IB031: Úvod do strojového učení Tomáš Brázdil, Luboš Popelínský, Karel Vaculík i Kdo s kým, o cem, proč 2 Kdo s kým, o cem, proč 3 Kdo s kým, o cem, proč ISMU 4 Kdo s kýmf o cem, proč Příklad 1: lineární model - predikce 5 Kdo s kýmf o cem, proč Příklad 2: nelineární model - detekce spamů 6 Organizace ► přednášky ► cvičení 2h za 14 dní ► projekt ► tříčlenné týmy; ► studium tří nepřednášených metod, ► experimentální porovnání s klasickými metoda ► v jazyce R ► semestrální zkouška ► písemná + ústní zkouška Závěrečné hodnocení ► projekt — poster + závěrečná zpráva (html) ► semestrální zkouška ► písemná+ústní zkouška Co je strojové učení Herbert Simon (1960s): "Learning is any process by which a system improves performance from experience." Tom Mitchell (1990s, paraphrased): "Learning aims to improve task, T, with respect to performance metric, P, based on experience, E." 8 Co je strojové učení Herbert Simon (1960s): "Learning is any process by which a system improves performance from experience." Tom Mitchell (1990s, paraphrased): "Learning aims to improve task, T, with respect to performance metric, P, based on experience, E. " 9 riklady T: Playing checkers P: Percentage of games won against an arbitrary opponent E: Playing practice games against itself T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words T: Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded w observing a human driver. T: Categorize email messages as spam or legitimate. P: Percentage of email messages correctly classified. E: Database of emails, some with human-given labels riklady T: Playing checkers P: Percentage of games won against an arbitrary opponent E: Playing practice games against itself T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words T: Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded w observing a human driver. T: Categorize email messages as spam or legitimate. P: Percentage of email messages correctly classified. E: Database of emails, some with human-given labels riklady T: Playing checkers P: Percentage of games won against an arbitrary opponent E: Playing practice games against itself T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words T: Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded w observing a human driver. T: Categorize email messages as spam or legitimate. P: Percentage of email messages correctly classified. E: Database of emails, some with human-given labels riklady T: Playing checkers P: Percentage of games won against an arbitrary opponent E: Playing practice games against itself T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words T: Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded w observing a human driver. T: Categorize email messages as spam or legitimate. P: Percentage of email messages correctly classified. E: Database of emails, some with human-given labels Dalsí príklady? 14 Třídy úloh ► shlukování ► klasifikace a predikce ► hledání asociací ► detekce anomálií 15 Historie ► 1950s : Alan Turing and NP-hard problems Samuel's checker player, see Ray Mooney ML Course slides ► 1960s : Neural networks: Perceptron Pattern recognition Learning in the limit theory Minsky and Papert prove limitations of Perceptron ► 1970s : Symbolic concept induction Winston's arch learner Expert systems and the knowledge acquisition bottleneck; Scientific discovery with BACON and AM (math) Quinlan's ID3 Michalski's AQ 16 Historie ► 1980s : Advanced decision tree and rule learning Learning and planning and problem solving Resurgence of neural networks (connectionism, backpropagation) Valiant's PAC Learning Theory Focus on experimental methodology ► 1990s : Data mining Text learning Reinforcement learning (RL) Inductive Logic Programming (ILP) Ensembles: Bagging, Boosting, and Stacking Bayes Net learning Web mining Weka 17 Historie ► 2000s : Support vector machines. Kernel methods Statistical relational learning Graph and Sequence mining, Link learning Privacy-preserving data mining Security (intrusion, virus, and worm detection) Recommender systems; Personalized assistants that I Visual data mining Stream mining RapidMiner R for machine learning ► 2010s : KNIME Big data, Big data, Big data . . Outlier detection and explanation