Introduction to Satisfiability Modulo Theories

Martin Jonas

1A072 — Seminar on Concurrency

March 3, 2017

First-Order Logic

Propositional logic speaks only about truth value - true or false.

First-order logic speaks about objects, their properties and relations
among them.

1/27

First-Order Logic

Propositional logic speaks only about truth value - true or false.

First-order logic speaks about objects, their properties and relations
among them.
Examples

m Js. Human(s) /A Mortal(s).
m Vs.Human(s) — Mortal(s).
mOxJy.x <5 ANy<3 A2 (x+y)>20.

1/27

First-Order Logic

Propositional logic speaks only about truth value - true or false.

First-order logic speaks about objects, their properties and relations
among them.
Examples

m Js. Human(s) /A Mortal(s).
m Vs.Human(s) — Mortal(s).
mOxJy.x <5 ANy<3 A2 (x+y)>20.

1/27

First-Order Logic

Propositional logic speaks only about truth value - true or false.

First-order logic speaks about objects, their properties and relations
among them.

Examples

m Js. Human(s) /A Mortal(s).
m Vs.Human(s) — Mortal(s).
mOxJy.x <5 ANy<3 A2 (x+y)>20.

In addition to logical symbols, first-order formulas contain variables,
constant symbols, function symbols, and predicate symbols.

1/27

First-Order Logic

Propositional logic speaks only about truth value - true or false.

First-order logic speaks about objects, their properties and relations
among them.

Examples

m Js. Human(s) /A Mortal(s).
m Vs.Human(s) — Mortal(s).
mOxJy.x <5 ANy<3 A2 (x+y)>20.

In addition to logical symbols, first-order formulas contain variables,
function symbols, and predicate symbols.

1/27

First-Order Logic — Syntax

Suppose we have aset ' = {f, g,...} of function symbols and a set
5P ={R,S,...} of predicate symbols.

2/27

First-Order Logic — Syntax

Suppose we have aset ' = {f, g,...} of function symbols and a set
5P ={R,S,...} of predicate symbols.

(X-)Term
avariable-x,y,z,...
a function symbol applied to terms — f(x), g(f(x),y), ...

2/27

First-Order Logic — Syntax

Suppose we have aset ' = {f, g,...} of function symbols and a set
5P ={R,S,...} of predicate symbols.

(X-)Term

avariable-x,y,z,...

a function symbol applied to terms — f(x), g(f(x),y), ...
(X)-Literal

a predicate symbol applied to terms — R(x), S(f(x), y), . ..

a negation of predicate symbol applied to terms —
—R(x),~S(f(x),y), .-

2/27

First-Order Logic — Syntax

Suppose we have aset ' = {f, g,...} of function symbols and a set
5P ={R,S,...} of predicate symbols.

(X-)Term

avariable-x,y,z,...

a function symbol applied to terms — f(x), g(f(x),y), ...
(X)-Literal

a predicate symbol applied to terms — R(x), S(f(x), y), . ..

a negation of predicate symbol applied to terms —
—R(x),~S(f(x),y), .-

(X)-Formula

H aBoolean combination of literals —
(R(x) V =R(y)) AS(f(x),y),...
a quantifier applied to a formula - ¥x. R(x),

2/27

First-Order Logic — Syntax

Suppose we have aset ' = {f, g,...} of function symbols and a set
5P ={R,S,...} of predicate symbols.

(X-)Term
avariable-x,y,z,...
a function symbol applied to terms — f(x), g(f(x),y), ...
(X)-Literal
a predicate symbol applied to terms — R(x), S(f(x), y), . ..
a negation of predicate symbol applied to terms —
—R(x),=S(f(x),y),-..
(X)-Formula
H a Boolean combination of literals -
(R(x) V =R(y)) AS(f(x),y),...
a quantifier applied to a formula - ¥x. R(x),

ThesetZ =xFUzPiscalleda

2/27

First-Order Logic — Semantics

Is the following formula true?

W3y <(x,y) N <(y,+(x,1))

3/27

First-Order Logic — Semantics

Is the following formula true?

Vxdy.x <y Ny<x+1

3/27

First-Order Logic — Semantics

Is the following formula true?

Vxdy.x <y Ny<x+1
It depends.

3/27

First-Order Logic — Semantics

Is the following formula true?

Vxdy.x <y Ny<x+1
It depends.

m Whatarex,y, z?
m What does the function symbol + mean?
m What does the relation symbol < mean?

3/27

First-Order Logic — Semantics

Is the following formula true?

Vxdy.x <y Ny<x+1
It depends.

m Whatarex,y, z?
m What does the function symbol + mean?
m What does the relation symbol < mean?

Meaning of these three things is given by a >-structure.

