
PV204 Security technologies

Trusted element, side channels attacks

Petr Švenda svenda@fi.muni.cz

Faculty of Informatics, Masaryk University

mailto:svenda@fi.muni.cz
mailto:svenda@fi.muni.cz

COURSE TRIVIA

| PV204 Trusted element 25.2.2016 3

Introduction

• See PV204_overview.ppt

| PV204 Trusted element 25.2.2016 4

TRUSTED ELEMENT

| PV204 Trusted element 25.2.2016 5

What is “Trusted” system (plain language)

• Many different notions

1. System trusted by someone

2. System that you can’t verify and therefore must

trust not to betray you

– If a trusted component fails, security can be violated

3. System build according to rigorous criteria so you

are willing to trust it

4. …

• Why Trust is Bad for Security, D. Gollman, 2006
– http://www.sciencedirect.com/science/journal/15710661/157/3

 | PV204 Trusted element 25.2.2016

We need more precise

specification of Trust

6

http://www.sciencedirect.com/science/journal/15710661/157/3
http://www.sciencedirect.com/science/journal/15710661/157/3

UNTRUSTED

VS.

TRUSTED

VS.

TRUSTWORTHY

| PV204 Trusted element 25.2.2016 7

Untrusted system

• System explicitly unable to fulfill specified security

policy

• Additional layer of protection must be employed

– E.g., Encryption of data before storage

– E.g., Digital signature of email before send over network

| PV204 Trusted element 25.2.2016 8

Trusted system

• “…system that is relied upon to a specified extent to

enforce a specified security policy. As such, a

trusted system is one whose failure may break a

specified security policy.” (TCSEC, Orange Book)

• Trusted subjects are those excepted from

mandatory security policies (Bell LaPadula model)

• User must trust (if likes to use the system)

– E.g., your bank

| PV204 Trusted element 25.2.2016 9

Trustworthy system (computer)

• Computer system where software, hardware, and

procedures are secure, available and functional and

adhere to security practices

• User have reasons to trust reasonably

• Trustworthiness is subjective

– Limited interface and hardware protections can increase

trustworthiness (e.g., append-only log server)

• Example: Payment card - Trusted? Trustworthy?

• Trusted does not mean automatically Trustworthy

| PV204 Trusted element 25.2.2016 10

Trusted computing base (TCB)

• The set of all hardware, firmware, and/or software

components that are critical to its security

• The vulnerabilities inside TCB might breach the security

properties of the entire system

– E.g., server hardware + virtualization (VM) software

• The boundary of TCB is relevant to usage scenario

– TCB for datacentre admin is around hw + VM (to protect against

compromise of underlying hardware and services)

– TCB for web server client also contains Apache web server

• Very important factor is size and attack surface of TCB

– Bigger size implies more space for bugs and vulnerabilities

| PV204 Trusted element 25.2.2016

https://en.wikipedia.org/wiki/Trusted_computing_base

11

Cryptography on client

Which parts are trusted?

What are threads?

What are attacker models?

What is trusted computing base?

| PV204 Trusted element 25.2.2016 12

On client, but with secure hardware

Which parts are trusted?

What are threads?

What are attacker models?

What is trusted computing base?

| PV204 Trusted element 25.2.2016 13

Cryptography in cloud

WS API: JSON

Which parts are trusted?

What are threads?

What are attacker models?

What is trusted computing base?

| PV204 Trusted element 25.2.2016 14

Cryptography in cloud in secure hardware

Which parts are now trusted?

Are also trustworthy?

| PV204 Trusted element 25.2.2016 15

TRUSTED ELEMENT

| PV204 Trusted element 25.2.2016 17

What exactly can be trusted element (TE)?

• Recall: Anything user entity of TE is willing to trust

– Depends on definition of “trust” and definition of “element”

– We will use narrower definition

• Trusted element is element (hardware, software or both)

in the system intended to increase security level w.r.t.

situation without the presence of such element

1. By storage of sensitive information (keys, measured values)

2. By enforcing integrity of execution of operation (firmware update)

3. By performing computation with confidential data (DRM)

4. By providing unforged reporting from untrusted environment

5. …

| PV204 Trusted element 25.2.2016 18

Typical examples

• Payment smart card

– TE for issuing bank

• SIM card

– TE for phone carriers

• Trusted Platform Module (TPM)

– TE for user as storage of Bitlocker keys, TE for remote entity during attestation

• Trusted Execution Environment in mobile/set-top box

– TE for issuer for confidentiality and integrity of code

• Hardware Security Module for TLS keys

– TE for web admin

• Energy meter

– TE for utility company

• Server under control of service provider
– TE for user – private data, TE for provider – business operation

| PV204 Trusted element 25.2.2016 19

For whom is TE trusted?

