
Introduction to Satis�ability Modulo Theories

Martin Jonáš
IA072 – Seminar on Concurrency

March 3, 2017

First-Order Logic

Propositional logic speaks only about truth value – true or false.

First-order logic speaks about objects, their properties and relations
among them.

Examples

∃s. Human(s) ∧ Mortal(s).
∀s. Human(s) → Mortal(s).
∃x∃y. x < 5 ∧ y < 3 ∧ 2 · (x+ y) > 20.

1 / 27

First-Order Logic

Propositional logic speaks only about truth value – true or false.

First-order logic speaks about objects, their properties and relations
among them.

Examples

∃s. Human(s) ∧ Mortal(s).
∀s. Human(s) → Mortal(s).
∃x∃y. x < 5 ∧ y < 3 ∧ 2 · (x+ y) > 20.

1 / 27

First-Order Logic

Propositional logic speaks only about truth value – true or false.

First-order logic speaks about objects, their properties and relations
among them.

Examples

∃s. Human(s) ∧ Mortal(s).
∀s. Human(s) → Mortal(s).
∃x∃y. x < 5 ∧ y < 3 ∧ 2 · (x+ y) > 20.

1 / 27

First-Order Logic

Propositional logic speaks only about truth value – true or false.

First-order logic speaks about objects, their properties and relations
among them.

Examples

∃s. Human(s) ∧ Mortal(s).
∀s. Human(s) → Mortal(s).
∃x∃y. x < 5 ∧ y < 3 ∧ 2 · (x+ y) > 20.

In addition to logical symbols, �rst-order formulas contain variables,
constant symbols, function symbols, and predicate symbols.

1 / 27

First-Order Logic

Propositional logic speaks only about truth value – true or false.

First-order logic speaks about objects, their properties and relations
among them.

Examples

∃s. Human(s) ∧ Mortal(s).
∀s. Human(s) → Mortal(s).
∃x∃y. x < 5 ∧ y < 3 ∧ 2 · (x+ y) > 20.

In addition to logical symbols, �rst-order formulas contain variables,
function symbols, and predicate symbols.

1 / 27

First-Order Logic – Syntax

Suppose we have a set ΣF = {f,g, . . .} of function symbols and a set
ΣP = {R,S, . . .} of predicate symbols.

(Σ-)Term
1 a variable – x,y, z, . . .
2 a function symbol applied to terms – f(x), g(f(x),y), . . .

(Σ)-Literal
1 a predicate symbol applied to terms – R(x),S(f(x),y), . . .
2 a negation of predicate symbol applied to terms –

¬R(x),¬S(f(x),y), . . .

(Σ)-Formula
1 a Boolean combination of literals –

(R(x)∨ ¬R(y))∧ S(f(x),y), . . .
2 a quanti�er applied to a formula – ∀x.R(x),

The set Σ = ΣF ∪ ΣP is called a signature.

2 / 27

First-Order Logic – Syntax

Suppose we have a set ΣF = {f,g, . . .} of function symbols and a set
ΣP = {R,S, . . .} of predicate symbols.

(Σ-)Term
1 a variable – x,y, z, . . .
2 a function symbol applied to terms – f(x), g(f(x),y), . . .

(Σ)-Literal
1 a predicate symbol applied to terms – R(x),S(f(x),y), . . .
2 a negation of predicate symbol applied to terms –

¬R(x),¬S(f(x),y), . . .

(Σ)-Formula
1 a Boolean combination of literals –

(R(x)∨ ¬R(y))∧ S(f(x),y), . . .
2 a quanti�er applied to a formula – ∀x.R(x),

The set Σ = ΣF ∪ ΣP is called a signature.

2 / 27

First-Order Logic – Syntax

Suppose we have a set ΣF = {f,g, . . .} of function symbols and a set
ΣP = {R,S, . . .} of predicate symbols.

(Σ-)Term
1 a variable – x,y, z, . . .
2 a function symbol applied to terms – f(x), g(f(x),y), . . .

(Σ)-Literal
1 a predicate symbol applied to terms – R(x),S(f(x),y), . . .
2 a negation of predicate symbol applied to terms –

¬R(x),¬S(f(x),y), . . .

(Σ)-Formula
1 a Boolean combination of literals –

(R(x)∨ ¬R(y))∧ S(f(x),y), . . .
2 a quanti�er applied to a formula – ∀x.R(x),

The set Σ = ΣF ∪ ΣP is called a signature.

