
Testing, JUnit Extensions, TDD

PV260 Software Quality

March 30, 2016



Developers’ Tests

I Unit tests

I Integration tests

I End-to-end tests

- Tomek Kaczanowski, Practical Unit Testing with...



Unit Tests

Unit test. . .

I focuses on single class

I makes sure that YOUR code works

I controls context

I knows nothing about the users of the tested system

I is unaware of layers, external systems and resources

I runs very quickly, is executed frequently

- Tomek Kaczanowski, Practical Unit Testing with...



Unit Tests

Unit test DOES NOT. . .

I talk to the database

I communicate across the network

I touch the file system

I misbehave when run in parallel with any other unit tests

I require special things done to your environment to run

- Michael Feathers, A Set Of Unit Testing Rules



Anatomy of a Unit Test

AAA

I Arrange

I Act

I Assert

BDD

I Given

I When

I Then

xUnit

I Setup

I Exercise

I Verify

I Teardown

http://c2.com/cgi/wiki?ArrangeActAssert

http://martinfowler.com/bliki/GivenWhenThen.html

http://xunitpatterns.com/Four%20Phase%20Test.html

http://c2.com/cgi/wiki?ArrangeActAssert
http://martinfowler.com/bliki/GivenWhenThen.html
http://xunitpatterns.com/Four%20Phase%20Test.html


JUnit extensions

I JUnit is an extremely powerful tool and virtually anything can
be done using only the pure JUnit core functionality

I In some cases however we might benefit from using extensions
of the basic functionality, syntactic sugar . . .

I These allow us to work faster, reduce the boilerplate code
which brings no value, and make the test suite easier to
maintain

I For most common needs both third party libraries and native
JUnit extensions (some only in experimental branch) exist



JUnit extensions

I Fluent API for assertions
I Hamcrest http://hamcrest.org/JavaHamcrest/
I AssertJ http://joel-costigliola.github.io/assertj/

I Parametrized /Data-Driven tests
I JUnit Parametrized http://junit.sourceforge.net/

javadoc/org/junit/runners/Parameterized.html
I Zohhak runner http://piotrturski.github.io/zohhak/
I JUnitParams

https://github.com/Pragmatists/JUnitParams

http://hamcrest.org/JavaHamcrest/
http://joel-costigliola.github.io/assertj/
http://junit.sourceforge.net/javadoc/org/junit/runners/Parameterized.html
http://junit.sourceforge.net/javadoc/org/junit/runners/Parameterized.html
http://piotrturski.github.io/zohhak/
https://github.com/Pragmatists/JUnitParams


JUnit extensions - cont

I Property testing using randomized input
I JUnit Theories http://junit.org/apidocs/org/junit/

experimental/theories/Theories.html
I junit-quickcheck

https://github.com/pholser/junit-quickcheck

I And many others
I Unitils http://www.unitils.org/summary.html
I catch-exception

https://github.com/Codearte/catch-exception
I tempus-fugit http://tempusfugitlibrary.org/

http://junit.org/apidocs/org/junit/experimental/theories/Theories.html
http://junit.org/apidocs/org/junit/experimental/theories/Theories.html
https://github.com/pholser/junit-quickcheck
http://www.unitils.org/summary.html
https://github.com/Codearte/catch-exception
http://tempusfugitlibrary.org/


AssertJ
http://joel-costigliola.github.io/assertj/

I Rich DSL, specific for many types - Collections, Strings,
numbers, Exceptions, Time . . .

I Really helpful error messages

I Soft Assertions - show all errors, not just the first

I Extractors and Tuples

I Many extensions exist to test Database, Swing, Guava...

see homepage for extensive showcase of features



AssertJ

example: AssertJTest class



catch-exception
https://github.com/Codearte/catch-exception

I Catch and verify exceptions in a single line of code

I The test is more concise and easier to read.

I The test cannot be corrupted by a missing assertion.

I A single test can verify more than one thrown exception.

I The test can verify the properties of the thrown exception
after the exception is caught.

I The test can specify by which method call the exception must
be thrown.

- Javadoc of CatchException class



catch-exception

I Java 8 syntax (version 2.0.0)

MyObject myObject = new MyObject();

catchException(() -> myObject.doStuff(1));

Exception caught = caughtException();

assertThat(caught).is...