Risk management

• No system is completely secure (risk is present)

• Risk management allows to evaluate and eventually

take additional protection measures

• Example: payment transaction limit

– My account/card will never be compromised vs. even if

compromised, then loss is bounded

• Example: medical database

– central governmental DB vs. doctor’s local DB

• Good design practice is to allow for risk management

| PV204 Trusted element 25.2.2016 20

TRUSTED ELEMENT

MODES OF USAGE

| PV204 Trusted element 25.2.2016 21

Element carries fixed information

• Fixed information ID transmitted, no secure channel

• Low cost solution (nothing “smart” needed)

• Problem: Attacker can eavesdrop and clone chip

| PV204 Trusted element 25.2.2016

Element is trusted with ID carriage

But is it trustworthy?
22

Element as a secure carrier

• Key(s) stored on a card, loaded to a PC before

encryption/signing/authentication, then erased

• High speed usage of key possible (>>MB/sec)

• Attacker with an access to PC during operation will

obtain the key

– key protected for transport, but not during the usage

| PV204 Trusted element 25.2.2016

Element is trusted as confidential key storage,

but cannot perform (or not trusted with) operation
23

Element as root of trust (TPM)

• Secure boot process, remote attestation

• Element provides robust storage with integrity

• Application can verify before pass control

(measured boot)

• Computer can authenticate with remote entity…

| PV204 Trusted element 25.2.2016

Element is trusted with integrity of stored values

24

Element as encryption/signing device

• PC just sends data for encryption/signing…

• Key never leaves element

– personalized in secure environment

– protected during transport and usage

• Attacker must attack the element

– or wait until card is inserted and PIN entered!

• Potentially low speed encryption (~kB/sec)

– low communication speed / limited element performance

| PV204 Trusted element 25.2.2016 25

Element as computational device

• PC just sends input for application on smart card

• Application code & keys never leave the element

– Element can do complicated programmable actions

– Can open secure channels to other entity

• secure server, trusted time service…

• PC act as a transparent relay only (no access to data)

• Attacker must attack the element or input

 | PV204 Trusted element 25.2.2016 26

ATTACKS AGAINST TRUSTED

ELEMENT

| PV204 Trusted element 25.2.2016 27

Trusted hardware (TE) is not panacea!

1. Can be physically attacked

– Christopher Tarnovsky, BlackHat 2010

– Infineon SLE 66 CL PE TPM chip, bus read by tiny probes

– 9 months to carry attack, $200k

– https://youtu.be/w7PT0nrK2BE (great video with details)

2. Attacked via vulnerable API implementation

– IBM 4758 HSM (Export long key under short DES one)

3. Provides trusted anchor != trustworthy system

– weakness can be introduced later

– E.g., bug in securely updated firmware

| PV204 Trusted element 25.2.2016 28

https://youtu.be/w7PT0nrK2BE
https://youtu.be/w7PT0nrK2BE

How to reason about attack and

countermeasures?
1. Where does an attack come from (principle)?

– Understand principle

2. Different hypothesis for the attack to be practical

– More ways how to exploit same weakness

3. Attack countermeasures by cancel of hypothesis

– For every way you are aware of

4. Costs and benefits of the countermeasures

– Cost of assets protected

– Cost for attacker to perform attack

– Cost of countermeasure

• Important: Consider Break Once, Run Everywhere (BORE)

| PV204 Trusted element 25.2.2016 29

Motivation: Bell’s Model 131-B2 / Sigaba

• Encryption device intended for US army, 1943

– Oscilloscope patterns detected during usage

– 75 % of plaintexts intercepted from 80 feets

– Protection devised (security perimeter), but later forgot

• CIA in 1951 – recovery over ¼ mile of power lines

• Other countries also discovered the issue

– Russia, Japan…

• More research in use of (eavesdropping) and

defense against (shielding) TEMPEST

| PV204 Trusted element 25.2.2016 30

Common and realizable attacks on TE

1. Non-invasive attacks

– API-level attacks

• Incorrectly designed and implemented application

• Malfunctioning application (code bug, faulty generator)

– Communication-level attacks

• Observation and manipulation of communication channel

– Side-channel attacks

• Timing/power/EM/acoustic/cache-usage/error… analysis attacks

2. Semi-invasive attacks

– Fault induction attacks (power/light/clock glitches…)

3. Invasive attacks

– Dismantle chip, microprobes…

| PV204 Trusted element 25.2.2016 31

Where are frequent problems with crypto nowadays?