2 / 27

First-Order Logic – Syntax

Suppose we have a set ΣF = {f,g, . . .} of function symbols and a set
ΣP = {R,S, . . .} of predicate symbols.

(Σ-)Term
1 a variable – x,y, z, . . .
2 a function symbol applied to terms – f(x), g(f(x),y), . . .

(Σ)-Literal
1 a predicate symbol applied to terms – R(x),S(f(x),y), . . .
2 a negation of predicate symbol applied to terms –

¬R(x),¬S(f(x),y), . . .

(Σ)-Formula
1 a Boolean combination of literals –

(R(x)∨ ¬R(y))∧ S(f(x),y), . . .
2 a quanti�er applied to a formula – ∀x.R(x),

The set Σ = ΣF ∪ ΣP is called a signature.

2 / 27

First-Order Logic – Syntax

Suppose we have a set ΣF = {f,g, . . .} of function symbols and a set
ΣP = {R,S, . . .} of predicate symbols.

(Σ-)Term
1 a variable – x,y, z, . . .
2 a function symbol applied to terms – f(x), g(f(x),y), . . .

(Σ)-Literal
1 a predicate symbol applied to terms – R(x),S(f(x),y), . . .
2 a negation of predicate symbol applied to terms –

¬R(x),¬S(f(x),y), . . .

(Σ)-Formula
1 a Boolean combination of literals –

(R(x)∨ ¬R(y))∧ S(f(x),y), . . .
2 a quanti�er applied to a formula – ∀x.R(x),

The set Σ = ΣF ∪ ΣP is called a signature.
2 / 27

First-Order Logic – Semantics

Is the following formula true?

∀x∃y.<(x,y) ∧ <(y,+(x, 1))

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27

First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27

First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27

First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27

First-Order Logic – Semantics

Is the following formula true?

∀x∃y. x < y ∧ y < x+ 1

It depends.

What are x, y, z?

What does the function symbol+mean?

What does the relation symbol<mean?

Meaning of these three things is given by a Σ-structure.

3 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

(x < y) ∧ (y+ 1 < x)

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

(µ(x) <A µ(y)) ∧ (µ(y) +A 1A <A µ(x))

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

(1 <A 3) ∧ (3 +A 1A <A 1)

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

(1 <A 3) ∧ (3 +A 1 <A 1)

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

(1 <A 3) ∧ (4 <A 1)

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

> ∧ ⊥

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R),
– we suppose that=A is the identity relation.

Given a Σ-structure and an assignment µ of variables to elements of
A, we can evaluate each formula.

A = Z
+A(x,y) = x+ y
<A (x,y) ⇐⇒ x < y

1A = 1
µ(x) = 1,µ(y) = 3

⊥

4 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

5 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

5 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

(x < y) ∧ (y+ 1 < x)

5 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

(µ(x) <A µ(y)) ∧ (µ(y) +A 1A <A µ(x))

5 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

(◦ <A ◦) ∧ (◦+A 1A <A ◦)

5 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

(◦ <A ◦) ∧ (◦+A • <A ◦)

5 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

(◦ <A ◦) ∧ (• <A ◦)

5 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

> ∧ >

5 / 27

First-Order Logic – Semantics

A Σ-structureA is a pair of

1 a non-empty setA called the universe,
2 a map (_)A that

– to each f ∈ ΣF assigns a function fA : Aar(f) → A,
– to each R ∈ ΣP assigns a relation RA ⊆ Aar(R).

Given a Σ-structure and an assignment µ from variables to elements
ofA, we can evaluate each formula.

A = {◦, •}
+A(x,y) = y
<A (x,y) = {(◦, ◦), (•, ◦)}
1A = •
µ(x) = ◦,µ(y) = ◦

>

5 / 27

First-Order Satis�ability

De�nition

Formulaϕ is satis�able if it evaluates to true for some Σ-structureA
and a variable assignment µ.

Is formula (x < y) ∧ (y+ 1 < x) satis�able? Yes. /

Solution
Consider only well-behaved structures
This gives rise to the Satis�ability Modulo Theories

6 / 27

First-Order Satis�ability

De�nition

Formulaϕ is satis�able if it evaluates to true for some Σ-structureA
and a variable assignment µ.

Is formula (x < y) ∧ (y+ 1 < x) satis�able?