3/27

First-Order Logic — Semantics

A Z-structure A is a pair of
a non-empty set A called the universe,

amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of
a non-empty set A called the universe,

amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

mA=7

B+ (x,y) =x+y
<! (x,y) <= x<y
14 =1
mpx)=1up(y)=3

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

mA=7

B+ (xy) =x+y

B <A (x,y) <= x<y
m1t=1

mou(x) =1,uly) =3

x<y) N (y+1<x)

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

mA=7

B+ (xy) =x+y

B <A (x,y) <= x<y
m1t=1

mou(x) =1,uly) =3

(1) < wly)) A (wly) +4 14 <A ux)

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

mA=7

B+ (xy) =x+y

B <A (x,y) <= x<y
m1t=1

mou(x) =1,uly) =3

(1<*3) A B+414 <A

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

mA=7

B+ (xy) =x+y

B <A (x,y) <= x<y
m1t=1

mou(x) =1,uly) =3

(1<*3) A (B4+41<71)

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

mA=7

B+ (xy) =x+y

B <A (x,y) <= x<y
m1t=1

mou(x) =1,uly) =3

(1<*3) A (4<M1)

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

mA=7

B+ (xy) =x+y

B <A (x,y) <= x<y
m1t=1

mou(x) =1,uly) =3

TAL

4/27

First-Order Logic — Semantics

A Z-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) — A,
- toeach R € £P assigns a relation R* C A(R),
- we suppose that =" is the identity relation.

Given a Z-structure and an assignment p of variables to elements of
A, we can evaluate each formula.

BEA=7

B+ (xy) =x+y

<! (x,y) <= x<y 1
m14=1

mou(x) =1,uly) =3

4/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

5/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

B A={ce}

=+ (xy) =y

m <A (x,y) ={(0,0),(e,0)}
] 1A = e

B p(x) =o,uy)=o

5/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

B A={oe}

B+ y) =y (x<y) A (y+1<x)
| <A (X/y) :{(0,0), (0,0)}

1=

B p(x) =o,uy)=o

5/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

B A={ce}

[] —|—A(X,y):y . A
< (x,y) = {(0,0), (s,0)) PO <T RN A (h{y) #7517 < plx))
| 1A = e

B p(x) =o,uy)=o

5/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

B A={oe}

[| -l—A(XrU) =y (o <A o) N\ (o +A 1A <A o)
| <A (X/y) :{(0,0), (0,0)}

mlt=e

B p(x) =o,uy)=o

5/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

B A={oe}

[| -l—A(Xry):U (o <A o) A\ (oJer<A o)
| <A (X/y) :{(0,0), (0,0)}

mlt=e

B p(x) =o,uy)=o

5/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

B A={oe}

A (xy) =y (0 <A o) A (o <? o)
| <A (X/y) :{(0,0), (0,0)}

1=

B p(x) =o,uy)=o

5/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

B A={oe}

m +(xy) =y TAT
| <A (X/y) :{(0,0), (0,0)}

mlt=e

B p(x) =o,uy)=o

5/27

First-Order Logic — Semantics

A X-structure A is a pair of

a non-empty set A called the universe,
amap (_)* that

- toeach f € ZF assigns a function f4: A(f) - A,
- toeach R € £P assigns a relation R* C A2r(R),

Given a Z-structure and an assignment . from variables to elements
of A, we can evaluate each formula.

B A={oe}

m A y) =y

<4 (x,y) ={(0,0), (s,0)} T
] 1A = e

B p(x) =o,uy)=o

5/27

First-Order Satisfiability

Formula ¢ is satisfiable if it evaluates to true for some X-structure A
and a variable assignment .

6/27

First-Order Satisfiability

Definition
Formula ¢ is satisfiable if it evaluates to true for some X-structure A
and a variable assignment .

Isformula (x <y) A (y+1 < x) satisfiable?

6/27

First-Order Satisfiability

Definition
Formula ¢ is satisfiable if it evaluates to true for some X-structure A
and a variable assignment .

Isformula (x <y) A (y+1 < x) satisfiable? Yes. ®

6/27

First-Order Satisfiability

Definition

Formula ¢ is satisfiable if it evaluates to true for some X-structure A
and a variable assignment .

Isformula (x <y) A (y+1 < x) satisfiable? Yes. ®
Solution

Consider only well-behaved structures
This gives rise to the Satisfiability Modulo Theories

6/27

Satisfiability Modulo Theories

A (Z-)theory is a set of Z-structures.

A formula ¢ is satisfiable modulo theory T if it evaluates to true for
some structure /L < T and a variable assignment p.

7127

Satisfiability Modulo Theories — Example

Consider the structure Z with the universe Z and the standard
interpretation of operations +, <, and 1.

The formula (x <y) A (y + 1 < x) is unsatisfiable modulo theory
T={2}.

The formula (x <y) A (y < x + 2) is satisfiable modulo theory
T={Z}.

