eI

et e .

302 Programming Shared Address Space Platforms

Here, thread is the handle to the thread to be canceled. A thread may cancel itself
or cancel other threads. When a call to this function is made, a cancellation is sent to the
specified thread. It is not guaranteed that the specified thread will receive or act on the
cancellation. Threads can protect themselves against cancellation. When a cancellation is
actually performed, cleanup functions are invoked for reclaiming the thread data structures,
After this the thread is canceled. This process is similar to termination of a thread using the
pthread. exit call. This is performed independently of the thread that made the original
request for cancellation. The pthread_cancel function returns after a cancellation has
been sent. The cancellation may itself be performed later. The function returns a 0 on
successful completion. This does not imply that the requested thread has been canceled; it
implies that the specified thread is a valid thread for cancellation.

7.8 Composite Synchronization Constructs

While the Pthreads API provides a basic set of synchronization constructs, often, thereis
a need for higher level constructs. These higher level constructs can be built using basic'
synchronization constructs. In this section, we look at some of these constructs along with -

their performance aspects and applications.

7.8.1 Read-Write Locks

In many applications, a data structure is read frequently but written infrequently. For'
such scenarios, it is useful to note that multiple reads can proceed without any coher- . |
ence problems. However, writes must be serialized. This points to an alternate structure §
called a read-write lock. A thread reading a shared data item acquires a read lock o
the variable. A read lock is granted when there are other threads that may already haye ", "
read locks. If there is a write lock on the data (or if there are queued write locks), the
thread performs a condition wait. Similarly, if there are multiple threads requesting awﬁ”,”l 4
lock, they must perform a condition wait. Using this principle, we de :
read locks myl ib.rwlock_rlock, write locks mylib rwlock wl
ing mylib_rwlock.unlock. i
The read-write locks illustrated are based on a data structure called myl ib_rwlock.t
This structure maintains a count of the number of readers, the writer (a 0/1 integer speti
ifying whether a writer is present), a condition variable readers_proceed that s sig k-
naled when readers can proceed, a condition variable writer_proceed that is sigg *

when one of the writers can proceed, a count pending writers of pending Wﬂ"fg"‘
and a mutex read_write_lock associated with the shared data structure. The funct
mylib_rwlock_init is used to initialize various components of this data StrllCt‘lfe"'
The function mylib_rwlock _rlock attempts a read lock on the data Stfuct“'f
checks to see if there is a write lock or pending writers. If so, it performs a cOn¢™
wait on the condition variable readers_proceed, otherwise it increments the cou”

ock, and unlocik

sign functions for_ §

readers and prc
a write lock on
increments the
variable writ:
proceeds.

The function
there is a write |
If there are read
left and there a
writer_proc
signals all the re

as follows:

1 typedef st
2 int re:
3 int wr:
4 pthreac
3 pthreac
6 int per
7 pthreac
8 } mylib rwl
10

I1 void mylib
12 1 -> rea

13 pthread_
14 pthread
15 pthread_

18 void mylib :
19 /% if th
20 wait.. e:

2 pthread_r
3 while ((1

pthre
% i
n 1 -> reag
B pthread r
29
30
3; void mylip r
3 /* if the
34 count and
35 count and
3
33 Pthread m
3 “hile ((1
¥ 1->g
40 Pthree

4l &(1

wcel itself
ent to the
ict on the
>llation is
tructures,
using the
e original
lation has
ns a 0 on
mceled; it

n, thereis
sing basic
along with

zntly. For

any coher-
e structure
ad lock on -~}
ready have
locks), the:
ing a write ‘
nctions for §.
nleﬂOdﬁ,.

-wlockt: - $ 5
teger Spec- &
that is SIg~
is signaled

7.8 Composite Syhchronlzc’rion Constructs 303

readers and proceeds to grant a read lock. The function mylib_rwlock wlock attempts
a write lock on the data structure. It checks to see if there are readers or writers; if S0, it
increments the count of pending writers and performs a condition wait on the condition
variable writer_proceed. If there are no readers or writer, it grants a write lock and
proceeds.

The function mylib_rwlock_unlock unlocks a read or write lock. It checks to see if
there is a write lock, and if so, it unlocks the data structure by setting the writer field to 0.
If there are readers, it decrements the number of readers readers. If there are no readers
left and there are pending writers, it signals one of the writers to proceed (by signaling
writer_proceed). If there are no pending writers but there are pending readers, it

signals all the reader threads to proceed. The code for initializing and locking/unlocking is
as follows:

1 typedef struct f{

2 int readers;

3 int writer;

4 pthread_cond_t readers_proceed;
5 pthread_cond_t writer proceed;

6 int pending writers;

7 pthread mutex_t read_write lock;
8 } mylib_rwlock t;

9

10

I void mylib_rwlock_init (mylib rwlock_t *1) {

12 1l -> readers = 1 -> writer = 1 -» pending writers = 0;
13 pthread mutex_ init(&(1l -> read_write_lock), NULL);

14 pthread_cond_init(&(l -> readers_proceed), NULL) ;

15 pthread cond_init (&(1 -» writer proceed), NULL);

16)

17

18 void mylib_rwlock_rlock(mylib_rwlock_t *1) |

19 /* if there is a write lock or pending writers, perform condition
20 wait.. else increment count of readers and grant read lock */

21)

2 pthread mutex lock(&(1l -> read_write lock));

23 while ((1 -»> pending_writers > 0) || (1 -> writer » 0)) !
2 pthread cond wait (&(1 -»> readers_proceed) ,

25 &(1 -> read_write_lock)) ;