Yes. /

Solution
Consider only well-behaved structures
This gives rise to the Satis�ability Modulo Theories

6 / 27

First-Order Satis�ability

De�nition

Formulaϕ is satis�able if it evaluates to true for some Σ-structureA
and a variable assignment µ.

Is formula (x < y) ∧ (y+ 1 < x) satis�able? Yes. /

Solution
Consider only well-behaved structures
This gives rise to the Satis�ability Modulo Theories

6 / 27

First-Order Satis�ability

De�nition

Formulaϕ is satis�able if it evaluates to true for some Σ-structureA
and a variable assignment µ.

Is formula (x < y) ∧ (y+ 1 < x) satis�able? Yes. /

Solution
Consider only well-behaved structures
This gives rise to the Satis�ability Modulo Theories

6 / 27

Satis�ability Modulo Theories

De�nition

A (Σ-)theory is a set of Σ-structures.

De�nition

A formulaϕ is satis�able modulo theory T if it evaluates to true for
some structureA ∈ T and a variable assignment µ.

7 / 27

Satis�ability Modulo Theories – Example

Consider the structure Zwith the universe Z and the standard
interpretation of operations+,<, and 1.

The formula (x < y) ∧ (y+ 1 < x) is unsatis�able modulo theory
T = {Z}.

The formula (x < y) ∧ (y < x+ 2) is satis�able modulo theory
T = {Z}.

8 / 27

Theories – Tour d’horizon

Theory of equality and uninterpreted functions

Σ = {=, f,g,h, . . .}
T= is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) 6= f(y) ∧ z = v

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is decidable
(Ackermann, 1954)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is in O(n · log(n))

9 / 27

Theories – Tour d’horizon

Theory of equality and uninterpreted functions

Σ = {=, f,g,h, . . .}
T= is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) 6= f(y) ∧ z = v

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is decidable
(Ackermann, 1954)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is in O(n · log(n))

9 / 27

Theories – Tour d’horizon

Theory of equality and uninterpreted functions

Σ = {=, f,g,h, . . .}
T= is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) 6= f(y) ∧ z = v

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is decidable
(Ackermann, 1954)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is in O(n · log(n))

9 / 27

Theories – Tour d’horizon

Theory of equality and uninterpreted functions

Σ = {=, f,g,h, . . .}
T= is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) 6= f(y) ∧ z = v

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is decidable
(Ackermann, 1954)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is in O(n · log(n))

9 / 27

Theories – Tour d’horizon

Theory of equality and uninterpreted functions

Σ = {=, f,g,h, . . .}
T= is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) 6= f(y) ∧ z = v

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is decidable
(Ackermann, 1954)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is in O(n · log(n))

9 / 27

Theories – Tour d’horizon

Theory of equality and uninterpreted functions

Σ = {=, f,g,h, . . .}
T= is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) 6= f(y) ∧ z = v

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is decidable
(Ackermann, 1954)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is in O(n · log(n))

9 / 27

Theories – Tour d’horizon

Theory of equality and uninterpreted functions

Σ = {=, f,g,h, . . .}
T= is a set of all Σ-structures

x = v ∧ y = g(z) ∧ f(g(x)) 6= f(y) ∧ z = v

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is decidable
(Ackermann, 1954)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is in O(n · log(n))

9 / 27

Theories – Tour d’horizon

Theory of linear integer arithmetic

Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)

10 / 27

Theories – Tour d’horizon

Theory of linear integer arithmetic
Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)

10 / 27

Theories – Tour d’horizon

Theory of linear integer arithmetic
Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)

10 / 27

Theories – Tour d’horizon

Theory of linear integer arithmetic
Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)

10 / 27

Theories – Tour d’horizon

Theory of linear integer arithmetic
Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)

10 / 27

Theories – Tour d’horizon

Theory of linear integer arithmetic
Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)

10 / 27

Theories – Tour d’horizon

Theory of linear integer arithmetic
Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)

10 / 27

Theories – Tour d’horizon

Theory of linear integer arithmetic
Σ = {0, 1,+,−,=,6}

TLIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(22n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(222kn
)

(Oppen, 1978)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals is NP-complete (folklore)

10 / 27

Theories – Tour d’horizon

Theory of linear rational arithmetic

Σ = {0, 1,+,−,=,6}

TLRA is a set of a single structure withA = Q and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(2n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Ferrante, Racko�, 1975)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals in P (Khachiyan, 1979)

11 / 27

Theories – Tour d’horizon

Theory of linear rational arithmetic
Σ = {0, 1,+,−,=,6}

TLRA is a set of a single structure withA = Q and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(2n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Ferrante, Racko�, 1975)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals in P (Khachiyan, 1979)

