PA197 Secure Network Design 8. Network Monitoring

Eva Hladká, Luděk Matyska

Faculty of Informatics

April 12, 2016

Content

- 1 Traffic monitoring (principles and tools)
- 2 Traffic analysis
 - Tools
- Netflow
 - Principles
 - IPFIX
 - Advantages and usability
- Metwork Behavior Analysis
 - DDoS vs flash crowds

Traffic Monitoring—Principles

- Continuously monitor the computer network
- Collect information
- Perform analysis
- Send alerts
- Part of network management
- Wider scope than IDS
 - "natural" causes of network problems
- Traffic monitoring versus service monitoring
 - e.g. status of a particular web server

Why Traffic Monitoring?

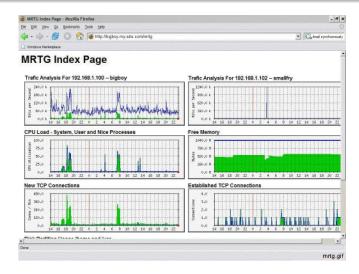
- Information about flows in the network
 - to improve Quality of Service
 - to get global view on flows
 - flow between different networks
 - bandwidth optimization for content providers
- Information about applications and frequency of their use
 - to tune network parameters to get better performance
- To group users sharing the same network
- To allow smart logging
 - conforms to the law
 - optimize log files
- To have sufficient data for experiments
 - traffic generators
- To detect malicious traffic

Traffic Classification

- By port
 - applications operating on fixed port numbers
 - simple
 - unreliable
- Deep packet inspection (DPI)
- QoS based
 - rather unreliable
- Statistical classification
 - remember IDS?

Kinds of Tools

- Diagnostic tools
 - usually active
 - connectivity and reachability tests
- Monitoring tools
 - active or passive
 - run "on background"
 - collect events (passive)
 - initiate own probes (active)
- Performance tools
 - flow monitoring


Sample Advanced Tools

- MRTG
- Wireshark
- ntopng
- SolarWinds
- ...

MRTG

- Multi Router Traffic Grapher
- Free software to monitor and measure traffic load on network links
 - written in Perl
 - available on Linux, OS X. MS Widows, UNIX, ...
- Uses SNMP calls to send requests
 - only SNMP-enabled devices could be monitored
- Creates an HTML document with the list of graphs to display traffic from selected devices

Sample MRTG

Wireshark

- An open source packet analyzer
 - free software (under GNU GPL)
 - available for Linux, OS X, MS Windows
- Similar to tcpdump, with with extensive GUI
- Understands the structure of many network protocols
 - protocol field parsing
- Uses promiscuous mode on the monitored interface


ntopng

- Next generation of ntop
 - see http://www.ntop.org
- Network traffic probe
 - shows network usage in a similar way to the UNIX top command
- Use of web browser interface
 - ntop servers as a web server
- Features (selected)
 - sort network traffic according to the protocols used
 - show IP traffic distribution among various protocols
 - analyze IP traffic and sort it
 - display IP traffic subnet matrix (who is talking with who?)
 - geolocate hosts
 - store traffic statistics in RRD format

SolarWinds

- A commercial product
 - http://www.solarwinds.com
- Extensive suite of monitoring tools
 - multi-vendor fault, performance, and availability monitoring
 - dynamic network maps
 - customizable topology and dependency-aware intelligent alerts
 - automated capacity forecasting, alerting, and reporting
 - deep packet inspection and analysis
- Also other products
 - applications and system optimization
 - database performance acceleration
 - security and compliance enhancement

SolarWinds example screen

Netflow Origin and Principles

- Introduced by CISCO
- Available at CISCO routers to collect IP traffic at interfaces
- Analysis of netflow traffic can help
 - to determine source and destination of traffic
 - class of service
 - congestion
- Components
 - flow exporter
 - router: aggregates packets into flow
 - sends them to collector
 - flow collector
 - reception, storage and preprocessing
 - analysis application

Network Flow

- NetFlow version 5
- Flow is a unidirectional sequence of packets that all share the following 7 values:
 - ingress interface
 - source IP address
 - destination IP address
 - IP protocol
 - source port for UDP or TCP; 0 for other protocols
 - destination port for UDP or TCP; type and code for ICMP; 0 for other protocols
 - IP type of service

Routing information is not included as it may change during flow lifetime (e.g. due load balancing)

Also user defined key are allowed in advanced implementations

Sampled NetFlow

- NetFlow designed to process all packets
 - router implementation
- Performance implications for high bandwidth links
- Sampled NetFlow
 - only one packet in n is processed
 - deterministic sampling: exactly each n-th packet
 - random sampling
 - more complex patterns
 - per flow sampling
 - sampling rate per router or per interface
- Sampling introduces errors
 - INVEA-TECH probes for wire speed at multigigabit networks

IPFIX

- IP Flow Information Export
- IETF protocol
- Standard of export for IP flow information from routers, probes, . . .
- Based on NetFlow version 9
- Defined in the following RFCs: 5103, 7011-7015
- IPFIX flow
 - packets that share same properties observed in a specific timeframe
- Basic Architecture contains
 - metering process collects data at an observation point
 - exporter sends collected flow information to a collector
 - A many-to-many relationship exists between collectors and exporters
 - IPFIX is push protocol

