Computational Analysis of Metabolic Networks Ralf Steuer Humboldt-University Berlin, Germany Institute of Theoretical Biology (ITB) CzechGlobe Global Change Research Centre, Brno, CZ Fakulta informatiky MU pondělí 14. 5. 2012, 14:00 A living cell is a complex dynamic system involving many hierarchies of regulation: outline A living cell is a complex dynamic system involving many hierarchies of regulation: (1) Transcriptional regulation: from DNA to protein DNA protein transcription/translation outline A living cell is a complex dynamic system involving many hierarchies of regulation: (2) Post­transcriptional regulation: (de­)activation of proteins DNA protein protein activity signaling networks transcription/translation outline A living cell is a complex dynamic system involving many hierarchies of regulation: (3) Cellular metabolism: energy and growth DNA protein protein activity cell metabolism signaling networks building “infrastructure” transcription/translation outline A living cell is a complex dynamic system involving many hierarchies of regulation: (4) Cellular physiology: division, motility, etc ... DNA protein protein activity cell metabolism physiology and behavior signaling networks building “infrastructure” transcription/translation outline A living cell is a complex dynamic system involving many hierarchies of regulation: (4) Cellular physiology: division, motility, etc ... DNA protein protein activity cell metabolism physiology and behavior signaling networks building “infrastructure” transcription/translation outline A living cell is a complex dynamic system involving many hierarchies of regulation: Aim: Computational Modeling of Cellular Processes DNA protein protein activity cell metabolism physiology and behavior signaling networks building “infrastructure” transcription/translation outline Computational modeling as a tool to understand the functioning of cellular interactions?  Three main issues: (1) Why should one care about modeling? (2) How should a (good) model be constructed? (3) And to what end? the rationale of mathematical modeling The rationale of mathematical modelling Mathematical Models: A method for representation 1.1. Mathematical Models: A method for deduction 2.2. the rationale of mathematical modeling Mathematical Models: A method of representation Transcription of properties into a formal representation. Modeling provides a language for representation. 1.1. An example: The basic Michaelis­Menten Scheme The rationale of mathematical modelling the rationale of mathematical modeling A slightly more complicated example:  MFPMFP MNFP2 MNFP1 XYZ1 XYZ2 XYZ3 ABC1ABC1 ABCa2ABCa2? R2D2 inhibition Note that  models do not need to be 'true'. The rationale of mathematical modelling Mathematical Models: A method of representation Transcription of properties into a formal representation. Modeling provides a language for representation. 1.1. the rationale of mathematical modeling Mathematical Models: A method for deduction Translation into emergent properties at the systems level. Mathematical models organize parts into a coherent whole. 2.2. Facts often only mean little in isolation, but need to be interpreted in terms of a theory or model. Science is built with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house. — Henri Poincare The rationale of mathematical modelling the rationale of mathematical modeling Mathematical Models: A method for deduction Translation into emergent properties at the systems level. Mathematical models organize parts into a coherent whole. 2.2. An example: Can this mechanism oscillate?  Translation into emergent properties MFPMFP MNFP2 MNFP1 XYZ1 XYZ2 XYZ3 ABC1ABC1 ABCa2ABCa2? R2D2 inhibition The rationale of mathematical modelling the rationale of mathematical modeling The modeling relation according to Casti: The rationale of mathematical modelling the rationale of mathematical modeling “There is a zoo of mathematical models in the literature. Many of these  appear  to  have  little  purpose  other  than  calculating  numbers  which  conform  reasonably  to  experimental  data.  This  is,  in  itself,  not  a  distinguished  endeavor;  it  is  not  particularly  difficult,  and  it  teaches  little. ... Modeling is relatively meaningless without explicit definition,  at the outset, of its purpose”                                                                                        J. E. Bailey (1944­2001)                                                                 in Biotechnol. Prog. 14:8­20, 1998 The rationale of mathematical modelling the rationale of mathematical modeling Computational models of metabolic networks models of metabolic networks Computational models of metabolic networks “food” protein carbohydrates fat “useful” energy building  blocks models of metabolic networks