11 / 27

Theories – Tour d’horizon

Theory of linear rational arithmetic
Σ = {0, 1,+,−,=,6}

TLRA is a set of a single structure withA = Q and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(2n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Ferrante, Racko�, 1975)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals in P (Khachiyan, 1979)

11 / 27

Theories – Tour d’horizon

Theory of linear rational arithmetic
Σ = {0, 1,+,−,=,6}

TLRA is a set of a single structure withA = Q and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(2n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Ferrante, Racko�, 1975)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals in P (Khachiyan, 1979)

11 / 27

Theories – Tour d’horizon

Theory of linear rational arithmetic
Σ = {0, 1,+,−,=,6}

TLRA is a set of a single structure withA = Q and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(2n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Ferrante, Racko�, 1975)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals in P (Khachiyan, 1979)

11 / 27

Theories – Tour d’horizon

Theory of linear rational arithmetic
Σ = {0, 1,+,−,=,6}

TLRA is a set of a single structure withA = Q and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(2n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Ferrante, Racko�, 1975)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals in P (Khachiyan, 1979)

11 / 27

Theories – Tour d’horizon

Theory of linear rational arithmetic
Σ = {0, 1,+,−,=,6}

TLRA is a set of a single structure withA = Q and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(2n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Ferrante, Racko�, 1975)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals in P (Khachiyan, 1979)

11 / 27

Theories – Tour d’horizon

Theory of linear rational arithmetic
Σ = {0, 1,+,−,=,6}

TLRA is a set of a single structure withA = Q and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable

complexity of satis�ability of arbitrary formulas is inΩ(2n)

(Fischer, Rabin, 1974)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Ferrante, Racko�, 1975)

satis�ability of quanti�er-free formulas is NP-complete

satis�ability of conjunctions of literals in P (Khachiyan, 1979)

11 / 27

Theories – Tour d’horizon

Theory of non-linear integer arithmetic

Σ = {0, 1,+,−, ·,=,6}

TNIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x · y) ∧ (1 6 y)

satis�ability of conjunctions of quanti�er-free formulas is
undecidable (Matiyasevich, 1971)

12 / 27

Theories – Tour d’horizon

Theory of non-linear integer arithmetic
Σ = {0, 1,+,−, ·,=,6}

TNIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x · y) ∧ (1 6 y)

satis�ability of conjunctions of quanti�er-free formulas is
undecidable (Matiyasevich, 1971)

12 / 27

Theories – Tour d’horizon

Theory of non-linear integer arithmetic
Σ = {0, 1,+,−, ·,=,6}

TNIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x · y) ∧ (1 6 y)

satis�ability of conjunctions of quanti�er-free formulas is
undecidable (Matiyasevich, 1971)

12 / 27

Theories – Tour d’horizon

Theory of non-linear integer arithmetic
Σ = {0, 1,+,−, ·,=,6}

TNIA is a set of a single structure withA = Z and the standard
interpretation of operations

1 6 x ∧ (3 6 x · y) ∧ (1 6 y)

satis�ability of conjunctions of quanti�er-free formulas is
undecidable (Matiyasevich, 1971)

12 / 27

Theories – Tour d’horizon

Theory of non-linear real arithmetic

Σ = {0, 1,+,−, ·,=,6}

TNRA is a set of a single structure withA = R and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable (Tarski, 1951)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Collins, 1975)

complexity of satis�ability of conjunctions of literals in O(22kn)

13 / 27

Theories – Tour d’horizon

Theory of non-linear real arithmetic
Σ = {0, 1,+,−, ·,=,6}

TNRA is a set of a single structure withA = R and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable (Tarski, 1951)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Collins, 1975)

complexity of satis�ability of conjunctions of literals in O(22kn)

13 / 27

Theories – Tour d’horizon

Theory of non-linear real arithmetic
Σ = {0, 1,+,−, ·,=,6}

TNRA is a set of a single structure withA = R and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable (Tarski, 1951)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Collins, 1975)

complexity of satis�ability of conjunctions of literals in O(22kn)

13 / 27

Theories – Tour d’horizon

Theory of non-linear real arithmetic
Σ = {0, 1,+,−, ·,=,6}

TNRA is a set of a single structure withA = R and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable (Tarski, 1951)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Collins, 1975)

complexity of satis�ability of conjunctions of literals in O(22kn)