8/27

Theories — Tour d’horizon

Theory of equality and uninterpreted functions

9/27

Theories — Tour d’horizon

Theory of equality and uninterpreted functions

m X :{:/f/g/h'/---}
m T_isasetofall Z-structures

9/27

Theories — Tour d’horizon

Theory of equality and uninterpreted functions

m X :{:/f/g/h'/---}
m T_isasetofall Z-structures

x=vAy=g(z) A flglx) #fy) A z=v

9/27

Theories — Tour d’horizon

Theory of equality and uninterpreted functions

m X :{:/f/g/h'/---}
m T_isasetofall Z-structures

x=vAy=g(z) A flglx) #fy) A z=v

m satisfiability of arbitrary formulas is undecidable

9/27

Theories — Tour d’horizon

Theory of equality and uninterpreted functions

m X :{:/f/g/h'/---}
m T_isasetofall Z-structures

x=vAy=g(z) A flglx) #fy) A z=v

m satisfiability of arbitrary formulas is undecidable

m satisfiability of quantifier-free formulas is decidable
(Ackermann, 1954)

9/27

Theories — Tour d’horizon

Theory of equality and uninterpreted functions

m X :{:/f/g/h'/---}
m T_isasetofall Z-structures

x=vAy=g(z) A flglx) #fy) A z=v

m satisfiability of arbitrary formulas is undecidable

m satisfiability of quantifier-free formulas is decidable
(Ackermann, 1954)

m satisfiability of quantifier-free formulas is NP-complete

9/27

Theories — Tour d’horizon

Theory of equality and uninterpreted functions

m X :{:/f/g/h'/---}
m T_isasetofall Z-structures

x=vAy=g(z) A flglx) #fy) A z=v

m satisfiability of arbitrary formulas is undecidable

m satisfiability of quantifier-free formulas is decidable
(Ackermann, 1954)

m satisfiability of quantifier-free formulas is NP-complete
m satisfiability of conjunctions of literals is in O(n - log(n))

9/27

Theories — Tour d’horizon

Theory of linear integer arithmetic

10/27

Theories — Tour d’horizon

Theory of linear integer arithmetic
mr={01+4—=<}
m Tipa is a set of a single structure with A = Z and the standard
interpretation of operations

10/27

Theories — Tour d’horizon

Theory of linear integer arithmetic
mr={01+4—=<}
m Tipa is a set of a single structure with A = Z and the standard
interpretation of operations

1<x N B<x+y) A (1<)

10/27

Theories — Tour d’horizon

Theory of linear integer arithmetic
mr={01+4—=<}
m Tipa is a set of a single structure with A = Z and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

10/27

Theories — Tour d’horizon

Theory of linear integer arithmetic
mr={01+4—=<}
m Tipa is a set of a single structure with A = Z and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

m complexity of satisfiability of arbitrary formulas is in Q(22")
(Fischer, Rabin, 1974)

10/27

Theories — Tour d’horizon

Theory of linear integer arithmetic
mr={01+4—=<}
m Tipa is a set of a single structure with A = Z and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

m complexity of satisfiability of arbitrary formulas is in Q(22")
(Fischer, Rabin, 1974)

m complexity of satisfiability of arbitrary formulas is in (‘)(222le)
(Oppen, 1978)

10/27

Theories — Tour d’horizon

Theory of linear integer arithmetic
mr={01+4—=<}
m Tipa is a set of a single structure with A = Z and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

m complexity of satisfiability of arbitrary formulas is in Q(22")
(Fischer, Rabin, 1974)

m complexity of satisfiability of arbitrary formulas is in (‘)(222le)
(Oppen, 1978)

m satisfiability of quantifier-free formulas is NP-complete

10/27

Theories — Tour d’horizon

Theory of linear integer arithmetic
u Z :{0/1/+/7/:/<}

m Tipa is a set of a single structure with A = Z and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

m complexity of satisfiability of arbitrary formulas is in Q(22")
(Fischer, Rabin, 1974)

m complexity of satisfiability of arbitrary formulas is in (9(222le)
(Oppen, 1978)

m satisfiability of quantifier-free formulas is NP-complete
m satisfiability of conjunctions of literals is NP-complete (folklore)

10/27

Theories — Tour d’horizon

Theory of linear rational arithmetic

1n/27

Theories — Tour d’horizon

Theory of linear rational arithmetic
mr={01+4—=<}
m TRy is a set of a single structure with A = Q and the standard
interpretation of operations

1n/27

Theories — Tour d’horizon

Theory of linear rational arithmetic
mr={01+4—=<}
m TRy is a set of a single structure with A = Q and the standard
interpretation of operations

1<x N B<x+y) A (1<)

1n/27

Theories — Tour d’horizon

Theory of linear rational arithmetic
mr={01+4—=<}
m TRy is a set of a single structure with A = Q and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

1n/27

Theories — Tour d’horizon

Theory of linear rational arithmetic
mr={01+4—=<}
m TRy is a set of a single structure with A = Q and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

m complexity of satisfiability of arbitrary formulas is in Q(2™)
(Fischer, Rabin, 1974)

1n/27

Theories — Tour d’horizon

Theory of linear rational arithmetic
mr={01+4—=<}
m TRy is a set of a single structure with A = Q and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

m complexity of satisfiability of arbitrary formulas is in Q(2™)
(Fischer, Rabin, 1974)

m complexity of satisfiability of arbitrary formulas is in ©(22")
(Ferrante, Rackoff, 1975)