Computational models of metabolic networks “food” protein carbohydrates fat “useful” energy building  blocks Cellular constituents maintenance models of metabolic networks Computational models of metabolic networks Copyright 2004 by Alberts, Bray,  Johnson, Lewis, Raff, Roberts,  Walter.Garland Publishing: Taylor  Francis Group. models of metabolic networks The “bow­tie” structure of metabolism: A bow-tie models of metabolic networks The “bow­tie” structure of metabolism: A Complex Network of Interactions: • Biochemical reactions • Metabolic compounds • Regulatory interactions  Applications of Relevance: Biotechnology Diseases and medical applications A link from genotype to phenotype models of metabolic networks The network of enzyme­catalyzed biochemical reactions: Enzymes  are  biological  molecules  that  catalyze  (i.e.,  increase  the  rates  of)  chemical  reactions.  Almost  all  chemical  reactions  in  a  biological cell need enzymes in order to occur at rates sufficient for  life.  Since  enzymes  are  selective  for  their  substrates and speed  up  only  a  few  reactions  from  among  many  possibilities,  the  set  of  enzymes made in a cell determines which metabolic pathways occur  in that cell. Like  all  catalysts,  enzymes  work  (only)  by  lowering  the  activation energy for a reaction, thus dramatically increasing the  rate of the reaction.  from: WIKIPEDIA models of metabolic networks Enzyme­catalyzed reactions: Reaction:    A             B             (exergonic ∆G<0) models of metabolic networks Enzyme­catalyzed reactions: Reaction:    A             B             (exergonic ∆G<0) Reaction:    C             D             (endergonic ∆G>0) models of metabolic networks Enzyme­catalyzed reactions: Reaction:    A             B             (exergonic ∆G<0) Reaction:    C             D             (endergonic ∆G>0) Enzymes can couple processes Reaction:    C             D                                  (∆G>0) Reaktion:ATP             ADP + “energy”        (∆G<0)         C + ATP              ADP + D                     (∆G<0) models of metabolic networks Enzyme mechanisms: models of metabolic networks Enzyme mechanisms and rate equations: Translation into mathematical model: rate equations models of metabolic networks Michaelis­Menten Kinetics: Translation into mathematical model: rate equations models of metabolic networks Michaelis­Menten Kinetics: Translation into mathematical model: rate equations Maximal velocity models of metabolic networks Translation into mathematical model: rate equations Michaelis­Menten constant Maximal velocity Michaelis­Menten Kinetics: models of metabolic networks Michaelis­Menten Kinetics: Michaelis­Menten constant Maximal velocity models of metabolic networks More complicated enzyme­kinetic mechanisms ... models of metabolic networks More complicated enzyme­kinetic mechanisms ... models of metabolic networks Building a model of cellular metabolism ... (1) Assemble the building blocks: reactions and metabolites models of metabolic networks Building a model of cellular metabolism ... (1) Assemble the building blocks: reactions and metabolites (2) Assign rate equations to each reaction models of metabolic networks Building a model of cellular metabolism ... (1) Assemble the building blocks: reactions and metabolites (2) Assign rate equations to each reaction (3) Assign values to all parameters models of metabolic networks Building a model of cellular metabolism ... (1) Assemble the building blocks: reactions and metabolites (2) Assign rate equations to each reaction (3) Assign values to all parameters (4) Solve the system numerically models of metabolic networks Building a model of cellular metabolism ... (1) Assemble the building blocks: reactions and metabolites (2) Assign rate equations to each reaction (3) Assign values to all parameters (4) Solve the system numerically (5) DONE! models of metabolic networks Building a model of cellular metabolism ... (1) Assemble the building blocks: reactions and metabolites (2) Assign rate equations to each reaction (3) Assign values to all parameters (4) Solve the system numerically Unfortunately not so easy ... (1) The 'Building blocks' are often unknown. (2) Parameters are difficult to estimate (3) Numerically complex models of metabolic networks A few words on nomenclature: Reaction: models of metabolic networks A few words on nomenclature: Reaction: Stoichiometry: Rate equation: models of metabolic networks A few words on nomenclature: Organize the network into a set of differential equations: models of metabolic networks A few words on nomenclature: Organize the network into a set of differential equations: Stoichiometric coefficients models of metabolic networks A few words on nomenclature: Organize the network into a set of differential equations: Rate equations