13 / 27

Theories – Tour d’horizon

Theory of non-linear real arithmetic
Σ = {0, 1,+,−, ·,=,6}

TNRA is a set of a single structure withA = R and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable (Tarski, 1951)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Collins, 1975)

complexity of satis�ability of conjunctions of literals in O(22kn)

13 / 27

Theories – Tour d’horizon

Theory of non-linear real arithmetic
Σ = {0, 1,+,−, ·,=,6}

TNRA is a set of a single structure withA = R and the standard
interpretation of operations

1 6 x ∧ (3 6 x+ y) ∧ (1 6 y)

satis�ability of arbitrary formulas is decidable (Tarski, 1951)

complexity of satis�ability of arbitrary formulas is in O(22kn)

(Collins, 1975)

complexity of satis�ability of conjunctions of literals in O(22kn)

13 / 27

Theories – Tour d’horizon

Theory of arrays

Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v
– equality is de�ned only for elements

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (read(a, i) = read(b, i))

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

14 / 27

Theories – Tour d’horizon

Theory of arrays
Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v
– equality is de�ned only for elements

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (read(a, i) = read(b, i))

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

14 / 27

Theories – Tour d’horizon

Theory of arrays
Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v
– equality is de�ned only for elements

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (read(a, i) = read(b, i))

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

14 / 27

Theories – Tour d’horizon

Theory of arrays
Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v
– equality is de�ned only for elements

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (read(a, i) = read(b, i))

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

14 / 27

Theories – Tour d’horizon

Theory of arrays
Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v
– equality is de�ned only for elements

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (read(a, i) = read(b, i))

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

14 / 27

Theories – Tour d’horizon

Theory of arrays with extensionality

Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (a = b)

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

15 / 27

Theories – Tour d’horizon

Theory of arrays with extensionality
Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (a = b)

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

15 / 27

Theories – Tour d’horizon

Theory of arrays with extensionality
Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (a = b)

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

15 / 27

Theories – Tour d’horizon

Theory of arrays with extensionality
Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (a = b)

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

15 / 27

Theories – Tour d’horizon

Theory of arrays with extensionality
Σ = {read, write,=}

TA is a set of structures, whereA is a set of arrays and elements
and

– read(a, i) is interpreted as an element on index i of array a
– write(a, i, v) is interpreted as an array a after replacing element

on index i by v

read(a, i) = u ∧ (b = write(a, i, v)) ∧ (a = b)

satis�ability of arbitrary formulas is undecidable

satis�ability of quanti�er-free formulas is NP-complete

15 / 27

Theories – Tour d’horizon

More theories:

theory of bit-vectors,

theory of strings,

theory of lists,

theory of recursive data structures,

theory of groups,

. . .

16 / 27

Theories – Tour d’horizon

More theories:

theory of bit-vectors,

theory of strings,

theory of lists,

theory of recursive data structures,

theory of groups,

. . .

16 / 27

Theories – Tour d’horizon

More theories:

theory of bit-vectors,

theory of strings,

theory of lists,

theory of recursive data structures,

theory of groups,

. . .

16 / 27

Theories – Tour d’horizon

More theories:

theory of bit-vectors,

theory of strings,

theory of lists,

theory of recursive data structures,

theory of groups,

. . .

16 / 27

Theories – Tour d’horizon

More theories:

theory of bit-vectors,

theory of strings,

theory of lists,

theory of recursive data structures,

theory of groups,

. . .

16 / 27

Theories – Tour d’horizon

More theories:

theory of bit-vectors,

theory of strings,

theory of lists,

theory of recursive data structures,

theory of groups,

. . .

16 / 27

Two views of theories

A theory can be also viewed as a set of closed Σ-formulas (axioms).

A formula is then satis�able modulo T i� it is true for some structure
that satis�es all axioms in T .

Example

The theory of uninterpreted functions with equality is T= = ∅
The theory of arrays is

TA = {∀a, i, j. (i = j → read(a, i) = read(a, j)),
∀a, v, i, j. (i = j → read(write(a, i, v), j) = v),
∀a, v, i, j. (i 6= j → read(write(a, i, v), j) = read(a, j))}

17 / 27

Two views of theories

A theory can be also viewed as a set of closed Σ-formulas (axioms).

A formula is then satis�able modulo T i� it is true for some structure
that satis�es all axioms in T .

