failure

occurs when the developer and/or the end user reports a

failure. Given the availability of such data, we decided to use

a SRGM to estimate the failure rates of single subsystems.

In the following, we detail step 1-5 from Fig. 1.

Step 1: The ABB CS bug tracker database includes issue

reports with different types of severity. For each report, it

includes title, description, status, action performed (e. g.,

change applied, duplicate, forwarded), affected subsystem,

and further information.

We only accounted failures that were fixed and assumed

that the corresponding defects causing the failures were

located in the same subsystem because we lacked further

data about which parts of the code have been updated to

fix a bug. Note that this simplifying assumption might have

introduced a deviation into our model [7].

Step 2: We decided to use the IEEE Std. 1633-2008

”Recommended Practice on Software Reliability” [23] for

selecting a suitable SRGM. We did a preliminary analysis

of the failure behavior of a number of components of the

ABB CS and found that the evolution of the time between

failures (TBF) vs. failure count can be summarized in three

exemplary cases (Fig. 2).

Assuming a stable usage profile, the behaviors depicted in

Fig. 2b and Fig. 2c suggest that new errors are sometimes

Figure 3. Time between failures of subsystem 8 (smoothed)

introduced in the component during a repair action, thus

reducing its reliability. This shortens the time before next

failure and consequently increases its failure rate. Therefore,

an SRGM needs to be selected that takes the characteristics

of these failure rates into account.

In general, SGRM are selected via a quantitative or

qualitative approach: The quantitative approach uses well-

known statistical tests (e. g., chi-square or Kolmogorov-

Smirnov) to compute the goodness-of-fit of each model.

To reduce the complexity, we decided to use a single type

of SRGM for all subsystems, which we selected according to

industry affinity of former applications as suggested in IEEE

Std. 1633-2008. The Littlewood/Verrall model [12] was

developed from a large SCADA/DCS system (Supervisory

Control and Data Acquisition / Distributed Control System)

and is the only calendar TBF SRGM that accounts for

both operational and imperfect fault removal uncertainty.

The model also exhibited good fit to TBF data during the

preliminary exploratory analysis and was therefore selected

for further modeling.

Step 3: We filtered the failure reports from the bug tracker

database according to the following criteria. We selected

only one release, and for this release, we selected only ”criti-

cal” and ”high” severity failures, which are defined similar to

Severity #1 and #2 in [23]. Failures in these two categories

cause downtime that affects the overall availability of the

system. In order to comply with the quality of assumption

that ”faults are immediately removed when failures are

observed” [23], we selected only those failures for which

a change was applied. Therefore, we only considered eight

of the nine subsystems as there were no critical failures

reported for one of the subsystems.

Another assumption is that the component being modeled

is somehow ”stable”, i. e., it can run for some time before

failing. This means that compilation and crude execution

errors have been already eliminated during testing. Thus,

only subsystem failure records where the failure submit date
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Figure 4. Failure intensity of subsystem 8 showing the original points and
fitting curve

is greater than or equal to the system release date were

selected.

Step 4: We chose the ’Computer Aided Software Reliability

Estimation’ tool (CASRE) [25] to perform our failure rate

estimations. In the following, we describe exemplary how

we applied the methodology for subsystem 8 of the ABB

CS.

Figure 3 shows a CASRE plot of its critical and high

failure history (smoothed). Notice that the unit of the time

between failures has been intentionally obfuscated for con-

fidentiality reasons.

The evolution of TBFs corresponds to the case of Fig. 2b.

We were able to fit the whole dataset without filtering data at

5% significance level with the quadratic Littlewood/Verrall

model (LV-Q). Fig. 4 shows a plot of the failure intensity.

Finally, the current failure intensity estimated by the

model is the value used to annotate the failure rate of sub-

system 8. We applied the same procedure to all subsystems

of the ABB CS. To assess the influence of the growth model

on the overall result, we also created estimates for each

subsystem based on a simple average model (number of

failures after release per time unit).

Step 5: To get a first hint of the plausibility of the subsystem

failure rates predicted by the SRGM, we searched for a

correlation between code metrics and failure rates [22], [26].

We compared the component failure rates against the lines

of code per subsystem and the arithmetic average cyclomatic

complexity per method [27].

Spearman’s rank correlation coefficient ρ is low for lines

of code vs. failure rate (ρ = 0.1428, p = 0.7825), but

moderately high for average cyclomatic complexity vs. the

failure rate (ρ = 0.6428, p = 0.1389). The slight correla-

tion between complexities and failure rates gives us some

confidence that the failure rates predicted by the SRGM

are indeed representative for the current failure rates of the

system.