models of metabolic networks A few words on nomenclature: Organize the network into a set of differential equations: In matrix notation: models of metabolic networks Organize the network in a set of differential equations:  models of metabolic networks Organize the network in a set of differential equations:  models of metabolic networks Organize the network in a set of differential equations:  models of metabolic networks The stoichiometry is increasingly known: models of metabolic networks The stoichiometry is increasingly known: models of metabolic networks The stoichiometry is increasingly known: models of metabolic networks Other resources: models of metabolic networks Modelling metabolic networks models of metabolic networks Modelling metabolic networks ... has many facettes: models of metabolic networks Qualitative Models Size of System Level of Detail Topological Analysis ● Static description ● No kinetic parameters ● Topological properties Quantitative Models models of metabolic networks Qualitative Models Size of System Level of Detail Topological Analysis ● Static description ● No kinetic parameters ● Topological properties Quantitative Models the substrate  graph models of metabolic networks Qualitative Models Size of System Level of Detail Topological Analysis Quantitative Models An example: The S. cerevisiae metabolic network M = 810 vertices (metabolites) R = 843 reactions E = 3419 edges  models of metabolic networks Qualitative Models Size of System Level of Detail Topological Analysis Quantitative Models Typical network properties: Pathlength and clustering Degree distribution Hierarchies and modularity Robustness and error tolerance Advantages: Applicable to large­scale systems Requires only topological information models of metabolic networks Qualitative Models Size of System Level of Detail Topological Analysis Quantitative Models the degree distribution Typical network properties: Pathlength and clustering Degree distribution Hierarchies and modularity Robustness and error tolerance models of metabolic networks Qualitative Models Size of System Level of Detail Topological Analysis Quantitative Models the degree distribution highly connected metabolites: glycolysis, TCA cycle (pyruvate, etc ...)  cofactors (ATP, NAD, etc ...) Typical network properties: Pathlength and clustering Degree distribution Hierarchies and modularity Robustness and error tolerance models of metabolic networks Qualitative Models Size of System Level of Detail Topological Analysis Quantitative Models Typical network properties: Pathlength and clustering Degree distribution Hierarchies and modularity Robustness and error tolerance highly connected metabolites: models of metabolic networks Qualitative Models Size of System Level of Detail Topological Analysis Quantitative Models Typical network properties: Pathlength and clustering Degree distribution Hierarchies and modularity Robustness and error tolerance Limitations: Only qualitative description No dynamic properties No specific features of metabolic networks models of metabolic networks Qualitative Models Size of System Level of Detail Explicit Kinetic Models ● Dynamic description ● Kinetic parameters ● Differential equations Quantitative Models models of metabolic networks Qualitative Models Size of System Level of Detail Explicit Kinetic Models ● Dynamic description ● Kinetic parameters ● Differential equations Quantitative Models (1) Assemble the “parts list”: reactions and metabolites (2) Assign rate equations to each reaction (3) Assign values to all parameters (4) Solve the system numerically (5) DONE! models of metabolic networks Qualitative Models Size of System Level of Detail Explicit Kinetic Models ● Dynamic description ● Kinetic parameters ● Differential equations Quantitative Models A simple Example: models of metabolic networks Qualitative Models Size of System Level of Detail Explicit Kinetic Models ● Dynamic description ● Kinetic parameters ● Differential equations Quantitative Models A typical rate equation: Example from Chassagnole (2002) A simple Example: models of metabolic networks Qualitative Models Size of System Level of Detail Explicit Kinetic Models ● Dynamic description ● Kinetic parameters ● Differential equations Quantitative Models Then solve system computationally: models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models A more complex example: Identify best (putative) drug targets in a model of human metabolism.  By E. Murabito (Manchester) models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models A more complex example: Identify best (putative) drug targets in a model of human metabolism.  By E. Murabito (Manchester) models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models A more complex example: Identify best (putative) drug targets in a model of human metabolism.  