1n/27

Theories — Tour d’horizon

Theory of linear rational arithmetic
mr={01+4—=<}
m TRy is a set of a single structure with A = Q and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

m complexity of satisfiability of arbitrary formulas is in Q(2™)
(Fischer, Rabin, 1974)

m complexity of satisfiability of arbitrary formulas is in ©(22")
(Ferrante, Rackoff, 1975)

m satisfiability of quantifier-free formulas is NP-complete

1n/27

Theories — Tour d’horizon

Theory of linear rational arithmetic
| Z :{0/1/+/7/:/<}

m TRy is a set of a single structure with A = Q and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable

m complexity of satisfiability of arbitrary formulas is in Q(2™)
(Fischer, Rabin, 1974)

m complexity of satisfiability of arbitrary formulas is in ©(22")
(Ferrante, Rackoff, 1975)

m satisfiability of quantifier-free formulas is NP-complete
m satisfiability of conjunctions of literals in P (Khachiyan, 1979)

1n/27

Theories — Tour d’horizon

Theory of non-linear integer arithmetic

12/27

Theories — Tour d’horizon

Theory of non-linear integer arithmetic
mr={01+— =<}
m Ty is a set of a single structure with A = Z and the standard
interpretation of operations

12/27

Theories — Tour d’horizon

Theory of non-linear integer arithmetic
mr={01+— =<}
m Ty is a set of a single structure with A = Z and the standard
interpretation of operations

12/27

Theories — Tour d’horizon

Theory of non-linear integer arithmetic
mr={01+— =<}
m Ty is a set of a single structure with A = Z and the standard
interpretation of operations

1<x N 3<x-y) N (1<y)

m satisfiability of conjunctions of quantifier-free formulas is
undecidable (Matiyasevich, 1971)

12/27

Theories — Tour d’horizon

Theory of non-linear real arithmetic

13/27

Theories — Tour d’horizon

Theory of non-linear real arithmetic
mr={01+— =<}
B Tyra is a set of a single structure with A = R and the standard
interpretation of operations

13/27

Theories — Tour d’horizon

Theory of non-linear real arithmetic
mr={01+— =<}
B Tyra is a set of a single structure with A = R and the standard
interpretation of operations

1<x N B<x+y) A (1<)

13/27

Theories — Tour d’horizon

Theory of non-linear real arithmetic
mr={01+— =<}
B Tyra is a set of a single structure with A = R and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable (Tarski, 1951)

13/27

Theories — Tour d’horizon

Theory of non-linear real arithmetic
mr={01+— =<}
B Tyra is a set of a single structure with A = R and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable (Tarski, 1951)

m complexity of satisfiability of arbitrary formulas is in 022
(Collins, 1975)

13/27

Theories — Tour d’horizon

Theory of non-linear real arithmetic
mr={01+— =<}
B Tyra is a set of a single structure with A = R and the standard
interpretation of operations

1<x N B<x+y) A (1<)

m satisfiability of arbitrary formulas is decidable (Tarski, 1951)

m complexity of satisfiability of arbitrary formulas is in 022
(Collins, 1975)

m complexity of satisfiability of conjunctions of literals in 0(22")

13/27

Theories — Tour d’horizon

Theory of arrays

14/27

Theories — Tour d’horizon

Theory of arrays
m Y = {read, write, =}
m Tp isaset of structures, where A is a set of arrays and elements
and

- read(aq, 1) is interpreted as an element on index i of array a

- write(a, i,v) is interpreted as an array a after replacing element
onindexibyv

- equality is defined only for elements

14/27

Theories — Tour d’horizon

Theory of arrays
m Y = {read, write, =}
m Tp isaset of structures, where A is a set of arrays and elements
and

- read(aq, 1) is interpreted as an element on index i of array a

- write(a, i,v) is interpreted as an array a after replacing element
onindexibyv

- equality is defined only for elements

read(a,i) =u A (b =write(a,i,v)) A (read(a,i)=read(b,1))

14/27

Theories — Tour d’horizon

Theory of arrays
m X = {read, write, =}

m Tp isaset of structures, where A is a set of arrays and elements
and

- read(aq, 1) is interpreted as an element on index i of array a

- write(a, i,v) is interpreted as an array a after replacing element
onindexibyv

- equality is defined only for elements

read(a,i) =u A (b =write(a,i,v)) A (read(a,i)=read(b,1))

m satisfiability of arbitrary formulas is undecidable

14/27

Theories — Tour d’horizon

Theory of arrays
m X = {read, write, =}

m Tp isaset of structures, where A is a set of arrays and elements
and

- read(aq, 1) is interpreted as an element on index i of array a

- write(a, i,v) is interpreted as an array a after replacing element
onindexibyv

- equality is defined only for elements

read(a,i) =u A (b =write(a,i,v)) A (read(a,i)=read(b,1))

m satisfiability of arbitrary formulas is undecidable
m satisfiability of quantifier-free formulas is NP-complete

14/27

Theories — Tour d’horizon

Theory of arrays with extensionality

15/27

Theories — Tour d’horizon

Theory of arrays with extensionality
m Y = {read, write, =}
m Tp isaset of structures, where A is a set of arrays and elements
and

