
Testing & Debugging
PB173 Programming in Modern C++

Nikola Beneš, Vladimír Štill, Jiří Weiser

Faculty of Informatics, Masaryk University

spring 2016

PB173 Modern C++: Testing & Debugging spring 2016 1 / 16

Three Basic Questions
Readability, Correctness, Efficiency

Three basic questions you should ask yourselves when programming:

is my program well-written?
is my program correct?
is my program efficient?

How to approach correctness?

testing
formal verification (automatic/semi-automatic/manual)
code inspection
. . .

PB173 Modern C++: Testing & Debugging spring 2016 2 / 16

Three Basic Questions
Readability, Correctness, Efficiency

Three basic questions you should ask yourselves when programming:

is my program well-written?
is my program correct?
is my program efficient?

How to approach correctness?

testing
formal verification (automatic/semi-automatic/manual)
code inspection
. . .

PB173 Modern C++: Testing & Debugging spring 2016 2 / 16

Testing

an important part of the development process
levels of testing

unit testing
integration testing
system testing

many approaches and frameworks
our focus here: CATCH framework

PB173 Modern C++: Testing & Debugging spring 2016 3 / 16

Testing
Using CATCH

CATCH (C++ Automated Test Cases in Headers)

https://github.com/philsquared/Catch
advantages:

easy to use
no dependencies, just one header file
readable test cases
arbitrary strings as names
test cases divided into independent sections
use standard C++ operators for comparison

PB173 Modern C++: Testing & Debugging spring 2016 4 / 16

https://github.com/philsquared/Catch

Testing Using CATCH
Simple Example

#include "vector.h"
#define CATCH_CONFIG_MAIN // provide main() function
#include "catch.hpp"

TEST_CASE("Vector is initialised as empty") {
vector< int > vec;
REQUIRE(vec.size() == 0);

}

PB173 Modern C++: Testing & Debugging spring 2016 5 / 16

Testing Using CATCH
Using Sections

TEST_CASE("Vector size and capacity") {
vector< int > vec;
vec.push_back(1);
vec.push_back(2);
auto size = vec.size();
REQUIRE(size == 2);
SECTION("push_back increases size") {

vec.push_back(3);
REQUIRE(vec.size() > size);

}
SECTION("erase decreases size") {

vec.erase(vec.begin());
REQUIRE(vec.size() < size);

}
}

PB173 Modern C++: Testing & Debugging spring 2016 6 / 16

Testing Using CATCH
Using Sections

for each SECTION the TEST_CASE is executed from the start
alternative to the traditional setup()/teardown() approach

CATCH also supports test fixtures, see documentation
SECTIONs can be nested to arbitrary depth

failure in parent section prevents nested sections from running

BDD (Behaviour-Driven Development)
SCENARIO, GIVEN, WHEN, THEN

SCENARIO("Adding one element to a vector") {
GIVEN("A vector with no elements") {

vector< int > vec;
WHEN("an element is added via push_back") {

vec.push_back(0);
THEN("the size becomes 1") {

REQUIRE(vec.size() == 1); } } } }

PB173 Modern C++: Testing & Debugging spring 2016 7 / 16

Testing Using CATCH
Using Sections

for each SECTION the TEST_CASE is executed from the start
alternative to the traditional setup()/teardown() approach

CATCH also supports test fixtures, see documentation
SECTIONs can be nested to arbitrary depth

failure in parent section prevents nested sections from running

BDD (Behaviour-Driven Development)
SCENARIO, GIVEN, WHEN, THEN

SCENARIO("Adding one element to a vector") {
GIVEN("A vector with no elements") {

vector< int > vec;
WHEN("an element is added via push_back") {

vec.push_back(0);
THEN("the size becomes 1") {

REQUIRE(vec.size() == 1); } } } }
PB173 Modern C++: Testing & Debugging spring 2016 7 / 16