B. Obtaining Transition Probabilities

The DTMC model additionally requires transition proba-

bilities between software components. The following meth-

ods have been used to determine these values in former case

studies [1]–[3], [7]:

• Exploiting design documents [2]: derive the number

of component transitions from design documents (e. g.,

sequence or activity diagrams). This method is benefi-

cial, when no code is available for testing. However,

architectural design documents often only contain static

dependencies between components. Furthermore, deriving

transition probabilities from models is usually a manual

process and can be time-consuming.

• Profiling [4], [7]: run the system with a representative

workload and use a profiling tool, such as gprof, JVMPI,

VTune, or ATOM to derive call graphs and transition

probabilities. As the amount of data produced by a profiler

is typically high (on the level of functions), the data needs

to be filtered to contain only component transitions as

well as control flow start and end points, which can be

time-consuming [7]. This method can only be applied to

already implemented systems, but the resulting transition

probabilities can be very accurate if the workload used

was representative.

• Manual code instrumentation: insert manual measure-

ment probes into the code to log component transitions

and execute the system with a representative workload.

This method is similar to profiling. In contrast to profiling,

the effort for setting up the execution is much higher

because component transitions have to be identified in the

code. The effort for filtering the logging data, however, is

significantly reduced.

In our case study, we decided to use the internal logging

facilities of the ABB CS, which can be seen as a special

case of profiling. The advantage of using the internal logging

facilities is that they are capable of only logging subsystem

interactions. The disadvantage, however, is that internal

logging is not available for all components. We did not use

design documents because the existing ones only detail static

dependencies. Manual code instrumentation was deemed too

expensive because the code base is large and the subsystem

transitions cannot be automatically identified. The following

describes steps 6-11 shown in Fig. 1.

Step 6: First, we setup the CS, two additional servers for

providing data, and three client applications to access the CS.

Setup included activities such as installation, configuration,

and engineering.

Step 7: To run the system, we had to define a load profile.

We decided to use two realistic load profiles for single

customers based on two typical use cases. They provide an

approximation of different customer load profiles. One of

these profiles focuses on the engineering of the industrial

process while the other one concentrates on the steady state
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of the continuously running process. These load profiles

have been identified with the help of domain experts and

are aligned with test profiles for the system.

Step 8: Before running the application, we configured an

ABB development tool for logging CS system calls to record

only interactions between subsystems. This involves identi-

fying the components responsible for subsystem transitions

and adjusting the log detail level for these components. Each

subsystem transition represents a DCOM call between two

processes. Each log entry contains information about which

subsystem called which other subsystem.

Step 9: We executed each profile for two days. Running

a load profile includes starting all applications (i. e., the

CS, the additional servers, the logging application, and

all clients), performing the initial setup, and operating the

system. In profile 1, operating comprises engineering of the

system as well as observing data and interacting with the

system. In profile 2, operating of the system only consists

of observing data and interacting with the system. Both load

profiles resulted in a five-digit number of invocations, and

the two log files generated in this step had a size of 2 GB

each.

Step 10: The created log files were then passed to a

self-coded script, which generates the list of subsystems

involved, the transitions between these subsystem, and the

probabilities of these transitions. Additionally, it adds an

initial and a final state to indicate the beginning and the

end of the executions.

The subsystems that are connected to the initial state

and to the final state respectively are determined by exam-

ining their inner components. Executions start and end in

components. Components that start an execution have more

outgoing than incoming edges, and components that end an

execution have more incoming than outgoing edges. As a

subsystem has more than one component, it can start and

end executions at the same time.

For each of the transitions involving the initial and the

final state, the number of occurrences is stored. Then,

for each subsystem, the number of transitions from the

initial and to the final state is determined by summing

up the corresponding transitions of their components. The

distribution between the transitions of the initial state and

the transitions of the final state respectively is determined

by the proportion of the corresponding transitions. Figure 5

shows the result of script for the load profile 1. The result of

load profile 2 is similar, but contains some less transitions

and different transitions probabilities.

Step 11: We validated the data by examining the different

paths through the model and matching these paths to the

operations that we actually executed. During this process,

we were supported by two CS experts.
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Figure 5. Subsystem transition probabilities for load profile 1

C. Constructing the Model

Step 12: To construct the DTMC, we applied another self-

coded script, which takes as input the failure rates of the sub-

systems and the probabilities of the transitions between the

subsystems. The subsystems become states in the DTMC.

Each of these states denotes that control currently resides

within the corresponding subsystem.