Example

The theory of uninterpreted functions with equality is T= = ∅

The theory of arrays is

TA = { ∀a, i, j. (i = j → read(a, i) = read(a, j)),
∀a, v, i, j. (i = j → read(write(a, i, v), j) = v),
∀a, v, i, j. (i 6= j → read(write(a, i, v), j) = read(a, j))}

17 / 27

Two views of theories

A theory can be also viewed as a set of closed Σ-formulas (axioms).

A formula is then satis�able modulo T i� it is true for some structure
that satis�es all axioms in T .

Example

The theory of uninterpreted functions with equality is T= = ∅
The theory of arrays is

TA = { ∀a, i, j. (i = j → read(a, i) = read(a, j)),
∀a, v, i, j. (i = j → read(write(a, i, v), j) = v),
∀a, v, i, j. (i 6= j → read(write(a, i, v), j) = read(a, j))}

17 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive. (, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive. (, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive. (, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive. (, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive.

(, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive.

(, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive.

(, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive.

(, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive. (, 1931)

18 / 27

Two views of theories

These two views are equivalent

To the set of Σ-structures assign the set of formulas that are
true in all these structures.

To the set of axioms assign the set of Σ-structures that satisfy
all the axioms.

Sometimes, one view is better

A set of structures satisfying axioms of Peano arithmetic is not
easily describable.

A set of axioms for NRA is in�nite and complicated.

A set of axioms for NIA is not recursive. (Gödel, 1931)

18 / 27

Deciding satis�ability modulo theories

Two approaches to SMT

eager

lazy

Eager approach
Encode the formula to SAT

Lazy approach
Use a SAT solver to reason about Boolean structure of the formula
and a specialized T -solver to reason about the constraints imposed
by the theory.

Lazy SMT solvers can be further divided to:

o�ine

online

19 / 27

Deciding satis�ability modulo theories

Two approaches to SMT

eager

lazy

Eager approach
Encode the formula to SAT

Lazy approach
Use a SAT solver to reason about Boolean structure of the formula
and a specialized T -solver to reason about the constraints imposed
by the theory.

Lazy SMT solvers can be further divided to:

o�ine

online

19 / 27

Deciding satis�ability modulo theories

Two approaches to SMT

eager

lazy

Eager approach
Encode the formula to SAT

Lazy approach
Use a SAT solver to reason about Boolean structure of the formula
and a specialized T -solver to reason about the constraints imposed
by the theory.

Lazy SMT solvers can be further divided to:

o�ine

online

19 / 27

Deciding satis�ability modulo theories

Two approaches to SMT

eager

lazy

Eager approach
Encode the formula to SAT

Lazy approach
Use a SAT solver to reason about Boolean structure of the formula
and a specialized T -solver to reason about the constraints imposed
by the theory.

Lazy SMT solvers can be further divided to:

o�ine

online

19 / 27

O�ine SMT solving

Suppose the formula is in conjunctive normal form – a conjunction
of disjunctions of Σ-literals.

And suppose we have a solver that can decide conjunctions of
Σ-literals – a T -solver.

O�ine SMT

Treat each literal as a boolean variable.

Use a SAT solver to get a Boolean model of the formula.

Use a T -solver to check whether the model is satis�able in the
theory (T -consistent).

If not, add a clause that prohibits this Boolean model and
repeat.

20 / 27

O�ine SMT solving

Suppose the formula is in conjunctive normal form – a conjunction
of disjunctions of Σ-literals.

And suppose we have a solver that can decide conjunctions of
Σ-literals – a T -solver.

O�ine SMT

Treat each literal as a boolean variable.

Use a SAT solver to get a Boolean model of the formula.

Use a T -solver to check whether the model is satis�able in the
theory (T -consistent).

If not, add a clause that prohibits this Boolean model and
repeat.

20 / 27

O�ine SMT solving

Suppose the formula is in conjunctive normal form – a conjunction
of disjunctions of Σ-literals.

And suppose we have a solver that can decide conjunctions of
Σ-literals – a T -solver.

O�ine SMT
Treat each literal as a boolean variable.

Use a SAT solver to get a Boolean model of the formula.

Use a T -solver to check whether the model is satis�able in the
theory (T -consistent).

If not, add a clause that prohibits this Boolean model and
repeat.

20 / 27

O�ine SMT solving

Suppose the formula is in conjunctive normal form – a conjunction
of disjunctions of Σ-literals.

And suppose we have a solver that can decide conjunctions of
Σ-literals – a T -solver.