By E. Murabito (Manchester) Matrix of control coefficients models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models A more complex example: Identify best (putative) drug targets in a model of human metabolism.  By E. Murabito (Manchester) Advantages A large number od potential targets can be tested quickly No ethical problems Fast results Cheap models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models A more complex example: Identify best (putative) drug targets in a model of human metabolism.  Advantages A large number od potential targets can be tested quickly No ethical problems Fast results Cheap But:  Current models not predictive yet Too many unknown parameters Too many unknown interactions models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models See repositories for explicit kinetic models: models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models See repositories for explicit kinetic models: models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models See repositories for explicit kinetic models: models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models See repositories for explicit kinetic models: Advantages A large number od potential targets can be tested quickly No ethical problems Fast results Cheap But:  Current models not predictive yet Too many unknown parameters Too many unknown interactions models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models Most research now on the intermediate level! models of metabolic networks Qualitative Models Size of System Level of Detail Stoichiometric Analysis (Flux Balance Analysis) ● Static description ● No kinetic parameters ● Quantitative predictions Exploits constraints in flux distribution models of metabolic networks Qualitative Models Size of System Level of Detail Stoichiometric Analysis (FBA) ● Static description ● No kinetic parameters ● Quantitative predictions Exploits constraints in flux distribution A simple Example: models of metabolic networks Qualitative Models Size of System Level of Detail Stoichiometric Analysis (FBA) ● Static description ● No kinetic parameters ● Quantitative predictions Exploits constraints in flux distribution In general only a small fraction of fluxes need to be known: independent = (number fluxes) – (number metabolites) A simple Example: models of metabolic networks Qualitative Models Size of System Level of Detail Stoichiometric Analysis (FBA) ● Static description ● No kinetic parameters ● Quantitative predictions Exploits constraints in flux distribution The S. cerevisiae metabolic network M = 810 vertices (metabolites) R = 843 reaction rates Optimize according to an objective function Probably the best approach to date ... models of metabolic networks Qualitative Models Size of System Level of Detail Quantitative Models Most research now on the intermediate level! Extend with features of explicit kinetic models Include quantitative description of dynamics Include feedback regulation into the description Keep the advantages of topological analysis No knowledge of kinetic parameters Computationally feasible for large networks No explicit enzyme­kinetic rate equations models of metabolic networks Research at HU­Berlin/ITB: Systems Biology of Cyanobacterial Biofuel Production Cyanobacterial Biofuel Production Research at HU­Berlin/ITB: Systems Biology of Cyanobacterial Biofuel Production Fossil fuels (mainly petroleum, coal, natural gas) account for 80%-90% of the current world energy demand. Fossil fuels account for 95% of transportation fuels. Cyanobacterial Biofuel Production Fossil fuels (mainly petroleum, coal, natural gas) account for 80%-90% of the current world energy demand. Fossil fuels account for 95% of transportation fuels. Alternatives are urgently needed! Wishlist: Renewable, cheap, abundant,  biodegradable, etc ... Cyanobacterial Biofuel Production Biofuel production from biomass a) vegetable oil/biodiesel (soybean, palm, rapeseed) b) bioalcohol from sugar cane and starch (corn, maize) + some others (charcoal, biogas, etc ...) maize (wiki)palm plantation (wiki) Cyanobacterial Biofuel Production Biofuel production from biomass a) vegetable oil/biodiesel (soybean, palm, rapeseed) b) bioalcohol from sugar cane or starch (corn, maize) Some Issues: ● High energy input in production, low net yield ● Food vs. fuel issues: direct competition with food crops ● Requires food crops (starch, e.g. sugarcane, maize, etc ...) ● Requires large amounts of arable land ● Requires large amounts fresh water ● Little potential for increase in production So what to do? Alternatives are needed! Cyanobacterial Biofuel Production Biofuel production from cellulosic biomass Better and cheaper biomass: non-edible parts of plants: Woodchips (e.g. poplar), fuel crops, grass, corn stover ... A DIFFICULT