I pre-Java 8 syntax (version 1.4.4)

MyObject myObject = new MyObject();

catchException(myObject).doStuff(1);

Exception caught = caughtException();

assertThat(caught).is...



catch-exception

example: CatchExceptionTest class



Zohhak
https://code.google.com/p/zohhak/

Allows us to run one test on many sets of data, provided in
annotation next to the testcase

@TestWith({

"1,2,3",

"-19,7,-12"

})

public void testAdd(int a, int b, int expected) {

Calculator calc = new Calculator();

int result = calc.add(a,b);

assertEquals(expected, result);

}



Zohhak - Data

I The Strings inside the @TestWith({...}) each represent one
test input

I Inside each of these input Strings individual arguments for the
test are separated by commas (’,’)

I Types of the arguments are infered from the parameters of the
test method and the arguments are coerced to these types
before being passed to the test

I Coercion of basic primitive types comes out-of-th-box
I Custom coercion for any type can be written



Zohhak - Coercions

For more complex types we have to teach zohhak how to convert
from String (the String in data annotation) to our type

@Coercion

public Person toPerson(String input) {

String[] split = input.split(";");

Person person = new Person(split[0], split[1]);

return person;

}

We can then use Person in our tests

@TestWith({

"John;Doe",

"Frank;Perceval"

})

public void testWithPerson(Person person){



Zohhak

example: Vector2DTest class



JUnitParams
https://github.com/Pragmatists/JUnitParams

I Same purpose as Zohhak

I + Can read data from file - CSV, Excel

example: CSVFileInputTest class



junit-quickcheck
http://pholser.github.io/junit-quickcheck/site/0.6/index.html

I We don’t test concrete inputs but properties of code

I Input is generated randomly

I The test is a specification of what the code should do

I If error is found QuickCheck tries to ’Shrink’ it to ’smallest’
possible value which causes the same error

I Inspired by QuickCheck for Haskell
https://hackage.haskell.org/package/QuickCheck

https://hackage.haskell.org/package/QuickCheck


junit-quickcheck

@RunWith(JUnitQuickcheck.class)

public class SymmetricKeyCryptographyProperties {

@Property

public void decryptReversesEncrypt(

byte[] plaintext, Key key){

Crypto crypto = new Crypto(key);

byte[] ciphertext = crypto.encrypt(plaintext);

assertEquals(plaintext,

crypto.decrypt(ciphertext)));

}



junit-quickcheck
Task 1

I Try to run QuickcheckTest, it should fail

I The test is correct, implementation is broken

I Find what is wrong with the current implementation

I Implement StringSplitter so that the test passes



junit-quickcheck
Task 2

I Come up with at least 3 properties of a sorting algorithm

I Work with the Sorter interface

I Write quickcheck test for each of these properties

I Implements the Sorter using algorithm of your choice



Behavior Verification

State Verification Behavior Verification



Mocking in Unit Testing

I Unit testing is simple for classes with no dependencies

I How do we test an object which depends on many other
things (many of which might not even be implemented yet) ?

I We create stand-in objects which share interface with the
required dependency

I Inside, instead of some complex behavior, these are hard-wired
to work in the one particular test case

I We can create these substitutes either by hand or use a
mocking framework



Mockito
http://mockito.org/

We decided during the main conference that we
should use JUnit 4 and Mockito because we think they
are the future of TDD and mocking in Java.

(Dan North - author of BDD)

I Interaction verification

I Input stubbing (data, exceptions. . . )

I Test Spy wrappers

I Mock both classes and interfaces

I Lightweight API



Working Example

I Model for an app doing basic math on Roman numerals

I We only care about the inner logic, the UI doesn’t concern us



Working Example - Structure

I We already have the design done, all interfaces are prepared

I DataInput and DataOutput represent the textboxes

I Clicking the Calculate button calls the solve method



Working Example - Structure

I Lexer tokenizes the raw input

I Number tokens are translated by the RomanTranslator and
sent to EquationBuilder

I Tree representation of the equation is assembled

I The decimal result is translated to Roman numerals

I Formated result is sent back to output



Test Doubles Hierarchy
http://xunitpatterns.com/Test%20Double.html

I There are many types of stand-in objects used in testing

I Each plays a different role, the simplest type possible should
be used (That is dont use a Mock if all you need is a Dummy)



Dummy Object
RomanCalculatorTest#testExceptionFromInput

I We need to provide real object (that is not null), but at the
same time we know it will never be used during the test

I Even better, we pass null to the test which helps readability
as we are clearly signalling that the value is not used

I This is of course not possible with null-checks in constructors,
so we have to use dummies instead.

