
Threads I
PB173 Programming in Modern C++

Nikola Beneš, Vladimír Štill, Jiří Weiser

Faculty of Informatics, Masaryk University

spring 2016

PB173 Modern C++: Threads I spring 2016 1 / 14

Outline

parallel programming
threads
working with memory
asynchronous programming

PB173 Modern C++: Threads I spring 2016 2 / 14

Parallel programming

“Concurrent execution of instructions at the same time.”

shared memory
processes
threads

distributed memory

more difficult than sequential programming
deadlocks
data consistency
extremely hard to debug
knowledge of memory model required

PB173 Modern C++: Threads I spring 2016 3 / 14

Parallel programming

“Concurrent execution of instructions at the same time.”

shared memory
processes
threads

distributed memory

more difficult than sequential programming
deadlocks
data consistency
extremely hard to debug
knowledge of memory model required

PB173 Modern C++: Threads I spring 2016 3 / 14

Threads

#include <thread>
lightweight synopsis:

struct thread {
thread(); // do nothing
template< typename F, typename... Args >
thread(F, Args &&...); // start new thread
void join(); // wait until it ends
...

};

PB173 Modern C++: Threads I spring 2016 4 / 14

Threads

the main thread has to wait for all created threads
. . . unless the thread is detached

threads cannot be copied
the ownership can be moved

not RAII-friendly class
join has to be called manually
std::terminate is called otherwise

add flag -pthread to the compiler

PB173 Modern C++: Threads I spring 2016 5 / 14

Threads
08_thread.cpp

int fibonacci(int n) {...}
void write(int n) {

std::cout << fibonacci(n) << std::endl;
}
int main() {

std::thread t1(write, 14);
std::thread t2(write, 40);
t1.join();
t2.join();

}

PB173 Modern C++: Threads I spring 2016 6 / 14

Working with memory

access to the memory needs to be guarded
mutual exclusion devices

simple std::mutex
std::recursive_mutex
std::timed_mutex
std::shared_mutex (C++17)

RAII-style mechanisms
simple std::lock_guard
std::unique_lock

deadlock prevention
std::lock
std::lock_guard (C++17)

atomic primitives
some next lecture

thread synchronization
conditional variables

PB173 Modern C++: Threads I spring 2016 7 / 14

Working with memory
mutex – 08_mutex.cpp

idea of safe output stream
better approach can be found in the study materials

std::mutex mutex;

template< typename T >
void safeCout(T &&value) {

std::lock_guard< std::mutex > lock(mutex);
std::cout << std::forward< T >(value);

}

PB173 Modern C++: Threads I spring 2016 8 / 14

Working with memory
conditional variable – 08_cv.cpp

struct Barrier {
Barrier(int w) : _w(w), _a(0) {}
void wait() {

std::unique_lock< std::mutex > lk(_m);
if (++_a == _w) {

lk.unlock();
_cv.notify_all();

} else
_cv.wait(lk, [this]{ return _a == _w; });

}
private:

int _w; // workers
int _a; // arrived
std::conditional_variable _cv;
std::mutex _m;

};
PB173 Modern C++: Threads I spring 2016 9 / 14

Working with memory
deadlock prevention – 08_deadlock.cpp

void transferMoney(Account &from,
Accout &to,
int amount) {

std::lock(from.mutex, to.mutex);
std::lock_guard< std::mutex >

lf(from.mutex, std::adopt_lock),
lt(to.mutex, std::adopt_lock);

from.withdraw(amount);
to.deposit(amount);

}

PB173 Modern C++: Threads I spring 2016 10 / 14

Working with memory

Concurrent access to the same memory location is undefined
behaviour unless any synchronization mechanism is used.
For now, the only synchronization mechanism is mutex.
Using the volatile specifier is not enough.

i++ is NOT atomic
does not say anything about other memory locations

it is sufficient when using MSVC
and not targeting ARM
and not using flag /volatile:iso

PB173 Modern C++: Threads I spring 2016 11 / 14

Working with memory

Concurrent access to the same memory location is undefined
behaviour unless any synchronization mechanism is used.
For now, the only synchronization mechanism is mutex.
Using the volatile specifier is not enough.

i++ is NOT atomic
does not say anything about other memory locations
it is sufficient when using MSVC

and not targeting ARM
and not using flag /volatile:iso

PB173 Modern C++: Threads I spring 2016 11 / 14

Working with memory

Concurrent access to the same memory location is undefined
behaviour unless any synchronization mechanism is used.
For now, the only synchronization mechanism is mutex.
Using the volatile specifier is not enough.

i++ is NOT atomic
does not say anything about other memory locations
it is sufficient when using MSVC

and not targeting ARM
and not using flag /volatile:iso

PB173 Modern C++: Threads I spring 2016 11 / 14

Asynchronous programming
08_async.cpp

#include <future>
modern approach
avoid using “heavy” threads
advantages

can return value
can rethrow exceptions

disadvantages
no native handle
threads cannot be detached

PB173 Modern C++: Threads I spring 2016 12 / 14

Asynchronous programming

Config cfg;
// std::future<int>
auto handle = std::async(std::launch::async,

[&] { return cfg.load("app.conf"); });
doSomething();
try {

// wait until config is loaded
int result = handle.get();

} catch (std::exception &e) {
// if cfg.load throws
std::cerr << e.what() << std::endl;

}

PB173 Modern C++: Threads I spring 2016 13 / 14

Task

Implement a simple thread pool which accepts only
non-parametrized tasks. Tasks will be enqueued and the thread pool
will execute tasks if it has free slots for threads.

tasks will not return any value
tasks will not throw any exception
the thread pool will have limit for threads

PB173 Modern C++: Threads I spring 2016 14 / 14