Advantages

- Unobtrusive
 - the attackers can't detect flow monitoring
 - can slow down high traffic bandwidth
 - esp. not sampled monitoring
- Relatively easy to implement
 - information taken from routers
 - probes in the network
- Substantial processing power required
 - for real-time monitoring
 - more extensive analysis possible off-line for limited time periods

Usability

- Observing limits and security policies
 - · users' compliance with network use policy
 - service use (for network optimization)
- QoS monitoring
 - passive, but potentially biased
- Traffic accounting

Security related

- P2P network/service detection
- IP port scanning detection
 - TCP RESET packets increase for vertical scan
 - high increase of ICMP Host Unreachable packets for horizontal scan
- DoS attacks detection
 - e.g. TCP SYN-flood attack
 - flash-crowd effect (see later)
- Worms and viruses spread detection
 - high number of unexpected open connections to other computers

Network Behavior Analysis

- Detection of unusual actions through traffic monitoring
- Monitor network inside an organization
 - many monitoring points
 - aggregation
 - trends spotting
 - including e.g. bandwidth fluctuation
- Machine learning methods
 - what is normal behavior?
- Complements IDS, firewalls, ...

Anomaly Detection

- Basic steps
 - uses history of traffic observation to build a model of selected relevant characteristic of network behavior
 - predict these characteristics for the future traffic
 - identify the source of discrepancy between predicted and measured values
- Adaptable, no limit for the detection strength
 - artificial intelligence approach
- Error rate the main potential problem
 - single NBA methods usually prone to high number of false negatives
 - multistage collaborative methods, trust modeling etc. used to overcome this shortcoming

DDoS vs flash crowd

- Web server example
 - highly variable usage patterns
 - unexpected increase in the traffic
 - attack or information attractivity
- DDoS attack
 - malicious activity
 - aim to shutdown the web server
 - distributed access patterns
- Flash crowd (Slashdot effect)
 - massive increase of traffic to a web site
 - due to sudden interest
 - often through linking from a popular site
- Difficult (impossible?) to distinguish

Distinguishing Flash Crowds

- An example taken from the following article
 - Ke Li et al (2009): Distinguishing DDoS Attacks from Flash Crowds using probability Metrics. Network and System Security NSS'09, pp. 9–17, DOI 10.1109/NSS.2009.35
- Differences between Flash crowds and DDoS attacks
 - intent: users want content, DDOS wants the site shut down
 - users coming from the whole community network or the whole Internet
 - aggregated source IP addresses resemble flat fractional Gaussian noise distribution
 - DDOS from attackers/botnet
 - aggregated source IP addresses follow Poison distribution
 - difference in traffic increase/decrease
 - users follow the spread wave (gradually increase the traffic)
 - attackers use rather short time frame during the initial phase of attack

The Basic Theory

- Based on a hybrid probabilistic method
 - using similarity between flows to distinguish normal versus flash crowd versus DDoS flows
 - similarity measured as

$$\rho(P,Q) = \sum_{i=1}^{n} \sqrt{p_i q_i}$$

where $P = (p_1, p_2, ..., p_n)$ and $Q = (q_1, q_2, ..., q_n)$ are two probability distributions $\rho(P, Q) = 1$ for P = Q and $\rho(P, Q) = 0$ when P and Q are

total variation calculated as

$$T(P,Q) = \sum_i i = 1^n |p_i - q_i|$$

The Algorithm

- The algorithm (applied at the last router preceding the server)
 - set grouping thresholds GT_S (similarity) and GT_T (variance); each threshold has an lower and upper bound
 - calculate probabilistic distribution for each aggregated flow
 - calculate total variation T(P,Q) and similarity $\rho(P,Q)$ for each two flows
 - if T > upper(GT_T) and ρ < lower(GT_S) the DDoS is detected from Flash crowds
 - if $lower(GT_T) \le T \le upper(GT_T)$ and $lower(GT_S) \le \rho \le upper(GT_S)$ then DDoS is detected from Normal flow
 - if $T \leq \operatorname{upper}(GT_T)$ and $\rho > \operatorname{lower}(GT_S)$ than Flash crowds is detected form Normal flow
 - otherwise Normal flow is assumed
 - The values for upper and lower band of thresholds GT_T and GT_S was derived from simulations and are (0,5921,1.1045) and (0.7220,0.8708), resp.

A different method

- Based on article
 - P.R.Reddy et al (2013): Techniques to Differentiate DDoS Attacks from Flash Crowd. Int. J. Adv. Res. Comp. Sci. Soft. Eng., Vol 3(6), pp. 295–299.
- Uses flow correlation coefficient
- Similar observations as above
 - individual attack flows show an internal similarity—flow standard deviation is usually smaller than that of genuine flash crowd flows
 - smaller number of botnet nodes compared to number of genuine flash crowd users
 - each botnet node must initiate higher number of attack flows to mimics the expected number of users

Metrics used

- Flow correlation coefficient
- Packet arrival patterns
- Information distance
- In all cases, the differentiation is based on smaller variance in DDoS attack flows
 - the correlation coefficient use experimentally verified as the most promising metrics

Summary

- Traffic monitoring as a very strong mechanism
 - unobtrusive
 - not detectable by attacker
- Usable in a large range of scenarios
 - performance as well as security related
- Support from network elements needed
 - probes
 - router implementation
- NetFlow and IPFIX
- Network behavior analysis
 - example of DDoS versus Flash crowd detection
- Next session: Penetration testing