Threads Il: Atomic Operations
PB173 Programming in Modern C++

Nikola Beneg, Vladimir Still, Jiff Weiser

Faculty of Informatics, Masaryk University

spring 2016

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 1/14

Outline

atomic operations

memory barriers

libaray: std::atomic, std::atomic_flag
lock-free programming

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 2 /14

Atomic Operations

“A need to execute an operation containing more CPU
instructions.”
use a mutex to guard to shared piece of code
(could be) expensive
(depends on the implementation)

context switching

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 3/14

Atomic Operations

How can we implement a mutex?

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 4 /14

Atomic Operations

How can we implement a mutex?
Through the system call.

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 4 /14

Atomic Operations

How can we implement a mutex?
Through the system call.
Oh, wait... How can we implement this feature in the OS?

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 4 /14

Atomic Operations

How can we implement a mutex?
Through the system call.
Oh, wait... How can we implement this feature in the OS?

parallel architectures have to provide low level synchronization
primitives

special instructions in the native assembler

(sometimes) adopted by higher languages

pre-C++11: only compiler-specific interface to those primitives
C++11 standard defines common interface across platforms

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 4 /14

Memory Barriers

Special (micro) instructions preventing both compiler and
processor from reordering memory accesses.

function calls to different compilation unit prevents compiler to
reorder reads and writes

volatile modifier prevents compiler from reordering accesses
to volatile objects relatively to each other

two different approaches to memory barriers

acquire semantics
release semantics

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 5/ 14

Memory Barriers

Acquire Semantics

Read access tagged with acquire semantics causes that no
other read operation placed after the tagged access can
be executed before the tagged access.

The access to sharedZ variable cannot occur before the
access to sharedY variable.

int x = sharedX;
int y = sharedy;
int z = sharedZ;

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 6 /14

Memory Barriers

Release Semantics

Write access tagged with release semantics causes that no
other write operation places before the tagged access can
be executed after the tagged access. By the time of
tagged accessing, every write access which happened
before is visible.

The access to sharedX variable cannot occur after the access
to sharedY variable. Any other thread can see new values in
both sharedX and sharedy.

sharedX = x;
sharedY = y;
sharedZ = z;

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 7/ 14

Memory Barriers

...and Mutexes

mutex lock
acquire semantics
mutex unlock
release semantics
wait on conditional variable
both acquire and release semantics
notify on conditional variable

C++ standard does not specify
POSIX says it has release semantics

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 8 /14

Memory Ordering in C++11

for barriers and atomic operations

relaxed
no ordering, just atomic operation

acquire
release
release-acquire
combines together
for compound operations (increment, exchange)

sequence semantics

release-acquire + total ordering
default ordering
recommended approach

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 9 /14

STD - Atomic

std::atomic_flag
standard guarantees atomicity
two operations
test and set
assings true, returns the previous value
reset
assigns false

std: :atomic<T>

could use lock (std::atomic_flag)
usually really atomic for primitive types
wide palette of atomic operations

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 10 / 14

STD — Atomic Flag

Spin lock

struct SpinLock {
SpinLock() { _flag.clear(); }
~SpinLock() {
assert(!_flag.test_and_set());
}
void lock() {
while(_flag.test_and_set());
}
void unlock() { _flag.clear(); %}
private:
std::atomic_flag _flag;
s

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 11 /14

STD - Atomic

Pick a Seat

S *mySeat = new ...;
for (std::atomic< S * > &seat : row) {
S *expected = nullptr;
if (seat.compare_exchange_strong(expected, mySeat)) {
// we can sit down
break;
}
while (expected->power() < mySeat->power()) {
// kick him off
if (seat.compare_exchange_strong(expected,
mySeat))
break;

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 12 / 14

Lock-Free Programming

the previous algorithm
consists of

exchanges operations
compare and swap operations
cycles

“algorithm is lock-free if there is guaranteed system-wide
progress”

spin lock breaks this condition (deadlock)

“algorithm is wait-free if there is also guaranteed per-thread
progress”

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 13 / 14

Lock-Free Programming

the previous algorithm
consists of

exchanges operations
compare and swap operations
cycles

“algorithm is lock-free if there is guaranteed system-wide
progress”

spin lock breaks this condition (deadlock)
“algorithm is wait-free if there is also guaranteed per-thread

progress”

Wanna know more?

Join the Paradise lab.

PB173 Modern C++: Threads Il: Atomic Operations spring 2016

13 / 14

Task — Lock-Free Queue

implement a simple lock-free queue

do not use mutexes, just atomic operations

use algorithm from this paper: http://www.cs.rochester.
edu/~scott/papers/1996_P0ODC_queues.pdf

PB173 Modern C++: Threads Il: Atomic Operations spring 2016 14 / 14

http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf
http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf

