
Functions, Methods, and Lambdas
PB173 Programming in Modern C++

Nikola Beneš, Vladimír Štill, Jiří Weiser

Faculty of Informatics, Masaryk University

spring 2016

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 1 / 19

Overview

function as a parameter
method as a parameter
lambda

definition
capture list
as a parameter

C++ libraries
algorithm library
iterator library

lazy library

. . . oh wait, that was the homework

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 2 / 19

Overview

function as a parameter
method as a parameter
lambda

definition
capture list
as a parameter

C++ libraries
algorithm library
iterator library

lazy library
. . . oh wait, that was the homework

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 2 / 19

Motivation

Why we do want it?

Cause it is cool!

Do we need it?
No, but C++ without lambdas as a concept would be like
Java without classes or Haskell without functions.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 3 / 19

Motivation

Why we do want it?
Cause it is cool!

Do we need it?
No, but C++ without lambdas as a concept would be like
Java without classes or Haskell without functions.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 3 / 19

Motivation

Why we do want it?
Cause it is cool!

Do we need it?

No, but C++ without lambdas as a concept would be like
Java without classes or Haskell without functions.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 3 / 19

Motivation

Why we do want it?
Cause it is cool!

Do we need it?
No, but C++ without lambdas as a concept would be like
Java without classes or Haskell without functions.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 3 / 19

Function as a parameter

int foo(int a, int b) {
return a * 3 + b;

}

How to create a pointer to function?

int main() {
auto f = foo;
std::cout << f(3, 8) << std::endl;

}

What is the type of f?

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 4 / 19

Function as a parameter

int foo(int a, int b) {
return a * 3 + b;

}

How to create a pointer to function?

int main() {
auto f = foo;
std::cout << f(3, 8) << std::endl;

}

What is the type of f?

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 4 / 19

Function as a parameter

int foo(int a, int b) {
return a * 3 + b;

}

How to create a pointer to function?

int main() {
auto f = foo;
std::cout << f(3, 8) << std::endl;

}

What is the type of f?

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 4 / 19

Function as a parameter

int foo(int a, int b) {
return a * 3 + b;

}

The type of the foo function is int(int, int)

using FooType = int(int, int);
// FooType is NOT a pointer
FooType *ptrToFoo = foo;
int(*ptrToFoo2)(int, int) = foo;

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 5 / 19

Function as a parameter

int foo(int a, int b) {
return a * 3 + b;

}

The type of the foo function is int(int, int)

using FooType = int(int, int);
// FooType is NOT a pointer
FooType *ptrToFoo = foo;
int(*ptrToFoo2)(int, int) = foo;

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 5 / 19

Function as a parameter

There was a question:
Why do function pointer definitions work with any number
of ampersands ‘&’ or asterisks ’*’?

void foo() { cout << "Foo to you too!\n"; }

int main() {
void (*p1)() = foo; void (*p2)() = *foo;
void (*p3)() = &foo; void (*p4)() = *&foo;
void (*p5)() = &*foo;void (*p6)() = **foo;
void (*p7)() = **********************foo;
(*p1)(); (*p2)(); (*p3)();
(*p4)(); (*p5)(); (*p6)();
(*p7)();

}

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 6 / 19

Function as a parameter

There was a question:
Why do function pointer definitions work with any number
of ampersands ‘&’ or asterisks ’*’?

void foo() { cout << "Foo to you too!\n"; }

int main() {
void (*p1)() = foo; void (*p2)() = *foo;
void (*p3)() = &foo; void (*p4)() = *&foo;
void (*p5)() = &*foo;void (*p6)() = **foo;
void (*p7)() = **********************foo;
(*p1)(); (*p2)(); (*p3)();
(*p4)(); (*p5)(); (*p6)();
(*p7)();

}

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 6 / 19

Function as a parameter

Explanation

expression foo is implicitly convertible to a pointer to the
function
expression *foo results to foo
expression &foo takes an address of the function (i.e. a pointer
to the function)
expressions can be combined together

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 7 / 19

Method as a parameter

struct X {
int foo(int a, int b) {

return a * 3 + b;
}

};

How to create a pointer to a member function?

int main() {
X x;
auto f = &X::foo;

}

What is the type of f?
How can we call f?
Is the ampersand necessary?

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 8 / 19

Method as a parameter

struct X {
int foo(int a, int b) {

return a * 3 + b;
}

};

How to create a pointer to a member function?

int main() {
X x;
auto f = &X::foo;

}

What is the type of f?
How can we call f?
Is the ampersand necessary?

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 8 / 19

Method as a parameter

struct X {
int foo(int a, int b) {

return a * 3 + b;
}

};

How to create a pointer to a member function?

int main() {
X x;
auto f = &X::foo;

}

What is the type of f?
How can we call f?
Is the ampersand necessary?

