
Mary Ann Blätke

Tutorial
Petri Nets in Systems Biology

1st Edition, August 2011

Tutorial
Petri Nets in Systems Biology

1st Edition, August 2011

Mary Ann Blätke

Co-Authors: Monika Heiner, Wolfgang Marwan

Otto-von-Guericke University Magdeburg

Contact:

Mary-Ann Blätke

Chair of Regulatory Biology and
Magdeburg Centre for Systems Biology - MaCS
Otto-von-Guericke-University

Carnot Building
Pfälzerstr. 5
39106 Magdeburg
Germany

E-Mail: mary-ann.blaetke@ovgu.de
Phone: +49 391 67-54609
Fax: +49 391 67-11214

Monika Heiner

Chair of Data Structures and Software Dependability
Brandenburg University of Technology Cottbus

Postbox 101344
03013 Cottbus
Germany

E-Mail: monika.heiner@informatik.tu-cottbus.de
Phone: +49 355 69-3884 / 3885
Fax: +49 355 69-3587

Wolfgang Marwan

Chair of Regulatory Biology and
Magdeburg Centre for Systems Biology - MaCS
Otto-von-Guericke-University

Carnot Building
Pfälzerstr. 5
39106 Magdeburg
Germany

E-Mail: wolfgang.marwan@ovgu.de
Phone: +49 391 67-54600
Fax: +49 391 67-11214

Copyright Mary-Ann Blätke, 2011.
All rights reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission
of the author.

Acknowledgement

This tutorial would not have been possible unless the support of Monika Heiner and my supervisor
Wolfgang Marwan. I am very grateful for their encouragement, guidance and support that enabled me
to develop my understanding of Petri nets and skills.

Further I like to thank Christian Rohr and Martin Schwarick as representatives of Monika Heiners
team, who develop the three fabulous Petri net tools; Snoopy, Charlie and Marcie. I also thank my
colleague Jan-Thierry Wegener, who provided a first documentation of Charlie.

I like to give credit to Qian Gao and Esther Bamigboye for revising an improving the text, which
was very helpful and educational for me.

Mary Ann Blätke

Contents

Contents VII

1 Introduction 1

2 Petri Net Basics 3
2.1 General Information about the use of Petri Nets in modeling biological processes 4
2.2 Standard Petri Net . 5
2.3 Extended Standard Petri Net . 8

2.3.1 Extended Representation . 8
2.3.2 Extended Expressiveness . 9

3 Petri Net Modelling 11
3.1 Analysing the System of Interest . 11
3.2 Assumptions and Modelling Guidelines . 12
3.3 Creating a Petri Net Model . 13

3.3.1 Biological Interpretation of Places and Transition 13
3.3.2 Petri Net Models of Biomolecular Reactions . 14

3.4 Initial State of a Petri Net Model . 18
3.5 Neat Arrangement of a Petri Net Model . 18
3.6 Examples . 19

4 Qualitative Petri Net Analysis 23
4.1 Qualitative Properties . 23

4.1.1 Structural Properties . 23
4.1.2 Behavioural Properties . 25

4.2 Structural Motifs . 28
4.2.1 Trap . 28
4.2.2 Siphon . 29
4.2.3 Invariants . 29

4.3 State Space . 31
4.4 Examples . 34

5 Quantitative Petri Net Analysis 47
5.1 Stochastic Petri Nets . 47

5.1.1 Examples . 50
5.2 Continuous Petri Nets . 52

5.2.1 Examples . 53

6 Model Checking for Petri Nets 55
6.1 Introduction to Model Checking . 55
6.2 Temporal Logics . 55
6.3 Analytical Model Checking . 58

VII

6.3.1 Computation Tree Logic (CTL) . 58
6.3.2 Branching-time Continuous Stochastic Logic (CSL) 61
6.3.3 Linear Time Logic (LTL) . 62

6.4 Simulative Model Checking . 63
6.4.1 Probabilistic Linear Time Logic (PLTL) . 64
6.4.2 Continuous (Probablistic) Linear Time Logic (LTLc/PLTLc) 67

