
Requirements and qualities
Martin Osovský

Motivation

• When you know exactly what to do, it is usually easy to do it.

• As an architect I often need quality requirements
• To be able to decide about the most important things

• To be able to VALIDATE architectural decisions

• Architecture is driven by qualitative requirements

• Many seemingly not tensible aspects of a product can be well defined
as quality requirements
• Like maintainability

• Or extensibility, time to market etc.

What is an requirement?

•A Stakeholder Valued System State under Certain
Conditions

• Key parts are
• There is a concrete Stakeholder

• His value in the product (e.g. what makes him happy with the product)

• System state defined exactly and in terms of the system

• Conditions, constraints and assumptions are explicitly stated

Evolving a process/product

Stakeholders

Values

Requirements

SolutionDeliver

Measure

Learn

Biggest problems with requirements

• Focus on “customer needs”

• No value in the requirements

• No clarity, nice words

• Focus on function (see non-functional requirements)

• Too much focus on testability

• No background (who and why?)

• No dependencies and relations (isolated requirements)

• No quality control over requirements

• No distinguishing between types of requirements

The worst problems

• Bad quality of top level key requirements
• Missed stakeholder, no values, no key requirements identified

• Mixing means and ends (“I need a brick” problem)
• Design in requirements

• No background

• No evolution with stakeholders

The value vs design

• That’s what I asked for!Why do you require a ‘password’ for Security!

• Against stolen informationWhat kind of security do you want?

• At least 99% chance they cannot break in
within 1 hour

How strong security against
stolen info are you willing to

pay for?.

• Yep.
So that is your real

requirement ?

• Of course!
Can we make
that official?

Types of requirements

• Functions are for free
• There is usually no clear value in the functions itself

• What the system does

• Quality requirements are the key
• They are not nonfunctional

• How well does the system does it

• Performance requirements

• Resource requirements (e.g. budget)

• Constraints
• Design constraints – explicitly stated by someone

Levels of requirements

Subsystem

Qualities Solution Functions

System

Qualities Solution Functions

Stakeholders

Values Solution Functions

Anatomy of an requirement

• Clearly there must be
• A name (or tag)
• Stakeholders
• Type (level, complexity, …)
• Dependencies (consists of, influences (positively, negatively)

• We use
• Ambition
• Scale
• Meter
• Targets and Benchmarks
• Constraints

Quantification and measurements

• Quality requirements must be quantified in order to be measured
• You cannot improve what you cannot measure

• You also don’t know that it got worse

• Not every requirement is quantifiable by itself

• Every requirement can be decomposed to quantifiable ones

• Quantification is done using Scales

• Measurement using Meters

Decomposition

• The high level requirements are usually Complex (not quantifiable)

• They can be decomposed to Scalar ones in an iterative process
(remember – learning)

• That gives a nice hierarchy

• Scalar requirements have a scale

• Examples:
• Security

• Usability

• Friendship, Love, Music, Poetry

Scales

• Every quality has at most one scale

• A quality with no scale is Complex and needs to be decomposed

• Scale consist of Qualifiers and Units (usually in a form of x per y)
• Examples

• Kilometers per hour (current speed)
• Usability.Intuitevness : % chance that defined [User] can successfully complete defined

[Tasks] Immediately, with no External help.
• Beauty : Average % of evaluation points using [Survey] given by defined [Experts] per

screen.
• It is suprising how many of these things can be googled

• Designing scales is an agile (i.e. learning) process and it’s fun
• Use <> brakets to delay a definition (fuzzy brackets)

The levels

• It is essential to have targets, bechmarks and constraints

Past

[Dec. 2010]

50 sec.

Goal

[April 2016]

15 sec.

Tolerable

[April 2015]

40 sec.

Function Attribute

The levels in more details

• Targets
• Goal : where we want to be
• Stretch : where we wish to be

• Benchmarks
• Past : where we are (were)

• Constraints
• Fail : the value is not there at all
• Survival : the value is at its lowest

• These numbers must be qualified like this
• Goal[May 2015, Desert, Expert User, Humidity:90%] = 99%

There must not be design in the requirements

• Only in the form of a
• Hypothesis

• Constraint

• All design given by the customer must be
• Treated as a Solution Idea (not required, suggested)

• And thoroughly investigated to know the background

• Examples
• The application is protected by a password

• The system shall use a loadbalancer

• The administrator will be notified by an SMS or email

Key abilities of an requirement analyst

• Know the key stakeholders (internal and external)

• Ask for the background (the real value needed)

• Filter out design (very difficult)

• Identify stakeholder values

• Map them to proper quality requirements

• Decompose these to scalar qualities

• Define scales for these qualities

• Gather facts, i.e. numbers about past (measuring) and desired values
(learning)

The whole process goes in circles

• Values, markers and stakeholders evolve

• We learn by measuring the product continuously

• Always have the wheel in mind:

Plan

DoCheck

Act