% 1 -> readers ++;

2 pthread mutex_unlock (&(1l -» read_write lock));

2

29

3 voig mylib_rwlock wlock (mylib_rwlock_t *1) {

2 /* if there are readers or writers, increment pending writers
3 count and wait. On being woken, decrement pending writers

g count and increment writer count */

3% pthread mutex lock (&(l -» read_write lock)) ;

8l while. ((1 -> writer > 0) [| (1 -> readers > 0)) {

‘s 1 -> pending writers ++;

3 pthread_cond_wait (&(1 -> writer proceed),

&(1 -> read_write_lock));

—T—

304 Programming shared Address Space Plafforms 1
S | 7
42 1 -> pending writers --i 18
43 1 -> writer ++ 19) pthread_exit (0) ;
44 pthread_mutex_unlock(&(l -> read_write_lock));
45 '}
46 - P .
47 rogramming Notes In t
48 void mylib_rwlock_unlock(mylib_rwlock__t *1) { eément In its partial list. It th
49 /* if there is a write lock then unlock, else if there are the elobal minj
50 read locks, decrement- count of read locks. If the count . g minimum value. If
51 is 0 and there is a pending writer, let it through, else nnnununlvahK:Ghusrequhjn!
52 if there are pending readers, let them all go through */ lockiSSOUght-()nCethe\Ndu
53
upda :
54 pthread_mutex_lock (&(1 -> read_write_lock)); pdated. The performance gai
55 if (1 -> writer > 0) number of threads and the nun
56 1 -> writer = 0; case when the
57 else if (1 -> readers > 0) write 1 first value of the
58 1 -> readers --; nte locks are subsequent_ly SC
59 pthread_mutex_unlock(&(l -> read write_lock)); performs better. In contrast, if
60 if ((1 -> readers == 0) && (1 -> pending_writers > 0)) flwsks v s , 1€
61 pthread_cond_signal(&(l -> writer_proceed)) ; perfluous and add ¢
62 else if (1 -> readers > 0)
63 pthread_cond_broadcast(&(l -> readers_proceed)) ; Ex .
64} ; ample 7.8 Using read-\
‘ A commonly used operation i

space search is the search of a k
table. In our example, we assu
entries into linked lists. Each li
lists are not being updated and

numbers # i
A simple use of read-write locks is in computing the minimum of a list of numbers. Oh_thls program: one using mut
this section.

In our earlier implementation, we associated a lock with the minimum value. Each
thread locked this object and updated the minimum value, if necessary. In general,

We now illustrate the use of read-write locks with some examples.

Example 7.7 Using read-write locks for computing the minimum ofalistof

The mutex lock version
the mutex associated with the t:

the number of times the value is examined is greater than the number of times itis ..
updated. Therefore, it is beneficial to allow multiple reads using a read lock and -
write after a write lock only if needed. The corresponding program segment isag’ |

follows:

1 wvoid *find_min_rw(void *list_ptr) {

2 int *partial_list_pointer, my _min, i;

3 my min = MIN_INT;

4 partial_list_pointer = (int *) list_ptr;

5 for (1 = 0; 1 < partial_list_size; i+4)

6 if (partial_list_pointer[il < my_min)

7 my_min = partial_list_pointer[i];

8 /* lock the mutex associated with minimum_value and

9 update the variable as required */

10 mylib_rwlock_rlock(&read_write_lock);

11 if (my min < minimum_value) {

12 mylib_rwlock_unlock(&fead_write_lock);
13 mylib_rwlock_wlock(&read_write_lock);
14 minimum_value = my_min;

15 }

16 /* and unlock the mutex */

17 mylib_rwlock_unlock(&read_write_lock);

linked list. The thread function

; manipulate_hash_table(i
- int table_index, fo
- struct list_entry *:
2 table_index = hash(
] pthread mutex_lock (
g found = o0; -

0 no?e = hash_table[t:
= while ((node != NULI
5 if (node -> vali
o found = 1;
= else

" } node = node
ig pthread mutex_unlock
= if (found).

kg return (1) ;

B else

2) insert_into_haskh

st of

Jers.
Jach
eral,
itis
and
is as

I S PRI S A e S 2y T

7.8 Composite Synchronization Constructs 305

18 pthread_exit (0) ;
19 } :

Programming Notes In this example, each thread computes the minimum el-

ement in its partial list. It then attempts a read lock on the lock associated with x
the global minimum value. If the global minimum value is greater than the locally ‘
minimum value (thus requiring an update), the read lock is relinquished and a write it
lock is sought. Once the write lock has been obtained, the global minimum can be |
updated. The performance gain obtained from read-write locks is influenced by the
number of threads and the number of updates (write locks) required. In the extreme
case when the first value of the global minimum is also the true minimum value, no
write locks are subsequently sought. In this case, the version using read-write locks
performs better. In contrast, if each thread must update the global minimum, the read
locks are superfluous and add overhead to the program. []

kample 7.8 Using read-write locks for implementing hash tables

.
of this program: on
this section.

1 3

2 int table 1ndex, found;

3 struct list_entry *nod\\

4 P

5 table_index = hash(enpﬁ?);”

6 pthread_mutex_lock (&l

7 found = 0; y |
8 node = hash tablg’table index]\r
9 while ((node != NULL) && d
10 if (node <> value ==

11 fournd = 1;

12 else a

13

14 } o 3
15 pth¥ead_mutex_unlock (&hash_table[table_inde
16 £ (found)

17 return(l) ;

‘else
insert_into_hash_table (entry) ;