• Security mathematical algorithms

– OK, we have very strong ones (AES, SHA-3, RSA…)

• Implementation of algorithm

– Problems implementation attacks

• Randomness for keys

– Problems achievable brute-force attacks

• Key distribution

– Problems old keys, untrusted keys, key leakage

• Operation security

– Problems where we are using crypto, key leakage

32 | PV204 Trusted element 25.2.2016

NON-INVASIVE ATTACKS

Non-invasive side-channel attacks

| PV204 Trusted element 25.2.2016 33

TRNG Key: What if faulty TRNGs?

• Good source of randomness is critical

– TRNG can be weak or malfunctioning

• How to inspect TRNG correctness?

1. Analysis of TRNG implementation (but usually blackbox)

2. Output data can be statistically tested (100MB-1GB

stream, NIST STS, Dieharder, TestU01 batteries)

http://www.phy.duke.edu/~rgb/General/dieharder.php

3. Behaviour in extreme condition (+70/-50° C, radiation…)

• Analyse data stream gathered during extreme conditions

4. Simple power analysis of TRNG generation

• Is hidden/unknown operation present?

 | PV204 Trusted element 25.2.2016 34

http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php

Serial test: Histogram of 16bits patterns

| PV204 Trusted element 25.2.2016

Normal distribution (expected)

Biased distribution (lower entropy)

35

POWER ANALYSIS

Non-invasive side-channel attacks

| PV204 Trusted element 25.2.2016 36

Basic setup for power analysis

| PV204 Trusted element 25.2.2016

Smart card

Smart card

reader

Inverse card

connector

Oscilloscope

Resistor

20-80 ohm

Probe

37

More advanced setup for power analysis

| PV204 Trusted element 25.2.2016

Ethernet

Tested smartcard

External power

supply

SCSAT04 measurement

board

 38

Simple vs. differential power analysis

• Simple power analysis

– Direct observation of single / few power traces

– Visible operation => reverse engineering

– Visible patterns => data dependency

• Differential power analysis

– Statistical processing of many power traces

– More subtle data dependencies found

39 | PV204 Trusted element 25.2.2016

Reverse engineering of Java Card bytecode

• Goal: obtain code back from smart card

– JavaCard defines around 140 bytecode instructions

– JVM fetch instruction and execute it

| PV204 Trusted element 25.2.2016

(source code)

m_ram1[0] = (byte) (m_ram1[0] % 1);

(bytecode)

getfield_a_this 0;

sconst_0;

baload;

sconst_1;

srem;

bastore;

(power trace)

compiler oscilloscope

40

Conditional jumps

• may reveal sensitive info

• keys, internal branches, …

41 | PV204 Trusted element 25.2.2016

(bytecode)

 sload_1;

 ifeq_w L2;

L1: getfield_a_this 0;

 sconst_0;

 sconst_0;

 bastore;

 goto L3;

L2: getfield_a_this 0;

 sconst_0;

 sconst_1;

 bastore;

 goto L3;

L3: …

(source code)

if (key == 0) m_ram1[0] = 1;

else m_ram1[0] = 0;

compiler
oscilloscope

(power trace, k != 0)

(power trace, k == 0)

Can you use

timing attack?

Simple power analysis – data leakage

• Data revealed directly when processed

– e.g., Hamming weight of instruction argument

• hamming weight of separate bytes of key (256 238)

| PV204 Trusted element 25.2.2016 42

Differential power analysis

43

| PV204 Trusted element 25.2.2016

• Very Powerful attack on secret values (keys)

– E.g., KEY INPUT_DATA

1. Obtain multiple power traces with (fixed) key

usage and variable data

– 103-105 traces with known I/O data => S(n)

– KEY KNOWN_DATA

2. Guess key byte-per-byte

– All possible values of single byte tried (256)

– D = HammWeight(KEY KNOWN_DATA > 4)

– Correct guess reveals correlation with traces

– Incorrect guess not

3. Divide and test approach

– Traces divided into 2 groups

– Groups are averaged A0,A1 (noise reduced)

– Subtract group’s averaged signals T(n)

– Significant peaks if guess was correct

• No need for knowledge of exact implementation

– big advantage

Tool: DPA simulator

• Generate simulated DPA traces

• Perform DPA

• Can be used to inspect influence of noise, number

of traces…

• https://github.com/crocs-muni/PowerTraceSimulator

| PV204 Trusted element 25.2.2016 44

https://github.com/crocs-muni/PowerTraceSimulator
https://github.com/crocs-muni/PowerTraceSimulator
https://github.com/crocs-muni/PowerTraceSimulator