To account for failures, the script additionally adds a

failure state and modifies the transition probability matrix P
of the DTMC as follows. The former transition probability

pij between subsystems i and j is adjusted to (1− fi) ∗ pij ,

where fi is the failure rate of subsystem i. For state i
representing subsystem i a transition to the failure state with

the probability fi is introduced.

The system reliability can then be calculated by the

probability of not reaching the failure state [11]. For the

sensitivity analysis, we created 8 different PRISM models.

For each subsystem, we created a model where the failure

rate for this subsystem was provided as a range around

the actual failure rate and the failure rates of the other

subsystems were the actual failure rates.

V. CASE STUDY RESULTS

Once an architectural reliability model has been created,

literature suggests the following possibilities for exploiting

the models [1], [2], [11]:

• Estimate system reliability [1]: calculate the probability

of reaching the failure state to determine the overall

system reliability. Due to the assumptions for determining

the failure rates and transition probabilities, it is doubtful

that this value is observable by customers. However, the
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Table II
SLOPES FOR THE SYSTEM FAILURE RATE CHANGES BASED ON SUBSYSTEM FAILURE RATE CHANGES

Subsystem 1 2 3 4 5 6 7 8

Profile 1 (average) 0.632644211 0.416067699 0.026638276 0.374317396 0.030238657 0.024448829 0.015708493 0.124248525
Profile 1 (LV-Q) 0.648495812 0.418800648 0.026640199 0.382279624 0.031138266 0.024706072 0.016092873 0.126920613

Profile 2 (average) 0.633371365 0.416984293 0.026440363 0.374073605 0.029502677 0.022422224 0.014346664 0.125209404
Profile 2 (LV-Q) 0.649247077 0.419700528 0.026440378 0.382053542 0.030408576 0.022545357 0.014697850 0.127869293

value could be used as a goal for testing activities when

implementing a system based on the model.

• Perform sensitivity analyses [2]: by varying the failure

rates and transition probabilities and subsequently calcu-

lating system reliability, the architectural model allows to

identify the most critical components. This information

can improve test budgeting by allocating more testing

efforts to critical components. Also, the most critical

components are most effectively used as starting points

to introduce special fault tolerance measures (e. g., self-

checks, recovery measures, n-version programming).

• Assess costs of bugs per component [11]: Cheung

suggested to assign penalty costs to each component

to quantify the effect of an error in that component.

This information can then be used in system-wide cost

calculations for errors.

• Evaluate design alternatives [2]: by manipulating the

architectural model or introducing additional states or

transitions based on estimations or experiences, different

architectural alternatives (e. g., exchanging components,

different allocations to hardware resource, changes in

the topology) could be evaluated. However, it is hard

for developers to quantify the reliability impact of most

changes. Additionally, the Markov model resides on a

high abstraction level and makes it hard to incorporate

many technical architectural changes.

With our DTMC model of the ABB CS architecture, we

analyze the overall system reliability and perform sensitivity

analyses. We do not provide the actual system reliability

value here for confidentiality reasons. Due to our way of

estimating failure rates, the system reliability predicted from

the model is lower than the reliability a specific customer

of the system would observer because we included failure

reports of all customers and not only failure reports of a

specific customer.

The validity of the predicted value is inherently difficult

to assess, as we cannot compare it with reliability measure-

ments. Comparing the value predicted from the DTMC with

the value predicted by the LV-Q model for the overall system

yields a deviation of 1.94 percent (profile 1).

The results of the sensitivity analyses are depicted in

Fig. 6. It shows the system failure rate over the individual

subsystem failure rates. We did not check the sensitivity

of system reliability to changing transition probabilities,

because these cannot be changed. Each small ’X’ at the

center of each line represents the failure rate from the

SRGM, while the line around the ’X’ represents the system

reliability from the sensitivity analysis by varying the failure

rate by ±10 points. The numbers located at the end of each

line indicate the number of the subsystem.

Figure 6. Sensitivity of the system failure rate depending on changes in
subsystem failure rates

Subsystem 8 and 6 have the highest failure rates, while

subsystem 5 has the lowest failure rate. The slopes of the

curves are a measure for the sensitivity of the system failure

rate to the subsystem failure rate. Tab. II summarizes these

slopes for each subsystem and for the two load profiles. It

contains the average prediction model and the LV-Q model.

Subsystem 1 is most sensitive for the system reliability

(slope ≈ 0.65), which appears plausible because it is respon-

sible for processing most of the data in the CS and is called

most often. Subsystem 6, which is used by many subsystems

(cf. Fig. 5), does not contribute much to the overall system

reliability. Compared to other subsystems, this subsystem is

called only a limited number of times and therefore has a

limited impact on system reliability. For subsystem 8, we

had estimated the highest failure rate, but it is in fact also

only a minor driver for system reliability.