I To Assert or Not To Assert
http://misko.hevery.com/page/5/

http://misko.hevery.com/page/5/


Test Stub
RomanTranslatingTokenStream#testConvertsToDecimalTokens

I We want one of SUT’s dependencies to provide specific input
to the SUT when queried



Test Spy
RomanTranslatingTokenStream#testRecognizesRomanNumeral

I We want to know SUT’s interacts with one of its dependencies
I The spy only records the interaction, it is checked manually



Mock Object
RomanTranslatingTokenStream#testCorrectInputSingleOperator

I Similar task as Test Spy, but checks the validity of SUT’s
interaction with the mock on the fly



Fake Object
No Example

I Has the same functionality as its real counterpart, but
implements it in a more test friendly way

I e.g. an in-memory database instead of disk-based one



Test Spy vs. Mock

Test Spy
Mockito

I Arrange → Act → Assert

I Whole test runs

I Nice

I Verification always in caller

Mock
EasyMock

I Record → Exercise → Verify

I Stop on first error

I Strict

I Might be suppressed by
environment



Test Doubles Exercise
Task 1

I implement all tests in CustomerAnalysisTest

I try to use Mockito in some cases and manual Test Doubles in
others



Test Coverage

In computer science, test coverage is a measure used
to describe the degree to which the source code of a
program is tested by a particular test suite.

I High coverage does not necasarilly mean that your project has
quality tests (there could be tests with no assertions, hardly
maintainable tests . . . )

I However, low coverage can point to parts of insufficiently
tested code which has a high chance of containing all kinds of
bugs and other problems



Types of Coverage

Consider this code:

public int doIt(boolean c1, boolean c2, boolean c3) {

int x = 0;

if (c1)

x++;

if (c2)

x--;

if (c3)

x+=3;

return x;

}



Types of Coverage

I Statement coverage
I Check that all statements in the code are executed
I For 100% coverage single test input required (true, true, true)

I Branch coverage
I Check that all possible results of conditions occur
I For 100% coverage two test inputs required (true, true, true),

(false, false, false) or any other combination with both true

and false for all conditionals

I Path coverage
I Every possible path through the code is executed
I For 100% coverage all possible combinations of inputs (and

values for member attributes if there were any) must be used,
thats 8 cases for this example



TDD - Overview
Test Driven Development: By Example, Kent Beck

Test-driven development (TDD) is a software
development process that relies on the repetition of a
very short development cycle: first the developer writes
an (initially failing) automated test case that defines a
desired improvement or new function, then produces the
minimum amount of code to pass that test, and finally
refactors the new code to acceptable standards.

I Quickly add a test.

I Run all tests and see the new one fail.

I Make a little change.

I Run all tests and see them all succeed.

I Refactor to remove duplication.

I Repeat . . .



Red Green Refactor



Tennis Game Kata - Scoring

I Each player starts with 0 points

I The scoring then goes like this 0 → 15 → 30 → 40

I If A has 40 and scores, and B doesn’t have 40, A wins

I If both have 40 and A scores, A has Advantage

I If A has Advantage and scores, they win

I If A has Advantage, B has 40 and scores, both are at 40 again

I Scores are written in the format ’A - B’, e.g. ’30 - 15’

I When A has Advantage, the score is written as ’A - 40’

I If scores are equal, e.g. both have 30, it is called ’30 all’

I If both players have 40 points, it is called ’deuce’



Tennis Game Kata - Task

I Try to not skip ahead and always have passing tests for
existing functionality before moving forward

I We want to create a TennisGame which has scoredA(),
scoredB() and showScore()

I The show method should return score in format defined
above, if there is a winner it gives ’winner: A/B’

I Also if there is a winner already and either scoredA() or
scoredB() is called, exception should be thrown



Java Highlighter - Task

I Download base for the task at
https://github.com/vaclavHala/PV260_Highlighter

I Using the same technique as before, try to implement as
much as you can

I At the end of seminar we evaluate who got the furthest

I No cheating, code test-first!

https://github.com/vaclavHala/PV260_Highlighter

