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First-Order Logic

Propositional logic speaks only about truth value – true or false.

First-order logic speaks about objects, their properties and relations
among them.

Examples

∃s. Human(s) ∧ Mortal(s).
∀s. Human(s) → Mortal(s).
∃x∃y. x < 5 ∧ y < 3 ∧ 2 · (x+ y) > 20.
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First-Order Logic – Syntax

Suppose we have a set ΣF = {f,g, . . .} of function symbols and a set
ΣP = {R,S, . . .} of predicate symbols.

(Σ-)Term
1 a variable – x,y, z, . . .
2 a function symbol applied to terms – f(x), g(f(x),y), . . .

(Σ)-Literal
1 a predicate symbol applied to terms – R(x),S(f(x),y), . . .
2 a negation of predicate symbol applied to terms –

¬R(x),¬S(f(x),y), . . .

(Σ)-Formula
1 a Boolean combination of literals –

(R(x)∨ ¬R(y))∧ S(f(x),y), . . .
2 a quanti�er applied to a formula – ∀x.R(x), . . ..

The set Σ = ΣF ∪ ΣP is called a signature.
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First-Order Logic – Semantics

Is the following formula true?

∀x∃y.<(x,y) ∧ <(y,+(x, 1))

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27



First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27



First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27



First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27



First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27



First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3
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First-Order Satis�ability

De�nition

Formulaϕ is satis�able if it evaluates to true for some Σ-structureA
and a variable assignment µ.

Is formula (x < y) ∧ (y+ 1 < x) satis�able? Yes. /

Solution
Consider only well-behaved structures
This gives rise to the Satis�ability Modulo Theories

6 / 27



First-Order Satis�ability

De�nition

Formulaϕ is satis�able if it evaluates to true for some Σ-structureA
and a variable assignment µ.

Is formula (x < y) ∧ (y+ 1 < x) satis�able?

Yes. /

Solution
Consider only well-behaved structures
This gives rise to the Satis�ability Modulo Theories

6 / 27



First-Order Satis�ability

De�nition

Formulaϕ is satis�able if it evaluates to true for some Σ-structureA
and a variable assignment µ.

Is formula (x < y) ∧ (y+ 1 < x) satis�able? Yes. /

Solution
Consider only well-behaved structures
This gives rise to the Satis�ability Modulo Theories

6 / 27



First-Order Satis�ability

De�nition

Formulaϕ is satis�able if it evaluates to true for some Σ-structureA
and a variable assignment µ.

Is formula (x < y) ∧ (y+ 1 < x) satis�able? Yes. /

Solution
Consider only well-behaved structures
This gives rise to the Satis�ability Modulo Theories

6 / 27



Satis�ability Modulo Theories

De�nition

A (Σ-)theory is a set of Σ-structures.

De�nition

A formulaϕ is satis�able modulo theory T if it evaluates to true for
some structureA ∈ T and a variable assignment µ.
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Satis�ability Modulo Theories – Example

Consider the structure Zwith the universe Z and the standard
interpretation of operations+,<, and 1.

The formula (x < y) ∧ (y+ 1 < x) is unsatis�able modulo theory
T = {Z}.

The formula (x < y) ∧ (y < x+ 2) is satis�able modulo theory
T = {Z}.

8 / 27



Theories – Tour d’horizon

Theory of equality and uninterpreted functions

Σ = {=, f,g,h, . . .}
T= is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) 6= f(y) ∧ z = v

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is decidable
(Ackermann, 1954)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is in O(n · log(n))
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Theories – Tour d’horizon

Theory of linear integer arithmetic

Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)
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TNIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x · y) ∧ (1 6 y)

satis�ability of conjunctions of quanti�er-free formulas is
undecidable (Matiyasevich, 1971)
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satis�ability of arbitrary formulas is decidable (Tarski, 1951)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Collins, 1975)

complexity of satis�ability of conjunctions of literals in O(22kn)
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Theories – Tour d’horizon

Theory of arrays

Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v
– equality is de�ned only for elements

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (read(a, i) = read(b, i))

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete
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Two views of theories

A theory can be also viewed as a set of closed Σ-formulas (axioms).

A formula is then satis�able modulo T i� it is true for some structure
that satis�es all axioms in T .

Example

The theory of uninterpreted functions with equality is T= = ∅
The theory of arrays is

TA = {∀a, i, j. (i = j → read(a, i) = read(a, j)),
∀a, v, i, j. (i = j → read(write(a, i, v), j) = v),
∀a, v, i, j. (i 6= j → read(write(a, i, v), j) = read(a, j))}
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Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive. (, 1931)
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Deciding satis�ability modulo theories

Two approaches to SMT

eager

lazy

Eager approach
Encode the formula to SAT

Lazy approach
Use a SAT solver to reason about Boolean structure of the formula
and a specialized T -solver to reason about the constraints imposed
by the theory.

Lazy SMT solvers can be further divided to:

o�ine

online
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O�ine SMT solving

Suppose the formula is in conjunctive normal form – a conjunction
of disjunctions of Σ-literals.

And suppose we have a solver that can decide conjunctions of
Σ-literals – a T -solver.

O�ine SMT

Treat each literal as a boolean variable.

Use a SAT solver to get a Boolean model of the formula.

Use a T -solver to check whether the model is satis�able in the
theory (T -consistent).

If not, add a clause that prohibits this Boolean model and
repeat.
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O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧
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Online SMT solving – towards CDCL(T)

Online SMT
Integrate the CDCL SAT solver and the T -solver more tightly.

After a T -con�ict, the T -solver provides the con�ict clause and the
search backtracks.
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Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
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Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
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Further enhancements

Online approach can be further improved:

early pruning,

restarts,

lemmas on demand.
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CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).
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CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))
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Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)
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