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 8 / 19

Method as a parameter

What is the type of f?
int (X::*)(int, int)

How can we call f?
(x.*f)(3, 8)
(ptrToX->*f)(3, 8)

Is the ampersand necessary?
Yes. Rules for taking address of member function are different
to the old C rules for plain functions.
No. Just for Visual Studio.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 9 / 19

Method as a parameter

What is the type of f?
int (X::*)(int, int)

How can we call f?
(x.*f)(3, 8)
(ptrToX->*f)(3, 8)

Is the ampersand necessary?
Yes. Rules for taking address of member function are different
to the old C rules for plain functions.
No. Just for Visual Studio.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 9 / 19

Method as a parameter

What is the type of f?
int (X::*)(int, int)

How can we call f?
(x.*f)(3, 8)
(ptrToX->*f)(3, 8)

Is the ampersand necessary?
Yes. Rules for taking address of member function are different
to the old C rules for plain functions.
No. Just for Visual Studio.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 9 / 19

Lambda – definition

[capture list] (parameters) -> return_type { body }

capture list
which variables from outside should be visible in the lambda

parameters
the same list as in the functions
. . . or auto as a type
can be ommited if the list is empty

return type
it is what it represents. . .
can be ommited if the type is obvious

body
the code

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 10 / 19

Lambda – definition

[capture list] (parameters) -> return_type { body }

capture list
which variables from outside should be visible in the lambda

parameters
the same list as in the functions
. . . or auto as a type
can be ommited if the list is empty

return type
it is what it represents. . .
can be ommited if the type is obvious

body
the code

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 10 / 19

Lambda – definition

[capture list] (parameters) -> return_type { body }

capture list
which variables from outside should be visible in the lambda

parameters
the same list as in the functions
. . . or auto as a type
can be ommited if the list is empty

return type
it is what it represents. . .
can be ommited if the type is obvious

body
the code

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 10 / 19

Lambda – definition

[capture list] (parameters) -> return_type { body }

capture list
which variables from outside should be visible in the lambda

parameters
the same list as in the functions
. . . or auto as a type
can be ommited if the list is empty

return type
it is what it represents. . .
can be ommited if the type is obvious

body
the code

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 10 / 19

Lambda – capture list

list of variables
with ampersand – references
without ampersand – copies

const

this
& – capture all as a reference
= – capture all by copy

const

initializer
introducing new variable

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 11 / 19

Lambda – capture list
Examples

[=,this,&events] {
++events;
return this->foo(a) + b;

}

int x = 4;
int y = [&r = x, x = x + 1] {

++r;
return x + 1;

}();

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 12 / 19

Lambda – capture list
Examples

[=,this,&events] {
++events;
return this->foo(a) + b;

}

int x = 4;
int y = [&r = x, x = x + 1] {

++r;
return x + 1;

}();

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 12 / 19

Lambda as a parameter

What is the type of lambda?

Who knows. . . (The compiler knows.)

How to store lambdas?

auto
template parameter
std::function< signature >

runtime overhead

pointer to function
requires empty capture list

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 13 / 19

Lambda as a parameter

What is the type of lambda?
Who knows. . . (The compiler knows.)

How to store lambdas?

auto
template parameter
std::function< signature >

runtime overhead

pointer to function
requires empty capture list

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 13 / 19

Lambda as a parameter

What is the type of lambda?
Who knows. . . (The compiler knows.)

How to store lambdas?

auto
template parameter
std::function< signature >

runtime overhead

pointer to function
requires empty capture list

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 13 / 19

Lambda as a parameter

What is the type of lambda?
Who knows. . . (The compiler knows.)

How to store lambdas?

auto
template parameter
std::function< signature >

runtime overhead

pointer to function
requires empty capture list

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 13 / 19

Lambda as a parameter
Example

void e1(void(*f)(int), int p) { f(p); }

template< typename F >
void e2(F f, int p) { f(p); }

void e3(std::fucntion< void(int) > f, int p) {
f(p);

}

auto foo = [](int i) { std::cout << i; };
e1(foo, 1);
e2(foo, 1);
e3(foo, 1);

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 14 / 19

How to use lambdas

Do not overuse them.
Lambdas should be short. Four lines at maximum.
If you need to name the lambda, use a function instead.
If your capture list is long, choose a different approach.
If your lambda is long, use a function or a method instead.
Prefer references to copies in the capture list.

The generated class will be smaller.
References could be dangerous. Be careful.

If the number of lambdas is higher than number of methods,
you should consider refactoring your code.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 15 / 19

C++ libraries

algorithm library
copy, transform, generate
remove, reverse, fill
equals, find, count

iterator library
back_inserter
istream_iterator
ostream_iterator

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 16 / 19

Exercise 1

Implement template function forEach so that:

takes two input iterators
first and last

takes a function callback as a third parameter
by pointer to function
by template parameter
by std::function

use a simple lambda
increment parameter, multiply parameter, . . .

template< typename It, /*...*/ >
void forEach(It first, It last, /*...*/ f) { /*...*/ }

Compare the speed on large container.
Use SequenceGenerator from study materials.

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 17 / 19

Exercise 2

Refactor 03_lines.cpp so that:

reading of lines is placed in a new function
printing is realized by a lambda function

template< typename F >
void readLines(const char *file, F f) {

// ...
}

change behaviour to print only even lines

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 18 / 19

Exercise 2

Refactor 03_lines.cpp so that:

reading of lines is placed in a new function
printing is realized by a lambda function

template< typename F >
void readLines(const char *file, F f) {

// ...
}

change behaviour to print only even lines

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 18 / 19

Exercise 3

Refactor 03_algorithm.cpp so that:

no explicitly written cycle is present
function almostSame works for all containers

not just those with the random access

use constructs from
algorithm library
iterator library

PB173 Modern C++: Functions, Methods, and Lambdas spring 2016 19 / 19