- read(aq, 1) is interpreted as an element on index i of array a
- write(a, i,v) is interpreted as an array a after replacing element
onindexibyv

15/27

Theories — Tour d’horizon

Theory of arrays with extensionality
m Y = {read, write, =}

m Tp isaset of structures, where A is a set of arrays and elements
and

- read(aq, 1) is interpreted as an element on index i of array a
- write(a, i,v) is interpreted as an array a after replacing element
onindexibyv

read(q,i) =u A (b =write(a,i,v)) N (a=Db)

15/27

Theories — Tour d’horizon

Theory of arrays with extensionality

Y~ = {read, write, =}

Ta is a set of structures, where A is a set of arrays and elements
and

- read(aq, 1) is interpreted as an element on index i of array a
- write(a, i,v) is interpreted as an array a after replacing element
onindexibyv

read(q,i) =u A (b =write(a,i,v)) N (a=Db)

satisfiability of arbitrary formulas is undecidable

15/27

Theories — Tour d’horizon

Theory of arrays with extensionality
m Y = {read, write, =}

m Tp isaset of structures, where A is a set of arrays and elements
and

- read(aq, 1) is interpreted as an element on index i of array a
- write(a, i,v) is interpreted as an array a after replacing element
onindexibyv

read(q,i) =u A (b =write(a,i,v)) N (a=Db)

m satisfiability of arbitrary formulas is undecidable
m satisfiability of quantifier-free formulas is NP-complete

15/27

Theories — Tour d’horizon

More theories:

m theory of bit-vectors,

16/27

Theories — Tour d’horizon

More theories:
m theory of bit-vectors,
m theory of strings,

16/27

Theories — Tour d’horizon

More theories:
m theory of bit-vectors,
m theory of strings,
m theory of lists,

16/27

Theories — Tour d’horizon

More theories:
m theory of bit-vectors,
m theory of strings,
m theory of lists,
m theory of recursive data structures,

16/27

Theories — Tour d’horizon

More theories:
m theory of bit-vectors,
m theory of strings,
m theory of lists,
m theory of recursive data structures,
m theory of groups,

16/27

Theories — Tour d’horizon

More theories:

m theory of bit-vectors,

theory of strings,

theory of lists,

theory of recursive data structures,
theory of groups,

16/27

Two views of theories

A theory can be also viewed as a set of closed >-formulas (axioms).

A formula is then satisfiable modulo T iff it is true for some structure
that satisfies all axiomsin T.

17/27

Two views of theories

A theory can be also viewed as a set of closed >-formulas (axioms).

A formula is then satisfiable modulo T iff it is true for some structure
that satisfies all axiomsin T.

Example

m The theory of uninterpreted functions with equality is T- = ()

17/27

Two views of theories

A theory can be also viewed as a set of closed >-formulas (axioms).
A formula is then satisfiable modulo T iff it is true for some structure

that satisfies all axioms in T.
Example
m The theory of uninterpreted functions with equality is T- = ()

m The theory of arrays is

Ta ={Va,1,j.(i=j — read(a,i) =read(q,j)),
Ya,v,1,j. (i =j — read(write(a,i,v),j) =v),

Va,v,1,j. (1 #j — read(write(a,1i,v),j) = read(q,j))}

17/27

Two views of theories

These two views are equivalent

18/27

Two views of theories

These two views are equivalent

m To the set of X-structures assign the set of formulas that are
true in all these structures.

18/27

Two views of theories

These two views are equivalent

m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

18/27

Two views of theories

These two views are equivalent

m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

18/27

Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

18/27

Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.

18/27

Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.
m A set of axioms for NIA is not recursive.

18/27

Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.
m A set of axioms for NIA is not recursive.

18/27

Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.
m A set of axioms for NIA is not recursive. (,1931)

18/27

Two views of theories

These two views are equivalent
m To the set of X-structures assign the set of formulas that are
true in all these structures.

m To the set of axioms assign the set of X-structures that satisfy
all the axioms.

Sometimes, one view is better

m A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

m A set of axioms for NRA is infinite and complicated.
m A set of axioms for NIA is not recursive. (Godel, 1931)

18/27

Deciding satisfiability modulo theories

Two approaches to SMT
m eager

m lazy

19/27

Deciding satisfiability modulo theories

Two approaches to SMT
m eager

m lazy

Eager approach
Encode the formula to SAT

19/27

Deciding satisfiability modulo theories

Two approaches to SMT
m eager

m lazy

Eager approach
Encode the formula to SAT

Lazy approach

Use a SAT solver to reason about Boolean structure of the formula
and a specialized T-solver to reason about the constraints imposed
by the theory.

19/27

Deciding satisfiability modulo theories

Two approaches to SMT
m eager

m lazy

Eager approach
Encode the formula to SAT

Lazy approach

Use a SAT solver to reason about Boolean structure of the formula
and a specialized T-solver to reason about the constraints imposed
by the theory.

Lazy SMT solvers can be further divided to:
m offline

m online

19/27

Offline SMT solving

Suppose the formula is in conjunctive normal form - a conjunction
of disjunctions of X-literals.