O�ine SMT
Treat each literal as a boolean variable.

Use a SAT solver to get a Boolean model of the formula.

Use a T -solver to check whether the model is satis�able in the
theory (T -consistent).

If not, add a clause that prohibits this Boolean model and
repeat.

20 / 27

O�ine SMT solving

Suppose the formula is in conjunctive normal form – a conjunction
of disjunctions of Σ-literals.

And suppose we have a solver that can decide conjunctions of
Σ-literals – a T -solver.

O�ine SMT
Treat each literal as a boolean variable.

Use a SAT solver to get a Boolean model of the formula.

Use a T -solver to check whether the model is satis�able in the
theory (T -consistent).

If not, add a clause that prohibits this Boolean model and
repeat.

20 / 27

O�ine SMT solving

Suppose the formula is in conjunctive normal form – a conjunction
of disjunctions of Σ-literals.

And suppose we have a solver that can decide conjunctions of
Σ-literals – a T -solver.

O�ine SMT
Treat each literal as a boolean variable.

Use a SAT solver to get a Boolean model of the formula.

Use a T -solver to check whether the model is satis�able in the
theory (T -consistent).

If not, add a clause that prohibits this Boolean model and
repeat.

20 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

p ∧ (q ∨ r) ∧ (s ∨ t)

∧

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Booleanmodel
x = 1, y < 3, x+ y = 4

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Booleanmodel
x = 1, y < 3, x+ y = 4

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Booleanmodel
x = 1, y < 3, x+ y = 4
Not satis�able in the theory

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4))

Booleanmodel
x = 1, y < 3, x+ y = 4
Not satis�able in the theory

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

∧

p ∧ (q ∨ r) ∧ (s ∨ t) ∧

(¬p ∨ ¬q ∨ ¬s)

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4))

Booleanmodel
x = 1, y < 3, ¬(x+ y = 4), y = 6

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4))

Booleanmodel
x = 1, y < 3, ¬(x+ y = 4), y = 6
Not satis�able in the theory

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ (x+ y = 4) ∨ ¬(y = 6))

Booleanmodel
x = 1, y < 3, ¬(x+ y = 4), y = 6
Not satis�able in the theory

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ (x+ y = 4) ∨ ¬(y = 6))

Booleanmodel
x = 1, ¬(y < 3), y > 5, (x+ y = 4)

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ (x+ y = 4) ∨ ¬(y = 6))

Booleanmodel
x = 1, ¬(y < 3), y > 5, (x+ y = 4)
Not satis�able in the theory

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ (x+ y = 4) ∨ ¬(y = 6)) ∧

(¬(x = 1) ∨ (y < 3) ∨ ¬(y > 5) ∨ ¬(x+ y = 4))

Booleanmodel
x = 1, ¬(y < 3), y > 5, (x+ y = 4)
Not satis�able in the theory

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ (x+ y = 4) ∨ ¬(y = 6)) ∧

(¬(x = 1) ∨ (y < 3) ∨ ¬(y > 5) ∨ ¬(x+ y = 4))

Booleanmodel
x = 1, ¬(y < 3), y > 5, ¬(x+ y = 4), y = 6

21 / 27

O�ine SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ (x+ y = 4) ∨ ¬(y = 6)) ∧

(¬(x = 1) ∨ (y < 3) ∨ ¬(y > 5) ∨ ¬(x+ y = 4))

Booleanmodel
x = 1, ¬(y < 3), y > 5, ¬(x+ y = 4), y = 6
Satis�able in the theory! (x = 1,y = 6)

21 / 27

Online SMT solving – towards CDCL(T)

Online SMT
Integrate the CDCL SAT solver and the T -solver more tightly.

After a T -con�ict, the T -solver provides the con�ict clause and the
search backtracks.

