
Profiling, assembler, optimisations
PB173 Programming in Modern C++

Nikola Beneš, Vladimír Štill, Jiří Weiser

Faculty of Informatics, Masaryk University

spring 2016

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 1 / 17

Profiling

detection of slow code
desire to know

what is the slow code
where the code is called from
what is the execution time

perf

linux tool for profiling
a set of utilities
use hardware counters

small overhead (compared to callgrind etc.)

sometimes needs extra permissions
not granted on FI
for seeing kernel space, multiple processes

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 2 / 17

Profiling

detection of slow code
desire to know

what is the slow code
where the code is called from
what is the execution time

perf

linux tool for profiling
a set of utilities
use hardware counters

small overhead (compared to callgrind etc.)

sometimes needs extra permissions
not granted on FI
for seeing kernel space, multiple processes

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 2 / 17

Perf – how to use

compile program with -g -fno-omit-frame-pointer and
desired optimization level

keeps frame pointers so that perf can recover call graph

run perf record -a --call-graph fp to gain a call graph
-a – record on all CPUs (not supported on FI computers)
--call-graph fp – record call graph based on frame pointers
produces perf.data file

run perf report --stdio to show the call graph
or omit --stdio to see curses-based interactive UI (but long
C++ symbol names are problem)

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 3 / 17

Assembler

Assembly language (symbolic machine code)

low-level; closest to machine code
commands – machine code instructions

Why do we want to know about it?

debugging
computer security
examine optimisation done by compiler
sometimes it is good to know what’s “under the hood”

Our focus here: reading assembly, not writing it

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 4 / 17

Tools

Disassemble

clang++ -S, g++ -S, etc.
gdb

disassemble
x/10i address (such as $rip)
(print, disp)

objdump -d

Show raw bytes

hexdump -C
xxd

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 5 / 17

Assembler notation
Intel

operands in order dest, src
mov rax, rbx moves from rbx to rax
add rax, 0x1f adds 0x1f to rax

memory indexing [base + index*scale + disp]
mov eax, [rbx + rcx*4 + 0x10]

AT&T
operands in order src, dest

mov %rbx, %rax
add $0x1f, %rax

memory indexing disp(base, index, scale)
movl 0x10(%rbx, %rcx, 4), %eax

size indicated in the instruction mnemonic
movb, movw, movl, movq (1, 2, 4, and 8 bytes)

immediate values with $, registers with %
PB173 Modern C++: Profiling, assembler, optimisations spring 2016 6 / 17

Assembler notation

How to use Intel syntax?

clang++ -S -masm=intel
objdump -d -M intel
gdb

set disassembly-flavor intel

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 7 / 17

x86(-64) Architecture

Registers

instruction pointer: ip (16 bit), eip (32 bit), rip (64 bit)
stack pointer: sp (16 bit), esp (32 bit), rsp (64 bit)
general purpose: ax, bx, cx, dx (eax, rax, . . .)

lower 8 bits: al, bl, cl, dl

source/destination: si, di (esi, rsi, . . .)
stack frame base pointer: bp (ebp, rbp)
64 bit general purpose: r8, r9, . . . , r15

low 32 bits: r8d, . . .
low 16 bits: r8w, . . .
low 8 bits: r8b, . . .

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 8 / 17

x86(-64) Architecture

Stack

memory area given by OS to programs
LIFO data structure; x86 stack grows towards lower addresses
esp (rsp) points to the top of the stack
main use: return address, function arguments, local variables,
temporary storage

PUSH value

decrements esp (rsp) and then stores given value at the
memory address given by (new) esp (rsp)

POP register

copies the value from the memory address given by esp (rsp)
into given register and then increments esp (rsp)

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 9 / 17

x86(-64) Architecture

How does function call work?

parameters are stored somewhere (see below)
call address

push address of next instruction on stack
jump to address

ret (return from function)
pops address from stack and jumps to it

Calling conventions

32bit: many different possibilities
cdecl: arguments passed on the stack in reverse order

64bit: two main approaches (Microsoft x64, System V AMD64)
both use registers to pass (some of) the arguments

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 10 / 17

x86(-64) Architecture

Function frames (standard entry/exit sequence)

at beginning of function:
push rbp
mov rbp, rsp
sub rsp, 0x10 (allocate 16 bytes on stack for local variables)
rbp is the base frame pointer

local values referenced as [rbp + 0x08], . . .
note that [rbp] holds the value of previous rbp

at end of function:
mov rsp, rbp
pop rbp

Note: Optimisations (frame pointer omission optimisation) may
eliminate this.

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 11 / 17

x86(-64) Instructions
Move instruction

MOV – copy value from src to dest
Arithmetic and logic instructions

ADD, SUB, MUL, . . .
AND, OR, XOR, . . .

Test instructions
CMP – performs SUB; does not save the result, only sets flags
TEST – similar to CMP, performs AND

Jump instructions
JMP – unconditional jump
Jxx – conditional jump, reacts to flags

JZ – jump if zero
JBE – jump if below or equal
. . .

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 12 / 17

Optimisations

What can compiler optimize for us?

speed
rearranging memory accesses
inline functions
tail recursion
loop unrolling
else-if to switch

space
collapse common code into sections

obvious
constant propagation

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 13 / 17

Optimisations

What can compiler optimize for us?

speed
rearranging memory accesses
inline functions
tail recursion
loop unrolling
else-if to switch

space
collapse common code into sections

obvious
constant propagation

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 13 / 17

Optimisations
Rearrange memory

add padding (on stack)
to profit from cache lines

start load operations in advance
postpone store operations
group memory access operations

make the access sequential

Advanced transformations
remove or optimize variables

merge them, avoid repeated load, store if no-one reads. . .
make them register-only variable

replace loops by intrinsics
to prevent branch prediction failure

swap cycles
place conditions outside the cycle

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 14 / 17

Optimisations

Inline functions

probably the most important optimisation
put the code of called function directly into the caller
inline small or heavily called functions

complicated heuristics to decide which function should be inlined
call to a function is expensive

big profit with combination of other transformation
inline keyword does not force compiler to inline

compiler usually knows better then programmer (unless you
profile heavily)

Tail recursion

transform recursion into cycle
no duplication on stack
remove function calls

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 15 / 17

Optimisations

loop unrolling
repeat cycle N times each iteration
reapply memory transformation

transform else-if to switch
implement switch by lookup table
constant propagation

compute constants at compile time
propagate constant parameters into functions
may create specialized functions without some parameters

copy elision
avoid use copy-ctor when not necessary

return-value optimization
use directly the variable in which the result is assigned

remove references
PB173 Modern C++: Profiling, assembler, optimisations spring 2016 16 / 17

Task: Profiling
06_smallvector.h

defines brick::data::SmallVector
a vector which need not allocate memory dynamically if it is
small
a piece of real-world C++ code, don’t get scared by all the
templates (you will eventually learn what they mean)
together with some assertion helpers

06_smallvector_bench.cpp

a benchmark which compares SmallVector to std::vector
SmallVector is slower (which is expected)
but it is much slower when memory is-pre allocated (which is
not expected)

try to profile the problematic benchmarks (separately)
try to find out what is the problem, think about the fix
try other containers (deque, vector from 1st and 4th lecture)

PB173 Modern C++: Profiling, assembler, optimisations spring 2016 17 / 17