20/27

Offline SMT solving

Suppose the formula is in conjunctive normal form - a conjunction
of disjunctions of X-literals.

And suppose we have a solver that can decide conjunctions of
X-literals — a T-solver,

20/27

Offline SMT solving

Suppose the formula is in conjunctive normal form - a conjunction
of disjunctions of X-literals.

And suppose we have a solver that can decide conjunctions of
X-literals — a T-solver,

Offline SMT
m Treat each literal as a boolean variable.

20/27

Offline SMT solving

Suppose the formula is in conjunctive normal form - a conjunction
of disjunctions of X-literals.

And suppose we have a solver that can decide conjunctions of
X-literals — a T-solver,

Offline SMT
m Treat each literal as a boolean variable.
m Use a SAT solver to get a Boolean model of the formula.

20/27

Offline SMT solving

Suppose the formula is in conjunctive normal form - a conjunction
of disjunctions of X-literals.

And suppose we have a solver that can decide conjunctions of
X-literals — a T-solver,

Offline SMT
m Treat each literal as a boolean variable.
m Use a SAT solver to get a Boolean model of the formula.

m Use a T-solver to check whether the model is satisfiable in the
theory (T-consistent).

20/27

Offline SMT solving

Suppose the formula is in conjunctive normal form - a conjunction
of disjunctions of X-literals.

And suppose we have a solver that can decide conjunctions of
Y-literals - a

Offline SMT
m Treat each literal as a boolean variable.
m Use a SAT solver to get a Boolean model of the formula.

m Use a T-solver to check whether the model is satisfiable in the
theory ().

m If not, add a clause that prohibits this Boolean model and
repeat.

20/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 AN (x+y=4V y=6)

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

PA(QVT A (sVH)

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 AN (x+y=4V y=6)

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 N (x+y=4Vy=6)

Boolean model
x=1 y<3 x+y=4

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 AN (x+y=4V y=6)

Boolean model
x=1 y<3 x+y=4

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 AN (x+y=4V y=6)

Boolean model
x=1 y<3 x+y=4
Not satisfiable in the theory

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:
x=1 AN (y<3Vuy>5 N x+y=4Vy=6) N

(Cx=1) V =(y<3) V ~x+y=4)

Boolean model
x=1, y<3 x+y=4
Not satisfiable in the theory

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

PpA(qVrT)A (sVi) A
(~p V =q V)

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 N (x+y=4Vy=6) A
(~x=1) V =(y<3) V =[x +y=4))

Boolean model
x=1,y<3, ~(x+y=4), y==6

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:
x=1 AN (y<3Vuy>5 N x+y=4Vy=6) N

(Cx=1) V =(y<3) V ~x+y=4)

Boolean model
x=1,y<3, ~(x+y=4), y==6
Not satisfiable in the theory

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

AN y<3Vuy>5 A (x+y=4Vy=6 A
=1V -(y<3) VvV -(x+y=4)) A
1)V =y<3) V(x+y=4) V =(y=6))

Boolean model
x=1,y<3, ~(x+y=4), y==6
Not satisfiable in the theory

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

AN yYy<3Vuy=>5 A x+y=4Vy=6 A
=1V ~(y<3)V =(x+y=4)) N
)V =ly<3) V(x+y=4) V =(y=6))

Boolean model
x=1, =(y<3), y>5, (x+y=4)

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

AN y<3Vuy>5 A (x+y=4Vy=6 A
=1V -(y<3) VvV -(x+y=4)) A
1)V =y<3) V(x+y=4) V =(y=6))

Boolean model
x=1, ~(y<3), y>5, (x+y=4)
Not satisfiable in the theory

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (Yy<3vy>5 A (x+y=4Vy=6) A
(x=1)V =(y<3) V =(x+y=4)) N
—x=1)V =(y<3)V x+y=4) V -(y=6) A
(—x=1)V (y<3) V =(y>5) V =(x+y=4))

Boolean model
x=1, ~(y<3), y>5, (x+y=4)
Not satisfiable in the theory

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 A (y<3Vy=>5 A (x+y=4Vy=6) A
(—x=1) V =y<3)V ~(x+y=4)) A
Cx=1)V =(y<3)V x+y=4) V -(y=6) A
(~(x=1)V (y<3)V -(y>5)V ~(x+y=4))

Boolean model
x=1, =(y<3), y>5 —~(x+y=4), y==6

21/27

Offline SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (Yy<3vy>5 A (x+y=4Vy=6) A
(x=1)V =(y<3) V =(x+y=4)) N
—x=1)V =(y<3)V x+y=4) V -(y=6) A
(—x=1)V (y<3) V =(y>5) V =(x+y=4))

Boolean model
x=1, =(y<3), y>5 —~(x+y=4), y==6
Satisfiable in the theory! (x =1,y = 6)

21/27

Online SMT solving - towards CDCL(T)

Online SMT
Integrate the CDCL SAT solver and the T-solver more tightly.