AND EXPENSIVE PROCESS (AS YET) “biomass recalcitrance”: Plant cell walls naturally resist decomposition from microbes and enzymes Cyanobacterial Biofuel Production Biofuel production from cellulosic biomass Better and cheaper biomass: non-edible parts of plants: Woodchips (e.g. poplar), fuel crops, grass, corn stover ... But considerable potential within the next decade(s)! Switchgrass (wiki): Possible Improvements: Manipulate cellusosic content in plants Enzymatic pretreatment (funghi) Better conversion of 5-carbon sugars Higher ethanol resistance Cyanobacterial Biofuel Production Alternative: Cyanobacteria as a source of biofuels Cyanobacterial Biofuel Production Photosynthetic cyanobacteria: An alternative to fossil fuels Alternative: Cyanobacteria as a source of biofuels They live from nothing but sun and air High yield and fast growth rates (up to 6h division time) Straightforwardly cultivable (algae farms) Little arable land required  Can be cultivated in seawater An open pond Spirulina farm: Cyanobacterial Biofuel Production FORSYS­Partner: Systems Biology of Cyanobacterial Biofuel Production Plot courtesy of CYANO BIOFUELS Cyano Biofuels GmbH Dan Kramer Karl Ziegler Biochemistry (HU-Berlin) Wolfgang Lockau Yvonne Zilliges Genetics (HU-Berlin) Thomas Boerner Jan-Christoph Kehr Modelling (ITB, HU-Berlin) Ralf Steuer Henning Knoop Microbiology (U. Giessen) Annegret Wilde and FRISYS (Freiburg) Wolfgang Hess Cyanobacterial Biofuel Production FORSYS­Partner: Systems Biology of Cyanobacterial Biofuel Production Plot courtesy of Algenol Cyanobacterial Biofuel Production FORSYS­Partner: Systems Biology of Cyanobacterial Biofuel Production Plot courtesy of Algenol Cyanobacterial Biofuel Production Plot courtesy of http://www.algenolbiofuels.com/ FORSYS­Partner: Systems Biology of Cyanobacterial Biofuel Production Cyanobacterial Biofuel Production The modelling perspective Progress in strain improvement will depend on the development of theoretical methods that facilitate the elucidation of mechanisms and the identification of genetic targets for modification (*). (*) from: Exploiting biological complexity for strain improvement through systems biology, G. Stephanopoulos, H. Alper & J. Moxley, Nature Biotechnology 22, 1261 – 1267, 2004 FORSYS­Partner: Systems Biology of Cyanobacterial Biofuel Production Cyanobacterial Biofuel Production What can be, if anything, achieved by mathematical modelling? 1. Network reconstruction and FBA 2. Towards large­scale kinetic models 3. Integrative models: The regulation of metabolism 4. Predicting biotechnological modifications FORSYS­Partner: Systems Biology of Cyanobacterial Biofuel Production Cyanobacterial Biofuel Production Understanding cellular metabolism 1. Network reconstruction and FBA (Henning Knoop) 333 reactions 267 metabolites Reconstruction mainly by manual curation Cyanobacterial Biofuel Production Understanding cellular metabolism 1. Network reconstruction and FBA (Henning Knoop) 333 reactions 267 metabolites Reconstruction mainly by manual curation the end End of Part II Hands on examples Hands-on examples Hands on examples 1. Numerical Integration in matlab Hands-on examples Hands on examples 1. Numerical Integration: Runge-Kutta algorithm Hands-on examples Hands on examples 1. Numerical Integration: a simple example Hands-on examples then: Hands on examples 1. Numerical Integration: a simple example Hands-on examples then: Hands on examples 1. Numerical Integration: the Lorenz System Hands-on examples Hands on examples 1. Numerical Integration: the Lorenz System Hands-on examples Hands on examples 1. Numerical Integration: the Lorenz System Hands-on examples Hands on examples 1. Numerical Integration: the Lorenz System Hands-on examples Hands on examples 1. Numerical Integration: the Lorenz System Hands-on examples Hands on examples: a metabolic pathway Hands-on examples Hands on examples: a metabolic pathway Hands-on examples Hands on examples: a metabolic pathway Hands-on examples Hands on examples: signal transduction Hands-on examples Hands on examples: a model of the cell cycle Hands-on examples Hands on examples: a model of the cell cycle Hands-on examples Hands on examples: a model of the cell cycle Hands-on examples Hands on examples: a model of the cell cycle Hands-on examples Hands on examples: a model of the cell cycle Hands-on examples Gene expression as a stochastic process Hands-on examples Transcription of a mRNA Decay of a mRNA Translation of a protein Decay of a protein Gene expression as a stochastic process Hands-on examples Gene expression as a stochastic process Hands-on examples Gene expression as a stochastic process Hands-on examples Gene expression as a stochastic process Hands-on examples Gene expression as a stochastic process Hands-on examples The end Hands-on examples