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Is the following formula true?

Vxdy.x <y Ny<x+1
It depends.

m Whatarex,y, z?
m What does the function symbol + mean?
m What does the relation symbol < mean?

Meaning of these three things is given by a >-structure.
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- we suppose that =" is the identity relation.
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First-Order Satisfiability

Definition

Formula ¢ is satisfiable if it evaluates to true for some X-structure A
and a variable assignment .

Isformula (x <y) A (y+1 < x) satisfiable? Yes. ®
Solution

Consider only well-behaved structures
This gives rise to the Satisfiability Modulo Theories
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Satisfiability Modulo Theories

A (Z-)theory is a set of Z-structures.

A formula ¢ is satisfiable modulo theory T if it evaluates to true for
some structure /L < T and a variable assignment p.
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Satisfiability Modulo Theories — Example

Consider the structure Z with the universe Z and the standard
interpretation of operations +, <, and 1.

The formula (x <y) A (y + 1 < x) is unsatisfiable modulo theory
T={2}.

The formula (x <y) A (y < x + 2) is satisfiable modulo theory
T={Z}.
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A theory can be also viewed as a set of closed >-formulas (axioms).
A formula is then satisfiable modulo T iff it is true for some structure

that satisfies all axioms in T.
Example
m The theory of uninterpreted functions with equality is T- = ()

m The theory of arrays is

Ta ={Va,1,j.(i=j — read(a,i) =read(q,j)),
Ya,v,1,j. (i =j — read(write(a,i,v),j) =v),

Va,v,1,j. (1 #j — read(write(a,1i,v),j) = read(q,j))}

17/27



Two views of theories

These two views are equivalent

18/27



Two views of theories

These two views are equivalent

m To the set of X-structures assign the set of formulas that are
true in all these structures.

18/27



Two views of theories

These two views are equivalent

m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

18/27



Two views of theories

These two views are equivalent

m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

18/27



Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

18/27



Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.

18/27



Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.
m A set of axioms for NIA is not recursive.

18/27



Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.
m A set of axioms for NIA is not recursive.

18/27



Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.
m A set of axioms for NIA is not recursive. ( ,1931)

18/27



Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.
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m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.
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Deciding satisfiability modulo theories

Two approaches to SMT
m eager

m lazy

Eager approach
Encode the formula to SAT

Lazy approach

Use a SAT solver to reason about Boolean structure of the formula
and a specialized T-solver to reason about the constraints imposed
by the theory.

Lazy SMT solvers can be further divided to:
m offline

m online
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Offline SMT solving

Suppose the formula is in conjunctive normal form - a conjunction
of disjunctions of X-literals.

And suppose we have a solver that can decide conjunctions of
Y-literals - a

Offline SMT
m Treat each literal as a boolean variable.
m Use a SAT solver to get a Boolean model of the formula.

m Use a T-solver to check whether the model is satisfiable in the
theory ( ).

m If not, add a clause that prohibits this Boolean model and
repeat.
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Boolean model
x=1, =(y<3), y>5 —~(x+y=4), y==6
Satisfiable in the theory! (x =1,y = 6)
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Online SMT solving - towards CDCL(T)

Online SMT
Integrate the CDCL SAT solver and the T-solver more tightly.

After a T-conflict, the T-solver provides the conflict clause and the
search backtracks.
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The formula ¢ over linear integer arithmetic:
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x=1,~(y<3), (y>5), ~(x+y=4), (y==6)
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CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called

T-solver can be instantiated arbitrarily, but it should
m handle assignment of literal values efficiently,
m provide reasons for theory conflicts,
m backtrack efficiently.

It further can
m perform theory propagation (identify implied literals),

m perform early pruning (identify theory conflicts during the
search).
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CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.
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Let's consider CDCL(T-) with the details of the T_-solver.
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CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fy) N (y=zVx=y) N (g(f(z)) # glx) V f(z) # f(y))

Partial assignment

(x =1(y)), (y #2), (x=y), (9(f(2)) # g(x))¢

Equality graph
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m 17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. - Abstract Conflict-Driven Clause Learning (Martin)
31. 3. - Deciding Bit-Vector Formulas with mcSAT (Marta)
7. 4. — Complexity of Fixed-Size Bit-Vector Logics (VIada)
21. 4. — Counterexample-Guided Model Synthesis (Marek)
5. 5. - Seminator (Fanda)

12. 5. — Effective word-level interpolation for software
verification (Viki)

m 19. 5. - An Approximation Framework for Solvers and Decision
Procedures (Katka)
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