After a T-conflict, the T-solver provides the conflict clause and the
search backtracks.

22/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 AN (x+y=4V y=6)

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 AN (x+y=4V y=6)

Partial assignment

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 A (x+y=4Vy=56)

Partial assignment
x=1

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vy>5 A (x+y=4Vy=56)

Partial assignment
x=1, (y<3)4

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 N (x+y=4Vy=6)

Partial assignment
x=1, (y<3)4, (x+y=4)4

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vy>5 N (x+y=4Vy=6) N
Cx=1) V =(y<3) V =(x+y=4))

Partial assignment
x=1, (y<3)4, (x+y=4)4

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 N (x+y=4Vy=6 A
(~x=1) V =(y<3) V =[x +y=4))

Partial assignment
x=1, (y<3)4, ~(x+y=4)

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 N x+y=4Vy=6) A
(~x=1) V =(y<3) V =[x +y=4))

Partial assignment
x=1,(y<3)4 ~(x+y=4), (y=6)

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

AN (y<3Vuy>5 N (x+y=4Vuy=6) A
=1V -(y<3)V -(x+y=4) A
3

Partial assignment
x=1,(y<3)4 ~(x+y=4), (y=6)

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

AN y<3Vy>5 A x+y=4Vy=6 A
x=1)V =(y<3) V =(x+y=4)) A
y<3)V -(y=6))

Partial assignment
x=1,—(y<3)

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

AN y<3Vuy=>5 N x+y=4Vy=6 A
x=1)V =(y<3) V =(x+y=4)) A
y<3)V -(y=6))

Partial assignment
x=1, —~(y<3), (y>D5)

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

AN y<3Vuy=>5 N (x+y=4Vy=6 A
x=1)V =(y<3) V =(x+y=4)) A
y<3)V -(y=6))

Partial assignment
x=1,-(y<3), (y>5), x+y=4)4

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

Partial assignment
x=1,-(y<3), (y>5), x+y=4)4

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

Partial assignment
x=1,~(y<3), (y>5), ~(x+y=4)

23/27

Online SMT solving — example

The formula ¢ over linear integer arithmetic:

Partial assignment
x=1,~(y<3), (y>5), ~(x+y=4), (y==6)

23/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 AN (x+y=4V y=6)

Partial assignment

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (Yy<3vuy>5 A x+y=4V y=6)

Partial assignment
x=1

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vy>5 A x+y=4V y=6)

Partial assignment
x=1, (y<3)4

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vy>5 A (x+y=4V y=6)

Partial assignment
x=1, (y<3)4, ~(x+y=4)

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vy>5 A (x+y=4V y=56)

Partial assignment
x=1,(y<3)4 ~(x+y=4), (y=6)

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vy>5 N x+y=4Vy=6) N
(—ly<3) V ~(y=6))

Partial assignment
x=1,(y<3)4 ~(x+y=4), (y=6)

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vy>5 N x+y=4Vy=6) N
(—ly <3) V ~(y=6))

Partial assignment
x=1,~(y<3)

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 N x+y=4Vy=6) N
(—ly <3) V ~(y=6))

Partial assignment
x=1,~(y<3), (y>5)

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 N x+y=4Vy=6) N
(—ly <3) V ~(y=6))

Partial assignment
x=1,~(y<3), (y>5), ~(x+y=4)

24/27

Theory propagation

The T-solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formula ¢ over linear integer arithmetic:

x=1 AN (y<3Vuy>5 N x+y=4Vy=6) N
(—ly <3) V ~(y=6))

Partial assignment
x=1,~(y<3), (y>5), ~(x+y=4), (y=06)

24/27

Further enhancements

Online approach can be further improved:

25/27

Further enhancements

Online approach can be further improved:
m early pruning,

25/27

Further enhancements

Online approach can be further improved:
m early pruning,

m restarts,

25/27

Further enhancements

Online approach can be further improved:
m early pruning,
B restarts,

® lemmas on demand.

25/27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called CDCL(T).

T-solver can be instantiated arbitrarily, but it should

26/27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called CDCL(T).

T-solver can be instantiated arbitrarily, but it should
m handle assignment of literal values efficiently,

26/27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called CDCL(T).

T-solver can be instantiated arbitrarily, but it should
m handle assignment of literal values efficiently,
m provide reasons for theory conflicts,

26/27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called CDCL(T).

T-solver can be instantiated arbitrarily, but it should
m handle assignment of literal values efficiently,
m provide reasons for theory conflicts,
m backtrack efficiently.

26/27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called CDCL(T).

T-solver can be instantiated arbitrarily, but it should
m handle assignment of literal values efficiently,
m provide reasons for theory conflicts,
m backtrack efficiently.

26/27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called CDCL(T).

T-solver can be instantiated arbitrarily, but it should
m handle assignment of literal values efficiently,
m provide reasons for theory conflicts,
m backtrack efficiently.

It further can

26/27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called CDCL(T).

T-solver can be instantiated arbitrarily, but it should
m handle assignment of literal values efficiently,
m provide reasons for theory conflicts,
m backtrack efficiently.

