
PA197 Secure network design

Basic wireless networking

Petr Švenda svenda@fi.muni.cz

Faculty of Informatics, Masaryk University

mailto:svenda@fi.muni.cz
mailto:svenda@fi.muni.cz

Laboratory

• Start of implementing ad-hoc networks based on

Arduino with RF module

– Basic Arduino programming model

– RF library – send packet between two nodes

– Neighbours discovery (logical communication group)

2 | PA197 Security of wireless networks

Laboratory

• Download and run Arduino IDE

– https://www.arduino.cc/en/Main/Software

• Plug in JeeNode

• Select COM port

– Can be assigned to different values

– Try other ports if selected doe not work

• Board: Arduino Mini

• Processor: ATMega328

| PV204: Rootkits, RE

https://www.arduino.cc/en/Main/Software

Test FileExamples01.BasicsBlink

• Basic application, should blink the LED

• During upload, Rx and Tx small leds are blinking

• After upload, blue LED should blink (1 second)

• You should now be able to compile and upload app

| PV204: Hardware Security Modules

Blink.ino

| PV204: Hardware Security Modules

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever

void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

• (Note that PIN used for LED can be different on

different boards, 9 on JeeNode)

Troubleshooting

• Check if you have proper board and processor

– Arduino Mini, ATMega328

• Don’t have serial monitor running if going to upload new app

• Try to re-plug jeenode

• Try to plug into different USB port

• Try to restart Arduino IDE

• Check if you have same serial port speed on arduino and port

monitor

– Try different speeds, otherwise you will see garbled data

• Try again (anything)

| PV204: Hardware Security Modules

FileExamples … DigitalReadSerial

• Pre-prepared code that prints fixed message

– Counter, Keep speed at 9600

• Run Serial monitor (will automatically restart Arduino)

– Observe data print out

• Modify to print out loop counter

– Small red LED should blink during data transfer

• You should now be able to upload application and

see data via serial port

• You may use any other application to capture data
– https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial

| PV204: Hardware Security Modules

https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial
https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial
https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial
https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial
https://github.com/gskielian/Arduino-DataLogging/tree/master/PySerial

JeeLib library

• Provides support for JeeNode radio module

• Download Jeelib-master.lib

– https://github.com/jcw/jeelib/archive/master.zip

• Documentation: http://jeelabs.org/pub/docs/jeelib/index.html

• Add library into Arduino IDE

– Sketch Include library Add zip library

– Examples are now available: Examples jeelib-master

| PV204: Hardware Security Modules

https://github.com/jcw/jeelib/archive/master.zip
https://github.com/jcw/jeelib/archive/master.zip
http://jeelabs.org/pub/docs/jeelib/index.html
http://jeelabs.org/pub/docs/jeelib/index.html
http://jeelabs.org/pub/docs/jeelib/index.html

| PV204: Hardware Security Modules

#include <JeeLib.h>

const byte LED = 9;
byte counter;

// turn the on-board LED on or off

static void led (bool on) {
 pinMode(LED, OUTPUT);
 digitalWrite(LED, on ? 0 : 1); // inverted logic

}

void setup () {
 // this is node 1 in net group 100 on the 868 MHz band

 rf12_initialize(1, RF12_868MHZ, 100);
}

void loop () {
 led(true);

 // actual packet send: broadcast to all, current counter, 1 byte long

 rf12_sendNow(0, &counter, 1);
 rf12_sendWait(1);

 led(false);

 // increment the counter (it'll wrap from 255 to 0)

 ++counter;
 // let one second pass before sending out another packet

 delay(1000);
}

test1.ino

Basic beacon application

• Select File Examples test1

– Compile, upload

– Application sends packet with counter every second

• Try to change your node ID (1..31 possible)

– rf12_initialize(1, RF12_868MHZ, 100);

– 31 is special ID for promiscuous mode (receives everything)

• Try to change your group

– rf12_initialize(1, RF12_868MHZ, 100);

