Testing & Debugging
PB173 Programming in Modern C++

Nikola Beneg, Vladimir Still, Jiff Weiser

Faculty of Informatics, Masaryk University

spring 2016

PB173 Modern C++-: Testing & Debugging spring 2016 1/16

Three Basic Questions
Readability, Correctness, Efficiency

Three basic questions you should ask yourselves when programming:

is my program well-written?
is my program correct?
is my program efficient?

PB173 Modern C++-: Testing & Debugging spring 2016 2/16

Three Basic Questions
Readability, Correctness, Efficiency

Three basic questions you should ask yourselves when programming:

is my program well-written?
is my program correct?
is my program efficient?

How to approach correctness?

testing
formal verification (automatic/semi-automatic/manual)
code inspection

PB173 Modern C++-: Testing & Debugging spring 2016 2/16

Testing

an important part of the development process
levels of testing

unit testing
integration testing
system testing

many approaches and frameworks

our focus here: CATCH framework

PB173 Modern C++-: Testing & Debugging spring 2016 3/16

Testing
Using CATCH

CATCH (C++ Automated Test Cases in Headers)

https://github.com/philsquared/Catch
advantages:

easy to use

no dependencies, just one header file
readable test cases

arbitrary strings as names

test cases divided into independent sections
use standard C4++ operators for comparison

PB173 Modern C++-: Testing & Debugging spring 2016 4/16

https://github.com/philsquared/Catch

Testing Using CATCH

Simple Example

#include "vector.h"
#define CATCH_CONFIG_MAIN // provide main() function
#include "catch.hpp"

TEST_CASE("Vector is initialised as empty") {

vector< int > vec;
REQUIRE(vec.size() == 0);

PB173 Modern C++-: Testing & Debugging spring 2016

5/16

Testing Using CATCH

Using Sections

TEST_CASE("Vector size and capacity") {

vector< int > vec;

vec.push_back(1);

vec.push_back(2);

auto size = vec.size();

REQUIRE(size == 2);

SECTION("push_back increases size") {
vec.push_back(3);
REQUIRE(vec.size() > size);

}

SECTION("erase decreases size") {
vec.erase(vec.begin());
REQUIRE(vec.size() < size);

3

PB173 Modern C++-: Testing & Debugging spring 2016 6 /16

Testing Using CATCH

Using Sections

for each SECTION the TEST_CASE is executed from the start
alternative to the traditional setup() /teardown() approach

CATCH also supports test fixtures, see documentation
SECTIONs can be nested to arbitrary depth

failure in parent section prevents nested sections from running

PB173 Modern C++: Testing & Debugging spring 2016 7/ 16

Testing Using CATCH

Using Sections

for each SECTION the TEST_CASE is executed from the start
alternative to the traditional setup() /teardown() approach

CATCH also supports test fixtures, see documentation
SECTIONs can be nested to arbitrary depth

failure in parent section prevents nested sections from running

BDD (Behaviour-Driven Development)
SCENARIO, GIVEN, WHEN, THEN

SCENARIO("Adding one element to a vector") {
GIVEN("A vector with no elements") {
vector< int > vec;
WHEN("an element is added via push_back") {
vec.push_back(0);
THEN("the size becomes 1") {
REQUIRE(vec.size() == 1); }rr:

PB173 Modern C++-: Testing & Debugging spring 2016 7 /16

Testing Using CATCH

Asserts & Logs

REQUIRE, CHECK, REQUIRE_FALSE, CHECK_FALSE

assert condition
CHECK: execution continues even after assertion failure

REQUIRE_THROWS, REQUIRE_NOTHROW, CHECK_THROWS, ...

assert that an expression throws/does not throw an exception
INFO, WARN, FAIL

logging
CAPTURE

log the value of a variable

PB173 Modern C++-: Testing & Debugging spring 2016 8 /16

Testing Using CATCH

Other Useful Information

command-line parameters

specifying which test to run
output format (jUnit, XML, ...)

configuration, own main()