It further can
m perform theory propagation (identify implied literals),

26/27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T-solver is called

T-solver can be instantiated arbitrarily, but it should
m handle assignment of literal values efficiently,
m provide reasons for theory conflicts,
m backtrack efficiently.

It further can
m perform theory propagation (identify implied literals),

m perform early pruning (identify theory conflicts during the
search).

26/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fy) N (y=zVx=y) A (g(f(z)) #g(x) V f(z) # f(y))

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fy) N (y=zVx=y) A (g(f(z)) #g(x) V f(z) # f(y))

Partial assignment

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fy) N (y=zVx=y) A (g(f(z)) #g(x) V f(z) # f(y))

Partial assignment

Equality graph

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fly) N (y=zVx=y) N (g(f(z)) #g(x) V f(z) # fly))

Partial assignment
(x =f(y))

Equality graph

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fly) N (y=zVx=y) N (g(f(z)) #g(x) V f(z) # fly))

Partial assignment
(x =f(y)), (y=2)4

Equality graph

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fly) N (y=zVx=y) N (g(f(z)) #g(x) V f(z) # fly))

Partial assignment
(x =f(y)), (y=2)4, (f(z) = f(y))

Equality graph

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fy) N (y=zVx=y) N (g(f(z)) #g(x) V f(z) # f(y))

Partial assignment
(x=f(y)), (y=2)4, (f(z) = f(y)), (9(f(z)) = g(x))

Equality graph

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fly) N (y=zVx=y) N (g(f(z)) #g(x) V f(z) # fly))

Partial assignment

(x=1(y)), (y#2)

Equality graph

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fly) N (y=zVx=y) N (g(f(z)) #g(x) V f(z) # fly))

Partial assignment
(x="1y)), (y#2), (x=y)

Equality graph

27/27

CDCL(T2)

Let's consider CDCL(T-) with the details of the T_-solver.

x="fy) N (y=zVx=y) N (g(f(z)) # glx) V f(z) # f(y))

Partial assignment

(x =1(y)), (y #2), (x=y), (9(f(2)) # g(x))¢

Equality graph

27/27

Further schedule

m 10. 3. - Combination of Theories (Fanda)

27/27

Further schedule

m 10. 3. - Combination of Theories (Fanda)

m 17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

27/27

Further schedule

m 10. 3. - Combination of Theories (Fanda)

m 17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

m 24. 3. - Abstract Conflict-Driven Clause Learning (Martin)

27/27

Further schedule

m 10. 3. - Combination of Theories (Fanda)

m 17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

m 24. 3. - Abstract Conflict-Driven Clause Learning (Martin)
m 31. 3. - Deciding Bit-Vector Formulas with mcSAT (Marta)

27/27

Further schedule

m 10. 3. - Combination of Theories (Fanda)

m 17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

m 24. 3. - Abstract Conflict-Driven Clause Learning (Martin)
m 31. 3. - Deciding Bit-Vector Formulas with mcSAT (Marta)
m 7. 4. - Complexity of Fixed-Size Bit-Vector Logics (Vlada)

27/27

Further schedule

10. 3. — Combination of Theories (Fanda)

17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. - Abstract Conflict-Driven Clause Learning (Martin)
31. 3. - Deciding Bit-Vector Formulas with mcSAT (Marta)
7. 4. — Complexity of Fixed-Size Bit-Vector Logics (VIada)
21. 4. — Counterexample-Guided Model Synthesis (Marek)

27/27

Further schedule

10. 3. — Combination of Theories (Fanda)

17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. - Abstract Conflict-Driven Clause Learning (Martin)
31. 3. - Deciding Bit-Vector Formulas with mcSAT (Marta)
7. 4. — Complexity of Fixed-Size Bit-Vector Logics (VIada)
21. 4. — Counterexample-Guided Model Synthesis (Marek)

5. 5. - Seminator (Fanda)

27/27

Further schedule

m 10. 3. - Combination of Theories (Fanda)

m 17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to

Bit-Vectors (Honza)

24. 3. - Abstract Conflict-Driven Clause Learning (Martin)
31. 3. - Deciding Bit-Vector Formulas with mcSAT (Marta)
7. 4. — Complexity of Fixed-Size Bit-Vector Logics (VIada)
21. 4. — Counterexample-Guided Model Synthesis (Marek)
5. 5. - Seminator (Fanda)

12. 5. — Effective word-level interpolation for software
verification (Viki)

27/27

Further schedule

m 10. 3. - Combination of Theories (Fanda)

m 17. 3. - A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. - Abstract Conflict-Driven Clause Learning (Martin)
31. 3. - Deciding Bit-Vector Formulas with mcSAT (Marta)
7. 4. — Complexity of Fixed-Size Bit-Vector Logics (VIada)
21. 4. — Counterexample-Guided Model Synthesis (Marek)
5. 5. - Seminator (Fanda)

12. 5. — Effective word-level interpolation for software
verification (Viki)

m 19. 5. - An Approximation Framework for Solvers and Decision
Procedures (Katka)

27/27

	First-Order Satisfiability