– You will hear only messages within your group

| PV204: Hardware Security Modules

Basic beacon application – send packet

• rf12_sendNow(T, &counter, 1);

– T = 0 is broadcast

– T = 1..31 concrete target node ID

– sendNow takes pointer to data and its length (&counter, 1B)

• Busy waiting until send can be done (free channel check)

• rf12_sendWait(1);

– Waits until a packet send is done

• Maximum length of payload data RF12_MAXDATA

– 66 bytes, but don’t push it too close (unreliable)

– Stay below 60

| PV204: Hardware Security Modules

| PV204: Hardware Security Modules

#include <Ports.h>
#include <RF12.h>

byte saveHdr, saveLen, saveData[RF12_MAXDATA];
word saveCrc;

void setup () {
 Serial.begin(57600);
 Serial.println("\n[sniffer] 868 MHz group 100");
 rf12_initialize(31, RF12_868MHZ, 100);
}
void printPacket(byte saveHdr, byte saveLen, byte saveData[RF12_MAXDATA]){
// … nice print of packet via Serial port, see full code at IS

}
void loop () {
 if (rf12_recvDone()) {
 // quickly save a copy of all volatile data

 saveLen = rf12_len;
 saveCrc = rf12_crc;
 saveHdr = rf12_hdr;
 if (saveLen <= sizeof(saveData)) { memcpy(saveData, (const void*) rf12_data, saveLen); }
 else { memset(saveData, 0xff, sizeof(saveData));}
 rf12_recvDone(); // release lock on info for next reception

 if (saveCrc != 0) {
 Serial.print("CRC error #");
 Serial.println(saveLen, DEC);
 } else { printPacket(saveHdr, saveLen, saveData);}
 }
}

Sniffer.ino

Sniffer application

• Download sniffer code from IS (sniffer.ino)

– FileNew, Paste sniffer code

– Compile and upload

• Application listen for RF12 packets and prints it via Serial

port

– rf12_initialize(31, RF12_868MHZ, 100);

– rf12_recvDone() – true if packet received

– rf12_recvDone()

– rf12_len, rf12_crc, rf12_hdr, rf12_data

• Global variables set by radio module

– Local copy of global variables made to

• Prevent overwrite by another packet

• Enable radio module to start receiving next packet
| PV204: Hardware Security Modules

Test1 + sniffer

• Collaborate two together

– First node runs test1

– Second node runs sniffer

• Make sure that same group is used

• Data transferred by first node should be captured

sniffer

| PV204: Hardware Security Modules

Basic transmission: one hop, two hops

• Pair together with one colleague

– Write app that will blink LED X-times based on value inside

received packet

• Pair together with two colleagues

– Same as previous

– Use one intermediate node (fixed routing topology)

• SenderTransmitter (receive, send)Receiver (blink)

• If sending to specific node, ACK may be required

– http://jeelabs.org/2010/12/11/rf12-acknowledgements/

| PV204: Hardware Security Modules

if (RF12_WANTS_ACK){
 rf12_sendStart(RF12_ACK_REPLY,0,0);
}

http://jeelabs.org/2010/12/11/rf12-acknowledgements/
http://jeelabs.org/2010/12/11/rf12-acknowledgements/
http://jeelabs.org/2010/12/11/rf12-acknowledgements/
http://jeelabs.org/2010/12/11/rf12-acknowledgements/

Homework 11 – Network sniffing

• Create sniffer node that will capture as many packets as

possible from single network run

– 10 minutes transmission, 5 minutes silence (then repeat)

– Try to capture packets from multiple runs and compare

• Produce short (1xA4) text description of solution

– How network properties were found

– How was traffic logged

– How were packets analyzed

• Submit before: 12.5. 6am (full number of points)

– Every additional started day (24h) means 1.5 points penalization

16 | PV204 Security technologies - Labs

Example output you should submit

• #440#oes. They got the p

• #458#arades and fame and

• #464# love of the world.

| PV204: Hardware Security Modules