PB173 Modern C++-: Testing & Debugging spring 2016 9/16

Testing Using CATCH

Other Useful Information

command-line parameters

specifying which test to run
output format (jUnit, XML, ...)

configuration, own main()
Recommended practice

one main source file with nothing but the main() function
(possibly generated by CATCH)

#define CATCH_CONFIG_MAIN
#include "catch.hpp"

other source files for tests

PB173 Modern C++-: Testing & Debugging spring 2016 9 /16

Debugging
Eliminating Bugs

o

34

0o OnJ-om {1.7.7..‘: 7032 vy 015
Jvoo 5.087 §YL TS cqmach

3o :os He - nc ﬁ-&s—mu-é@ 7405 725055(.2)

03y PRO > 2 (loyqlyiS

Conck A nab;&w; .
i3 e2 =l 03z £4] o ‘T“"'J ETE; iy
im M i e i 1
1100 DT¢|-+=J Co;.‘“e Tap Sl i
1525 Showcted ll‘.u.Hx ‘A jer (Tzﬂ‘ } |

= @et *‘75 ?qr\{‘ F
(Mo th) i Celay -

ron aﬂﬁr_ﬂ Q‘-']‘Im r_ouSa o-{ bunl Leinql {aqml.

1300 | cleard

PB173 Modern C++-: Testing & Debugging spring 2016

10/ 16

Debugging

Tests Fail, Now What?

approaches:

tracing (“printf debugging”)

logging
using debuggers / other useful tools

PB173 Modern C++-: Testing & Debugging spring 2016 11 /16

Debugging

Tests Fail, Now What?

approaches:

tracing (“printf debugging”)

logging
using debuggers / other useful tools

Recommendation:
try to find a minimal example where problem occurs
“code bisection”
bugs are sometimes caused by bad memory management
use valgrind or similar tools

to be able to employ debuggers:

compile without optimisation
compile with debug information (-g)

PB173 Modern C++-: Testing & Debugging spring 2016

11/ 16

Debuggers

Typical Functions

pause at specified breakpoints

line of code

condition

exception thrown/caught
signals (SIGSEGV, ...)

evaluate expressions
step through program
(modify program state)

Our Focus Today
gdb (The GNU Debugger)

command-line tool
has many graphical front-ends

PB173 Modern C++-: Testing & Debugging spring 2016 12 / 16

Using gdb

Basic commands:

help

run — start the debugged program

list — list specified function or line

break — set breakpoint

catch — set catchpoint (exception breakpoint)

info — show information about the debugged program

info args, info registers, info breakpoints

step — step program, steps into functions

next — step program, steps over function calls

stepi, nexti — step by instructions, not lines of code
print — evaluate expression

examine — display contents of memory address

disp — evaluate expression each time the program stops
continue — continue running (after breakpoint)

kill — stop execution of the program

PB173 Modern C++-: Testing & Debugging spring 2016 13 / 16

Using gdb

Stack commands:

backtrace — print backtrace of stack frames

up, down, frame, select-frame — select stack frame
finish — run until current stack frame returns

info locals, info frame

Executing code at runtime:

set var = value — change the value of a variable
call func() — call a function

Watchpoints:

watch var — watch changes (writes) of a variable
rwatch var — watch reads of a variable
awatch var — watch both reads and writes

PB173 Modern C++-: Testing & Debugging spring 2016 14 / 16

gdb front-ends

cgdb
terminal-based front-end for gdb (uses the curses library)
displays the source code above the gdb session
https://cgdb.github.io/
module add cgdb-0.6.6 on faculty computers

Other front-ends: see
https://sourceware.org/gdb/wiki/GDB}20Front}20Ends

PB173 Modern C++-: Testing & Debugging spring 2016

15 / 16

https://cgdb.github.io/
https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

Exercise

Exercise no. 1

source codes with errors in the study materials
use gdb / cgdb

Exercise no. 2

write tests for your vector implementation
(from the previous seminar)
use the CATCH framework

PB173 Modern C++-: Testing & Debugging spring 2016 16 / 16