TIMING ATTACKS

Non-invasive side-channel attacks

| PV204 Trusted element 25.2.2016 45

Timing attack: principle

46 | PV204 Trusted element 25.2.2016

+ 57ms

+ 49ms

Timing attacks

• Execution of crypto algorithm takes different time to

process input data with some dependence on secret value

(secret/private key)
1. Due to performance optimizations (developer, compiler)

2. Due to conditional statements (branching)

3. Due to cache misses

4. Due to operations taking different number of cycles

• Measurement techniques

1. Start/stop time (aggregated time, local/remote measurement)

2. Power/EM trace (very precise if operation can be located)

| PV204 Trusted element 25.2.2016 47

Naïve modular exponentiation (RSA/DH)

• M = Cd mod N

• M = C * C * C * … * C mod N

• Easy, but extremely slow for large d (1000s bits)

– Faster algorithms exist

48 | PV204 Trusted element 25.2.2016

d-times

Is there dependency

of time on secret value?

Square and multiply algorithm

• How to measure?

– Exact detection from simple power trace

– Extraction from overall time of multiple measurements

| PV204 Trusted element 25.2.2016 49

Gilbert Goodwill, http://www.embedded.com/print/4408435

// M = C^d mod N
// Square and multiply algorithm
x = C // start with ciphertext
for j = 1 to n { // process all bits of private exponent
 x = x*x mod N // shift to next bit by x * x (always)
 if (d_j == 1) { // j-th bit of private exponent d
 x = x*C mod N // if 1 then multiple by Ciphertext
 }
}
return x // plaintext M

E
x
e

c
u

te
d

 o
n

ly

w
h

e
n

 d
_

j
=

=
 1

Executed always

Example: Remote extraction OpenSSL RSA

• Brumley, Boneh, Remote timing attacks are practical

– https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

• Scenario: OpenSSL-based TLS with RSA on remote server

– Local network, but multiple routers

– Attacker submits multiple ciphertexts and observe processing time (client)

• OpenSSL’s RSA CRT implementation

– Square and multiply with sliding windows exponentiation

– Modular multiplication in every step: x*y mod q (Montgomery alg.)

– From timing can be said if normal or Karatsuba was used

• If x and y has unequal size, normal multiplication is used (slower)

• If x and y has equal size, Karatsuba multiplication is used (faster)

• Attacker learns bits of prime by adaptively chosen ciphertexts

– About 300k queries needed

50 | PV204 Trusted element 25.2.2016

https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

Defense introduced by OpenSSL

• RSA blinding: RSA_blinding_on()

– https://www.openssl.org/news/secadv_20030317.txt

• Decryption without protection: M = cd mod N

• Blinding of ciphertext c before decryption

1. Generate random value r and compute re mod N

2. Compute blinded ciphertext b = c * re mod N

3. Decrypt b and then divide result by r

• r is removed and only decrypted plaintext remains

51 | PV204 Trusted element 25.2.2016

https://www.openssl.org/news/secadv_20030317.txt

Example: Practical TEMPEST for $3000

• ECDH Key-Extraction via Low-Bandwidth Electromagnetic

Attacks on PCs

– https://eprint.iacr.org/2016/129.pdf

• E-M trace captured (across a wall)

52 | PV204 Trusted element 25.2.2016

https://eprint.iacr.org/2016/129.pdf
https://eprint.iacr.org/2016/129.pdf
https://eprint.iacr.org/2016/129.pdf

Example: Practical TEMPEST for $3000

• ECDH implemented in latest GnuPG's Libgcrypt

• Single chosen ciphertext – used operands directly visible

53 | PV204 Trusted element 25.2.2016

Example: How to evaluate attack severity?

• What was the cost?

– Not high: $3000

• What was the targeted implementation?

– Widely used implementation: latest GnuPG's Libgcrypt

• What were preconditions?

– Physical presence, but behind the wall

• Is it possible to mitigate the attack?

– Yes: fix in library, physical shielding of device, perimeter…

– What is the cost of mitigation?