The evaluation of different design alternatives for future

releases of the ABB CS is difficult. In the last few versions

of the system, there have hardly been any changes on the

subsystem level. A more refined model would be needed to

evaluate the impact of different component topologies on the

system reliability.

VI. DISCUSSION

In the following we discuss the validity of the model, the

applicability of architecture-based software reliability anal-
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ysis methods at their current maturation level in general, an

initial cost/benefit analysis, and additional lessons learned.

A. Validity of the Model

Our DTMC model is valid if it can make predictions that

can be verified in reality via measurements. As discussed

before, it is hard to use the model to extrapolate into

the future, because its abstraction level prohibits modeling

many relevant architectural alternatives. For example, the

model currently does not consider concurrency explicitly,

and therefore we can hardly assess any alternatives for

parallel executions. The model does not reflect the underly-

ing technologies (e. g., middleware, persistency frameworks,

interprocess communication) explicitly, so that it would be

difficult to encode the different reliabilities of the different

technologies into the subsystem failure rates.

However, we have tried to validate the individual parts

of the model. The subsystem failure rates have been deter-

mined with statistical significance. A limited correlation to

cyclomatic complexity could be established. The transition

probabilities as well as the sensitivities have been discussed

with experts of the system. The system reliability predicted

by the model has been compared to the estimated of a

system-wide SRGM. In conclusion, we deem the current

model sufficiently accurate for the current state of the

system, but are reluctant to make any future predictions

based on it.

B. Applicability of the Method

The application of a method by third party users requires

a documented and repeatable process as well as matured

tools. In our case, we were not involved in the creation of

reliability growth models, profiling tools, or Markov chain

analyzers, and are therefore third party users.

We deem ABSRA still difficult to apply for non-experts,

because there are many variation points (e. g., for deter-

mining failure rates) and limited documented experience.

Information about different data collection techniques and

prediction methods has to be gathered from various research

papers. The method requires statistical skills.

ABSRA is applicable only in restricted cases when de-

signing a new system based on a model from a legacy

system. Using the method in green-field development (i. e.,

creating a new system from scratch) is critical, because

failure data and transition probabilities would have to be

guessed, which is error-prone. Applying ABSRA for the

incremental evolution of legacy systems would be another

viable option.

ABSRA needs to be tailored to the available failure and

control flow data. There are no standard tools for determin-

ing component transition probabilities from large amounts

of profiling data. As in other studies [7], we had to code

our own data filtering scripts. However, other tools, such as

CASRE or PRISM, are freely available and appear mature to

us. They are easy to learn as comprehensive documentation

is available.

# Activity Name Best Likely Worst
0 Obtain Documentation 2 4 6
1 Obtain Bugtracker Access 2 6 16
2 Analyze Literature 16 40 56
3 Filter Data 8 16 24
4 Apply SRGM (CASRE) 4 6 8
5 Validate Data 4 6 8
6 Setup System 8 16 40
7 Define Workload 4 8 24
8 Configure System Logging 12 16 20
9 Run System Record Logs 2 8 16
10 Process Data 40 80 100
11 Validate Data 4 8 24
12 Analyze DTMC (PRISM) 16 24 40

Sum in person hours 122 238 382
Sum in person months (168h) 0.73 1.42 2.27

Table III
EFFORT ESTIMATIONS (PERSON HOURS) FOR ACTIVITIES IN ABSRA

C. Cost/benefit Analysis

Once the third party applicability of a prediction method

has been demonstrated, its claimed benefits (e. g., saving

costs in future testing activities) need to be compared to its

expected costs. No other study has reported on the costs for

ABSRA [1]–[3]. In Tab. III, we provide a cost estimation

(in person hours) for the steps shown in Fig. 1 under the

assumption that we would repeat these steps on a similar

system. Further replicated studies have to validate these

estimations.

In our case, the highest efforts are required for analyz-

ing the literature and processing the data obtained from

executions of the system. Other studies (e. g., [7]) reported

unquantified high effort for running test cases on the system

and mapping system failures to component defects. In all

reported cases, however, data collection required more effort

than model creation.

Quantifying the benefits of ABSRA is inherently difficult,

because the benefit might require years to become visible

during future development. We can only qualitatively eval-

uate the expected benefits of architecture-based reliability

prediction:

• Saving future testing costs: The sensitivity analyses

allows for future test prioritization. More sensitive com-

ponents could receive more test efforts. A fixed testing

budget could be more effectively distributed among the

components. This could save testing costs by achieving a

desired system reliability earlier or make the system more

reliable by spending the given budget more effectively.

