PB173 - Tématický vývoj aplikací v C/C++ (Jaro 2016) Domain specific development in C/C++

Skupina: Aplikovaná kryptografie a bezpečné programování

https://is.muni.cz/auth/predmety/uplny_vypis.pl?fakulta=1433;obdobi=618

4;predmet=788705

Petr Švenda svenda@fi.muni.cz

Konzultace: A406, Pondělí 15-15:50

Block cipher modes for Authenticated Encryption

Modes for authenticated encryption

- Encryption preserves confidentiality but not integrity
- Common integrity functions (like CRC) protect against random faults
- Cryptographic message integrity protects intensional errors

Confidentiality, integrity, privacy

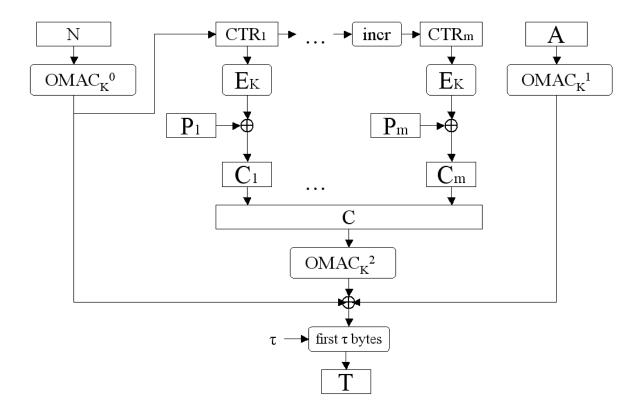
- Message confidentiality [encryption]
 - attacker is not able to obtain info about plaintext
- Message integrity [MAC]
 - attacker is not able to modify message without being detected (PTX, CTX)
- Message privacy [encryption]
 - attacker is not able to distinguish between encrypted message and random string
 - same message is encrypted each time differently

Encryption and MAC composition

- Modes for block ciphers (CBC, CTR, CBC-MAC)
- Compositions (encryption + MAC)
 - encrypt-and-mac $[E_{Ke,Km}(M) = E_{Ke}(M) \mid T_{Km}(M)]$
 - can fail with privacy and authenticity
 - mac-then-encrypt $[E_{Ke,Km}(M) = E_{Ke}(M \mid T_{Km}(M))]$
 - can fail with authenticity
 - encrypt-then-mac $[E_{Ke,Km}(M) = E_{Ke}(M) || T_{Km}(E_{Ke}(M))]$
 - always provides privacy and authenticity
- Paralelizability issue
- Authenticated-encryption modes (AE)
 - special block cipher modes for composed process

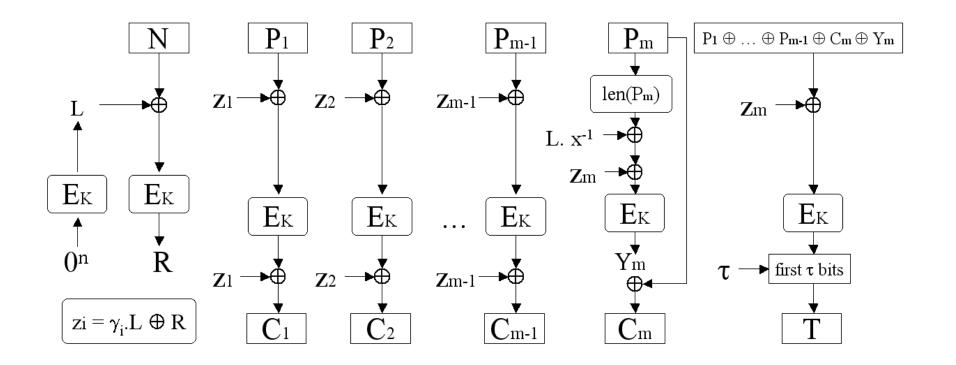
Usage scenarios

- Powerful, parallelizable environments
 - hardware accelerators
- Powerful, but almost serial environments
 - personal computer, PDA
- Restricted environments
 - smart card, cellular phone
- Different scenarios have different needs

