
Smart Pointers, RAII
PB173 Programming in Modern C++

Nikola Beneš, Vladimír Štill, Jiří Weiser

Faculty of Informatics, Masaryk University

spring 2016

PB173 Modern C++: Smart Pointers, RAII spring 2016 1 / 15

Motivation

memory and resource management is hard

memory safety
new/delete / new[]/delete[] pairing
avoid memory leaks

deallocate exactly once
even with exceptions!

common pattern for any resource

PB173 Modern C++: Smart Pointers, RAII spring 2016 2 / 15

RAII

Resource Acquisition Is Initialization

there is one class managing a resource – owner object
allocates (acquires) it in constructor
deallocates (releases) it in destructor
sometimes the resource can be explicitly assigned/released
usually moveable but not copyable

resource can be anything
memory, file, socket, lock, database connection, . . .
but the owner object owns only one

struct ResourceOwner {
ResourceOwner() { /* acquire resource */ }
~ResourceOwner() { /* release resource */ }

};

PB173 Modern C++: Smart Pointers, RAII spring 2016 3 / 15

RAII

Resource Acquisition Is Initialization

there is one class managing a resource – owner object
allocates (acquires) it in constructor
deallocates (releases) it in destructor
sometimes the resource can be explicitly assigned/released
usually moveable but not copyable

resource can be anything
memory, file, socket, lock, database connection, . . .
but the owner object owns only one

struct ResourceOwner {
ResourceOwner() { /* acquire resource */ }
~ResourceOwner() { /* release resource */ }

};

PB173 Modern C++: Smart Pointers, RAII spring 2016 3 / 15

RAII

Why?

composition
more resources → more owner objects
each owner guards one resource

ease of use
resource release is automatic at the end of owner object’s scope
usually only owner objects need user-defined destructors

heavily supported by C++ library
exception safety

resource is deallocated even when exception occurs and it
causes owner to go out of scope

PB173 Modern C++: Smart Pointers, RAII spring 2016 4 / 15

RAII is Concise
Exception safe C++
void foo() {

std::fstream f1("file1.txt");
// work with the file ...

} // the file is closed automatically

Exception safe Java (6)
public void foo() {

FileReader f1 = null;
try { f1 = new FileReader("file1.txt");

// work with the file ...
} finally {

try { if (f1 != null) f1.close(); }
catch (IOException io) { }

}
}

PB173 Modern C++: Smart Pointers, RAII spring 2016 5 / 15

RAII is Concise

Exception safe C++

void foo() {
std::fstream f1("file1.txt");
// work with the file ...

} // the file is closed automatically

Exception safe Java (7+)

public void foo() {
try (FileReader f1 = new FileReader("file1.txt"))
{

// work with the file ...
}

}

PB173 Modern C++: Smart Pointers, RAII spring 2016 6 / 15

RAII – When Does It Work?

for a local owner object, the resource is
surely freed when the scope is exited:

by return
at the end of the scope
when exception is thrown and it is caught in some scope above

surely not freed when:

std::exit, std::quick_exit, std::abort, . . . is called
std::longjmp is called (this is undefined behaviour!)
a signal causes process termination
power is turned off

may, or may not be freed (usually not):

an exception is thrown and it is never caught (!)

PB173 Modern C++: Smart Pointers, RAII spring 2016 7 / 15

RAII in STL

std::(i/o)fstream
smart pointers (std::unique_ptr, std::shared_ptr)
containers (std::vector also owns memory)
std::lock_guard

PB173 Modern C++: Smart Pointers, RAII spring 2016 8 / 15

Smart Pointers

std::unique_ptr

unique owner of memory
std::unique_ptr< SomeClass >,
std::unique_ptr< int[] > – new[] allocated
std::make_unique< A >(a, ctor, params) (C++14)

void foo() {
std::unique_ptr< int > iptr{ new int(42) };
auto x = std::make_unique< A >(1, 8);

}

PB173 Modern C++: Smart Pointers, RAII spring 2016 9 / 15

Smart Pointers

std::shared_ptr

shared owner, counts references (shared_ptr instances) for
the object
deallocates when last instance is destructed
structure of shared_ptr must not contain cycles
(std::weak_ptr to break cycles)
copyable, copy increases reference count
std::make_shared< A >(a, ctor, params)

PB173 Modern C++: Smart Pointers, RAII spring 2016 10 / 15

Smart Pointers

std::weak_ptr

prevent cycles from std::shared_ptr
a pointer which does not own, but can detect that object is no
longer alive

std::weak_ptr< A > wp;
{

std::shared_ptr< A > sp = new A();
wp = sp;

// auto == std::shared_ptr< A >
if (auto locked = wp.lock())

locked->foo();
}
if (wp.expired())

std::cout << "wp has expired" << std::endl;

PB173 Modern C++: Smart Pointers, RAII spring 2016 11 / 15

Smart Pointers

std::enable_shared_from_this

if you want to be able to get shared_ptr from an object (not
pointer to it) it must derive from
std::enable_shared_from_this
then you can get shared pointer by shared_from_this
method
std::shared_ptr< T >(this) does not work

more shared pointers which do not share ownership
object can be deallocated more than once

struct X : std::enable_shared_from_this< X > {
std::shared_ptr< X > getptr() {

return shared_from_this();
}

};

PB173 Modern C++: Smart Pointers, RAII spring 2016 12 / 15

Smart Pointers: Casting

std::static_pointer_cast, std::dynamic_pointer_cast,
std::const_pointer_cast

to cast shared pointers, special functions are required
the resulting shared_ptr shares ownership with the original

PB173 Modern C++: Smart Pointers, RAII spring 2016 13 / 15

Memory in Modern C++

never use new/delete unless writing a (low-level) library
do not use dynamic memory if you don’t have to
use std::unique_ptr for objects owned by one object

or if ownership changes, but is never shared
ownership transfer by std::move

use std::shared_ptr for shared objects
use raw pointers to point into an object owned by someone else

PB173 Modern C++: Smart Pointers, RAII spring 2016 14 / 15

Tasks

Task I – File Descriptors
Use files 05_fildes.h, 05_fildes.cpp

linux/unix only
find what are the problems of this implementation?

focus at resource management, exception safety

change it to use RAII correctly and every time it is meaningful

Task II – Binary Trees
Use file 05_tree.h

uncover memory bugs (leaks, double/invalid free)
write tests, use valgrind

fix it

PB173 Modern C++: Smart Pointers, RAII spring 2016 15 / 15