54 | PV204 Trusted element 25.2.2016

Example: Acoustic side channel in GnuPG

• RSA Key Extraction via Low-Bandwidth Acoustic

Cryptanalysis

– Insecure RSA computation in GnuPG

– https://www.tau.ac.il/~tromer/papers/acoustic-20131218.pdf

• Acoustic emanation used as side-channel

– 4096-bit key extracted in one hour

– Mobile phone 4 meters away

| PV204 Trusted element 25.2.2016 55

https://www.tau.ac.il/~tromer/papers/acoustic-20131218.pdf
https://www.tau.ac.il/~tromer/papers/acoustic-20131218.pdf
https://www.tau.ac.il/~tromer/papers/acoustic-20131218.pdf
https://www.tau.ac.il/~tromer/papers/acoustic-20131218.pdf
https://www.tau.ac.il/~tromer/papers/acoustic-20131218.pdf

Example: Cache-timing attack on AES

• Attacks not limited to asymmetric cryptography

– Daniel J. Bernstein, http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

• Scenario: Operation with secret AES key on remote server

– Key retrieved based on response time variations of table lookups

cache hits/misses

– 225 x 600B random packets + 227 x 400B + one minute brute-force

search

• Very difficult to write high-speed but constant-time AES

– Problem: table lookups are not constant-time

– Not recognized by NIST during AES competition

| PV204 Trusted element 25.2.2016 56

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

MITIGATIONS

58 | PV204 Trusted element 25.2.2016

Generic protection techniques

1. Shielding - preventing leakage outside

– Acoustic shielding, noisy environment

2. Creating additional “noise”

– Parallel software load, noisy power consumption circuits

3. Compensating for leakage

– Perform inverse computation/storage

4. Harden algorithm

– Ciphertext blinding…

60 | PV204 Trusted element 25.2.2016

How to test real implementation?

1. Be aware of various side-channels

2. Obtain measurement for given side-channel

– Many times (103 - 107), compute statistics

– Same input data and key

– Same key and different data

– Different keys and same data…

3. Compare groups of measured data

– Is difference visible? => potential leakage

– Is distribution uniform? Is distribution normal?

4. Try to measure again with better precision

 61 | PV204 Trusted element 25.2.2016

SEMI-INVASIVE ATTACKS

| PV204 Trusted element 25.2.2016 62

Semi-invasive attacks

• “Physical” manipulation (but card still working)

• Micro probes placed on the bus

– After removing epoxy layer

• Fault induction

– liquid nitrogen, power glitches, light flashes…

– modify memory (RAM, EEPROM), e.g., PIN counter

– modify instruction, e.g., conditional jump

| PV204 Trusted element 25.2.2016 63

| PV204 Trusted element 25.2.2016

PIN verification procedure

• [Decrease counter, verify, increase] - correct

• [Verify, decrease/increase]

64

Fault induction

• Attacker can induce bit faults in memory locations

– power glitch, flash light, radiation...

– harder to induce targeted then random fault

• Protection with shadow variable

– every variable has shadow counterpart

– shadow variable contains inverse value

– consistency is checked every read/write to memory

• Robust protection, but cumbersome for developer

| PV204 Trusted element 25.2.2016

01011010

10100101

01011010

10100101

if (a != ~a_inv) Exception();

a = 0x55;

a_inv = ~0x55;

01010101

10101010

01010000 if (a != ~a_inv) Exception();

a = 0x13;
a

a_inv

65

CONCLUSIONS

| PV204 Trusted element 25.2.2016 66

Morale

1. Preventing implementation attacks is extra difficult

– Naïve code is often vulnerable

• Not aware of existing problems/attacks

– Optimized code is often vulnerable

• Time/power/acoustic… dependency on secret data

2. Use well-known libraries instead of own code

– And follow security advisories and patch quickly

3. Security / mitigations are complex issues

– Underlying hardware can leak information as well

– Don’t allow for large number of queries

67 | PV204 Trusted element 25.2.2016

Mandatory reading

• G. Goodwill, Defending against side-channel attacks

– http://www.embedded.com/print/4408435

– http://www.embedded.com/print/4409695

• Focus on:

– What side channels are inspected?

– What step in executed operation is misused for attack?

– What are proposed defenses?

| PV204 Trusted element 25.2.2016 68

http://www.embedded.com/print/4408435
http://www.embedded.com/print/4408435
http://www.embedded.com/print/4408435
http://www.embedded.com/print/4409695
http://www.embedded.com/print/4409695

Conclusions

• Trusted element is secure anchor in a system

– Understand why it is trusted and for whom

• Trusted element can be attacked

– Non-invasive, semi-invasive, invasive methods

• Side-channel attacks are very powerful techniques

– Attacks against particular implementation of algorithm

– Attack possible even when algorithm is secure (e.g., AES)

• Use well-know libraries instead own implementation

| PV204 Trusted element 25.2.2016 70

71 | PV204 Trusted element 25.2.2016