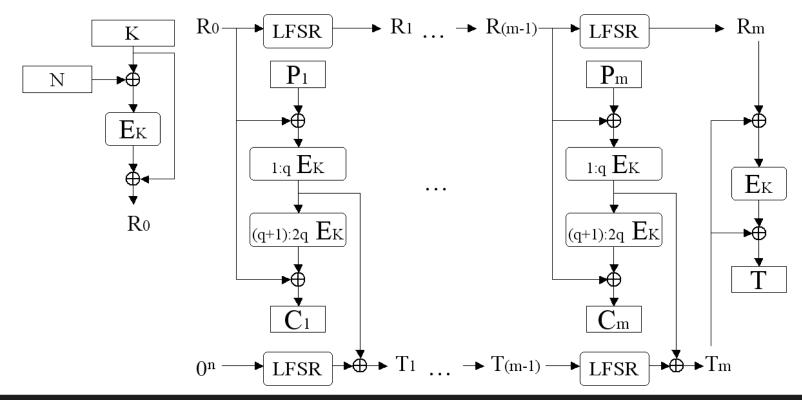


Important features for AE modes

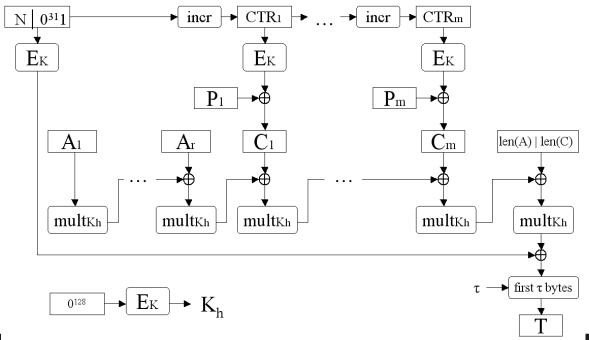
- Provable security
- Performance, paralelizability, memory req.
 - important for high-speed encryption, SC
- Patent
 - early AE modes were patented
- Associated data authentication
 - authentication of non-encrypted part
- Online, incremental MAC, number of keys, endian dependency ...
- http://blog.cryptographyengineering.com/2012/05/how-tochoose-authenticated-encryption.html
- www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf


EAX mode

- Encrypt-than-mac composition
- Provable secure, unpatented


Offset CodeBook mode (OCB)

- Memory efficient, fast mode
- Provable secure, but patented


Cipher-State mode (CS)

- Memory efficient, fast mode, unpatented
- Not provable secure (inner state of cipher)

Galois/Counter Mode (GCM)

- Need pre-computed table (4kB-64kB)
- fast mode, provable secure, unpatented, NIST standard
- http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

Implementation: AES-GCM from PolarSSL

gcm.h, gcm.c

CAESAR competition

http://competitions.cr.yp.to/caesar-submissions.html

Cryptographic competitions

	_
Introduction	
Secret-key cryptography	
Disasters	
Features	
Focused competitions:	
AES	
eSTREAM	
SHA-3	
PHC	
CAESAR	
Broader evaluations:	
CRYPTREC	
NESSIE	
CAESAR details:	
Submissions	
Call for submissions	
Call draft 5	
Call draft 4	
Call draft 3	
Call draft 2	
Call draft 1	
Committee	
Frequently asked questions	

CAESAR submissions

candidate	designers
ACORN: v1	Hongjun Wu
++AE: v1.0 analysis parameters	Francisco Recacha
AEGIS: v1	Hongjun Wu, Bart Preneel
AES-CMCC: <u>v1</u> <u>v1.1</u>	Jonathan Trostle
AES-COBRA: v1 withdrawn	Elena Andreeva, Andrey Bogdanov, Martin M. Lauridsen, Atul Luykx, Bart Mennink, Elmar Tischhauser, Kan Yasuda
AES-COPA: v1	Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, Kan Yasuda
AES-CPFB: v1	Miguel Montes, Daniel Penazzi
AES-JAMBU: v1	Hongjun Wu, Tao Huang
AES-OTR: v1	Kazuhiko Minematsu
AEZ: v1 security	Viet Tung Hoang, Ted Krovetz, Phillip Rogaway
Artemia: v1 proof addendum	Javad Alizadeh, Mohammad Reza Aref, Nasour Bagheri
Ascon: home v1	Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schläffer
AVALANCHE: v1 corrections	Basel Alomair
Calico: v8	Christopher Taylor
CBA: <u>v1</u> <u>v1-1</u>	Hossein Hosseini, Shahram Khazaei
CBEAM: r1 withdrawn	Markku-Juhani O. Saarinen
CLOC: v1	Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka

Conclusions

- Composition of ENC and MAC can fail
 - encrypt-then-mac provable secure
 - specially designed composed modes
- One of the most promising mode is patented (OCB)
 - fast alternative GCM, CS
 - Searching for new modes (CAESAR competition)
- Suitable mode depends on usage
 - parallelizability, memory
 - specific needs (online, incremental MAC)

PRACTICAL ASSIGNMENT

Homework from last week – showtime ©

- Update your design documents based on feedback
 - And add into GitHub repo (docs folder)
- Create implementation of server process
 - No network communication yet, just methods + tests!
- Functions to be implemented (and tested!)
 - new user registration (in: user name / password, out: status)
 - New user stored in local "database" (ini file, sqllite...)
 - user authentication to server (in:user/pass, out: status)
 - Check supplied info against info from local database
 - Use PBKDF2 or better function to generate hash to check
 - obtain list of other online users (out: formated list JSON?)
 - Users that were successfully authenticated now assumed to be online
- Don't forget to document functions in JavaDoc-style

Practical assignment

- Update your implementation of server functions based on feedback
 - And add into GitHub repo
- Create implementation of basic client process
 - No network communication yet, just methods + tests!
- Functions to be implemented (and tested!)
 - Login user (client side) (in: user name / password, out: status)
 - => prepared structure to be send to server
 - Prepare protected message for another user (in: user identification, session context (keys, counters...), out: protected message, status)
 - Encryption, MAC, Use suitable Authenticated Encryption mode
 - Update session context
 - Unprotect message from another user (in: protected message, session context (keys, counters...), out: unprotected message, status)
 - Think how to handle errors
- Don't forget to document functions in JavaDoc-style

Submissions, deadlines

- Upload application source codes as single zip file into IS Homework vault (Crypto - 5. homework (AE))
 - Zip file from current version of repo
- DEADLINE 4.4. 12:00
 - Up to 10 points assigned