22 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
x = 1

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
x = 1, (y < 3)d

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
x = 1, (y < 3)d, (x+ y = 4)d

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4))

Partial assignment
x = 1, (y < 3)d, (x+ y = 4)d

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4))

Partial assignment
x = 1, (y < 3)d, ¬(x+ y = 4)

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4))

Partial assignment
x = 1, (y < 3)d, ¬(x+ y = 4), (y = 6)

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, (y < 3)d, ¬(x+ y = 4), (y = 6)

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, ¬(y < 3)

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, ¬(y < 3), (y > 5)

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, ¬(y < 3), (y > 5), (x+ y = 4)d

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(y < 3) ∨ ¬(y = 6)) ∧

(¬(x = 1) ∨ ¬(y > 5) ∨ ¬(x+ y = 4))

Partial assignment
x = 1, ¬(y < 3), (y > 5), (x+ y = 4)d

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(y < 3) ∨ ¬(y = 6)) ∧

(¬(x = 1) ∨ ¬(y > 5) ∨ ¬(x+ y = 4))

Partial assignment
x = 1, ¬(y < 3), (y > 5), ¬(x+ y = 4)

23 / 27

Online SMT solving – example

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(x = 1) ∨ ¬(y < 3) ∨ ¬(x+ y = 4)) ∧

(¬(y < 3) ∨ ¬(y = 6)) ∧

(¬(x = 1) ∨ ¬(y > 5) ∨ ¬(x+ y = 4))

Partial assignment
x = 1, ¬(y < 3), (y > 5), ¬(x+ y = 4), (y = 6)

23 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
x = 1

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
x = 1, (y < 3)d

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
x = 1, (y < 3)d, ¬(x+ y = 4)

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6)

∧

Partial assignment
x = 1, (y < 3)d, ¬(x+ y = 4), (y = 6)

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, (y < 3)d, ¬(x+ y = 4), (y = 6)

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, ¬(y < 3)

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, ¬(y < 3), (y > 5)

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, ¬(y < 3), (y > 5), ¬(x+ y = 4)

24 / 27

Theory propagation

The T -solver can guide the search, if a value of a literal is implied by
the current partial assignment.

The formulaϕ over linear integer arithmetic:

x = 1 ∧ (y < 3 ∨ y > 5) ∧ (x+ y = 4 ∨ y = 6) ∧

(¬(y < 3) ∨ ¬(y = 6))

Partial assignment
x = 1, ¬(y < 3), (y > 5), ¬(x+ y = 4), (y = 6)

24 / 27

Further enhancements

Online approach can be further improved:

early pruning,

restarts,

lemmas on demand.

25 / 27

Further enhancements

Online approach can be further improved:

early pruning,

restarts,

lemmas on demand.

25 / 27

Further enhancements

Online approach can be further improved:

early pruning,

restarts,

lemmas on demand.

25 / 27

Further enhancements

Online approach can be further improved:

early pruning,

restarts,

lemmas on demand.

25 / 27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).

26 / 27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).

26 / 27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).

26 / 27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).

26 / 27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).

26 / 27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).

26 / 27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).

26 / 27

CDCL(T)

The approach consisting of cooperation of a CDCL SAT solver with a
specialized T -solver is called CDCL(T).

T -solver can be instantiated arbitrarily, but it should

handle assignment of literal values e�ciently,

provide reasons for theory con�icts,

backtrack e�ciently.

It further can

perform theory propagation (identify implied literals),

perform early pruning (identify theory con�icts during the
search).

26 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment
(x = f(y))

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment
(x = f(y)), (y = z)d

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment
(x = f(y)), (y = z)d, (f(z) = f(y))

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment
(x = f(y)), (y = z)d, (f(z) = f(y)), (g(f(z)) = g(x))

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment
(x = f(y)), (y 6= z)

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment
(x = f(y)), (y 6= z), (x = y)

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

CDCL(T=)

Let’s consider CDCL(T=) with the details of the T=-solver.

x = f(y) ∧ (y = z ∨ x = y) ∧ (g(f(z)) 6= g(x) ∨ f(z) 6= f(y))

Partial assignment
(x = f(y)), (y 6= z), (x = y), (g(f(z)) 6= g(x))d

Equality graph

x y z

f(y) f(z)

g(x) g(f(z))

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

Further schedule

10. 3. – Combination of Theories (Fanda)

17. 3. – A Tale Of Two Solvers: Eager and Lazy Approaches to
Bit-Vectors (Honza)

24. 3. – Abstract Con�ict-Driven Clause Learning (Martin)

31. 3. – Deciding Bit-Vector Formulas with mcSAT (Marťa)

7. 4. – Complexity of Fixed-Size Bit-Vector Logics (Vláďa)

21. 4. – Counterexample-Guided Model Synthesis (Marek)

5. 5. – Seminator (Fanda)

12. 5. – E�ective word-level interpolation for software
veri�cation (Viki)

19. 5. – An Approximation Framework for Solvers and Decision
Procedures (Katka)

27 / 27

	First-Order Satisfiability