Comparing cost calculations for test effort distributions

would be desirable. However, test effort distribution is

usually also driven by other factors (e. g., requirements

testing, code coverage).

• Decreasing maintenance costs: Future maintenance

costs could be lowered because a higher system reliability

would potentially result in fewer bug fixes after release.
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In the ideal case, the architecture of a system could be

optimized for software reliability and architectural design

decisions could be supported quantitatively by predic-

tions. The architecture could be engineered to support

anticipated future evolution scenarios without lowering

reliability. As architectural decisions have a fundamental

impact on the system, the potential for cost savings

could be very high. However, the currently coarse grained

models do hardly allow this kind of analysis.

• Saving costs with other analyses: The built models and

the data collection methods could be exploited for differ-

ent kinds of analyses (e. g., performance prediction, main-

tenance prediction, cost prediction). The models could

allow further simulations for future evolution scenarios.

This would bring a potential for costs savings with respect

to other non-functional properties.

D. Lessons Learned
Additional lessons learned while conducting our case

study are summarized in the following:

• Main obstacle is data collection: Major efforts for

constructing the DTMC have to be spent for input data

collection. In comparison creating and solving the model

is negligible. The method has to be tailored to the system

under study and the available data. Besides the technical

challenges when processing large amounts of data there

are also political issues in data collection, as developers

are reluctant to share sensitive information, such as failure

data. Future research should focus more on data collection

techniques than on model solution techniques. There

could be tool sets for analyzing specific classes of systems

(e.g., Java EE, .NET).

• Influence of changes to the model are different: The

system reliability predicted by our model strongly depends

on the subsystem failure rates and the placement of initial

states, final states, and self-loops. However, the sensitivity

analyses is hardly influenced by the differences of the two

analyzed usage profiles or the different failure rate models

(e. g., average vs. LV-Q model). The ordering of the slopes

stay roughly the same under different failure rates or the

two usage profiles. This implies that the sensitivities are

mainly driven by the overall usage profile, but not the

failure rates.

• Accurate modeling is expensive: Usually, there are no

perfect data collection facilities for ABSRA for practical

systems. Data is distorted, needs to be filtered, and can

always be attacked for lack of validity. Thus, the resulting

models reflect the real system only to a certain extent,

and corresponding prediction results should be viewed

critically. More refined models are more costly. It is hard

to find a good trade-off between efforts for data collection

and possible benefits from a model.

• Current models are simplistic and hardly support ar-
chitectural design decisions: Current Markov models are

used because they are mathematically tractable and easy

to solve. Their high abstraction level however makes them

less useful for decision support. Besides prioritizing future

testing activities, hardly any architectural questions can

be answered. Future models should be more aligned with

architectural description languages (e.g., UML, AADL)

and better geared towards answering architectural ques-

tions. Exact numeric solutions might not be necessary.

The currently available computing power opens up many

possibilities for simulation approaches.

• No feedback for reliability improvement measures:
The models and tools do not provide guidance on how

to improve a system for example by introducing fault

tolerance measures or other architectural tactics. The use

of the models to improve future systems is still unclear.

• Existing empirical research in this domain is in-
sufficient: There are hardly any practitioner reports for

ABSRA to be found in literature. Most of the existing

case studies have been carried out on relatively small

systems under laboratory conditions, therefore avoiding

many issues for data collection in large-scale systems.

Future research should lay more emphasis on third party

usage of the methods to make them more robust.

VII. CONCLUSIONS

This paper presents a large-scale case study on ABSRA.

We constructed a DTMC model for an industrial control

system and performed a sensitivity analysis to identify the

most critical subsystems. We found that the main obstacle

for applying these methods in practice are missing data

collection techniques and missing cost/benefits calculations.

Applying this method only took approximately 2.5 person

months, but as we could not measure the benefits, we cannot

judge whether these efforts are appropriate. We think that

applying this method is not cost-effective as long as the

actual benefits cannot be measured.

Nevertheless, our study can still help both practitioners

and researchers. Practitioners gain a discussion on the advan-

tages and drawbacks of different data collection techniques

and can judge whether the effort for trying the methods

themselves could be justified. Researchers get new insights

on the problems when applying their methods to large-scale

systems.

Future research should focus on developing domain-

specific data collection tool sets to speed up applying the

methods. Models should be made more aligned with stan-

dard architecture description languages and geared towards

answering architectural design questions. More empirical

studies, third party applications, and replicated experiments

are needed to bridge the gap between theory and practical

application of ABSRA.
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