7 Petri Net Editor: Snoopy 69
7.1 Editor Mode . 70
7.2 Elements of the Stochastic Petri Net Class . 71

7.2.1 Places . 72
7.2.2 Transitions . 73
7.2.3 Edges . 75
7.2.4 Parameters . 77

7.3 Configuration Sets . 77
7.4 Animation Mode . 77
7.5 Simulation Mode . 78
7.6 Model Checking Mode . 80
7.7 Get started . 82

7.7.1 Modelling . 82
7.7.2 Simulation/Animation . 85

8 Petri Net Analyser: Charlie 87
8.1 Graphical User Interface . 87

8.1.1 Marking Editor . 89
8.1.2 IM-based Analysis . 90
8.1.3 Siphon/Trap Computation . 91
8.1.4 Reachability Graph/Coverability Graph . 92
8.1.5 Model Checking . 94
8.1.6 Net Properties . 96

8.2 Visualisation of Analysis Results in Snoopy . 97

CHAPTER 1
Introduction

What is the background of this tutorial? During the last decade the integrative research area
of systems biology has been constantly gaining more importance. Experimental and computational
approaches are combined to systematically investigate biological systems. To understand biology on
its system level, the structural and dynamic properties of regulatory networks in biological systems
have to be represented by a model describing the involved species and their interactions. Petri net
theory offers the possibility to construct and analyse such models and to represent their structural and
dynamic propertoies by various techniques.

Who should read this tutorial? This tutorial addresses scientists who are looking for an easy
and intuitive way to translate a biological system into a Petri net model at arbitrarily chosen level of
abstraction with the option of representing time and/or space-dependent processes. The tutorial is
equally suitable for experimental and theory oriented bio-scientists. The examples given in the tutorial
can be used by the interested reader to model her/his own biological system.

What can I learn? The tutorial offers an introduction to the Petri net formalism, how to construct a
model of a biological system, analyse its structure and dynamic behaviour in terms of time-dependent
behaviour, which is shown by several intuitive examples. At the end of the tutorial you will be able to
model a biological system on your own using Petri nets. You will also know how to analyse the structure
of your model, how to interpret the results and how to perform simulation studies to investigate the
time-dependent dynamic behaviour. In addition, we also provide a chapter about model checking,
which might be helpful to evaluate your model by verifying specified properties that you are interested
in. We also show how to use the two Petri net tools Snoopy [19] and Charlie [8]. Based on these
instruments you will be able to enhance your knowledge about the modelled biological system and to
draw new conclusions from that.

Why should I use Petri nets? The graphical notation and construction of Petri nets allows you
to easily and intuitively construct models of biological systems and to characterize the structure,
behavioural properties related to the structure and time-dependent dynamic behaviour of a model by
several related techniques. Petri nets can describe concurrent and parallel processes, as well as commu-
nication and synchronization in bipartite systems regardless of the abstraction level in a comprehensive
and mathematically correct model [12]. Time as well as space aspects can be modelled by a Petri net.
Several specialized Petri net classes are available to describe different scenarios and to consider different
simulative approaches. Therefore, the kinetics of the qualitative Petri net model can be considered as
stochastic, continuous or as a mixture of both (hybrid) [12].
In silico experiments with Petri net models permit to systematically analyse a biological system by