Testing Using CATCH
Asserts & Logs

REQUIRE, CHECK, REQUIRE_FALSE, CHECK_FALSE

assert condition
CHECK: execution continues even after assertion failure

REQUIRE_THROWS, REQUIRE_NOTHROW, CHECK_THROWS, . . .

assert that an expression throws/does not throw an exception

INFO, WARN, FAIL

logging

CAPTURE

log the value of a variable

PB173 Modern C++: Testing & Debugging spring 2016 8 / 16

Testing Using CATCH
Other Useful Information

command-line parameters
specifying which test to run
output format (jUnit, XML, . . .)
. . .

configuration, own main()

Recommended practice

one main source file with nothing but the main() function
(possibly generated by CATCH)

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
// end of file

other source files for tests

PB173 Modern C++: Testing & Debugging spring 2016 9 / 16

Testing Using CATCH
Other Useful Information

command-line parameters
specifying which test to run
output format (jUnit, XML, . . .)
. . .

configuration, own main()

Recommended practice

one main source file with nothing but the main() function
(possibly generated by CATCH)

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
// end of file

other source files for tests

PB173 Modern C++: Testing & Debugging spring 2016 9 / 16

Debugging
Eliminating Bugs

PB173 Modern C++: Testing & Debugging spring 2016 10 / 16

Debugging
Tests Fail, Now What?

approaches:
tracing (“printf debugging”)
logging
using debuggers / other useful tools

Recommendation:

try to find a minimal example where problem occurs
“code bisection”

bugs are sometimes caused by bad memory management
use valgrind or similar tools

to be able to employ debuggers:
compile without optimisation
compile with debug information (-g)

PB173 Modern C++: Testing & Debugging spring 2016 11 / 16

Debugging
Tests Fail, Now What?

approaches:
tracing (“printf debugging”)
logging
using debuggers / other useful tools

Recommendation:

try to find a minimal example where problem occurs
“code bisection”

bugs are sometimes caused by bad memory management
use valgrind or similar tools

to be able to employ debuggers:
compile without optimisation
compile with debug information (-g)

PB173 Modern C++: Testing & Debugging spring 2016 11 / 16

Debuggers

Typical Functions

pause at specified breakpoints
line of code
condition
exception thrown/caught
signals (SIGSEGV, . . .)

evaluate expressions
step through program
(modify program state)

Our Focus Today

gdb (The GNU Debugger)
command-line tool
has many graphical front-ends

PB173 Modern C++: Testing & Debugging spring 2016 12 / 16

Using gdb

Basic commands:
help
run – start the debugged program
list – list specified function or line
break – set breakpoint
catch – set catchpoint (exception breakpoint)
info – show information about the debugged program

info args, info registers, info breakpoints

step – step program, steps into functions
next – step program, steps over function calls
stepi, nexti – step by instructions, not lines of code
print – evaluate expression
examine – display contents of memory address
disp – evaluate expression each time the program stops
continue – continue running (after breakpoint)
kill – stop execution of the program

PB173 Modern C++: Testing & Debugging spring 2016 13 / 16

Using gdb

Stack commands:

backtrace – print backtrace of stack frames
up, down, frame, select-frame – select stack frame
finish – run until current stack frame returns
info locals, info frame

Executing code at runtime:

set var = value – change the value of a variable
call func() – call a function

Watchpoints:

watch var – watch changes (writes) of a variable
rwatch var – watch reads of a variable
awatch var – watch both reads and writes

PB173 Modern C++: Testing & Debugging spring 2016 14 / 16

gdb front-ends

cgdb

terminal-based front-end for gdb (uses the curses library)
displays the source code above the gdb session
https://cgdb.github.io/
module add cgdb-0.6.6 on faculty computers

Other front-ends: see
https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

PB173 Modern C++: Testing & Debugging spring 2016 15 / 16

https://cgdb.github.io/
https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

Exercise

Exercise no. 1

source codes with errors in the study materials
use gdb / cgdb

Exercise no. 2

write tests for your vector implementation
(from the previous seminar)
use the CATCH framework

PB173 Modern C++: Testing & Debugging spring 2016 16 / 16