1

2 Introduction

applying structural as well as dynamic analysing techniques to investigate perturbations. From the
obtained results new insights can be achieved about the biological system. Thereby, you can increase
your understanding, reveal gaps in knowledge, and detect missing and/or essential components. Based
on a valid model it is possible to predict the system behaviour. This is might be helpful to investigate
pathological states and their molecular basis aimed at identifying potential targets to develop thera-
peutical intervention strategies.
The Petri net formalism offers quite a few advantages over other and more broadly used modelling
frameworks.. The different Petri net classes are interconvertible with each other without changing
the qualitative structure. Due to the graphical visualisation of molecular networks by Petri nets, a
bioscientist can intuitively understand the modelled mechanisms. The user does not have to deal
with many different representations of a molecular network which do not obviously correspond to each
other like a biological cartoon, the structure of the biological network, the mathematical equations
(stochastic, continuous, etc.) and the implementation of the equations. Besides, the transformation
of a molecular network represented by an Petri net into e.g. ODE equations is unique, but not vice
versa [24]. Several reliable analysis tools have been develop to investigate qualitative and quantitative
properties of Petri nets by structural analysis, simulation of the time-dependent dynamic behaviour
and model checking.

What is the scheme of this tutorial? First of all, you will learn all the basics about the Petri
net formalism motivated by small biological examples that are easy to understand. Next, you will see
how to analyse the structure of a model and how to interpret the obtained results and their biological
meaning. Afterwards, you will learn how to perform simulations with your model. We also offer a
chapter about model checking, where you can learn how to verify specific properties of your model that
you are interested in. Then, we introduce the two Petri net tools Snoopy [19] and Charlie [8].
All sections, where theoretical concepts are explained, are divided into an informal and a formal part.
We start with an informal introduction, where we explain the basics and the biological relations.
Subsequently and to be complete, we give the formal definitions and a small help on “how to read” the
definitions at the end of the section.

What tools do I need? Several tools are available to model biological systems, simulate their time-
dependent dynamic behaviour and analyse their structure. Here, we use the Petri net editor Snoopy [19]
to model biological systems and simulate/animate their time-dependent dynamic behaviour. Charlie
[8] is used to analyse the Petri net structure. Both software tools were developed at the chair of Data
Structures and Software Dependability at the Brandenburg University of Technology Cottbus and are
freely available for non-commercial use. You can download them at http://www-dssz.informatik.

tu-cottbus.de/DSSZ/Software/Software [1].

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Software
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Software

CHAPTER 2
Petri Net Basics

In this chapter we give you all relevant information about Petri nets. We answer the questions:

What are Petri Nets?
Why are Petri nets useful and efficient in modelling biological systems?
How are Petri nets defined?

First of all, what does “Petri” mean?

“Petri nets are used as a formal and graphically appealing language which is
appropriate for modelling systems with concurrency and resource sharing. Petri net

modelling has been under development since the beginning of the 60’ies, where Carl Adam
Petri defined the language. It was the first time a general theory for discrete parallel

systems was formulated. The language is a generalization of automata theory such that
the concept of concurrently occurring events can be expressed.” [2]

Figure 2.1: Carl Adam Petri. Carl Adam Petri (12 July 1926 – 2 July 2010) was a German mathematician
and computer scientist. He was born in Leipzig. Petri nets were invented in August 1939 by Carl Adam
Petri at at the age of 13 for the purpose of describing chemical processes. He documented the Petri net in
1962 as part of his dissertation, Kommunikation mit Automaten (communication with automata) [4].

3

4 Petri Net Basics

2.1 General Information about the use of Petri Nets in modeling
biological processes

Petri nets were originally designed to represent discrete, concurrent processes of technical systems. They
combine an intuitive, unambiguous, qualitative bipartite graphical representation of arbitrary processes
with a formal semantics. Thus, the power of Petri nets is the explicit representation of concurrent
processes, but they also offer a simple and flexible modelling language. Petri nets are also powerful and
useful in modelling biological systems. Petri nets may unambiguously represent (bio-)chemical reactions
in metabolism, signal transduction and gene expression and have been applied to neuronal processes as
well. In the biological context, Petri nets are especially efficient in reconstructing complex molecular
networks. A Petri net may represent:

• Stochastic (discrete) and kinetic (continuous) processes at arbitrary resolution of molecular detail
within a single, coherent model;

• any chemical or biochemical reaction at any resolution of kinetic detail,
• the localization of molecules in different spatial compartments (cytoplasm, nucleus, etc.), as well

as different localization in 1-, 2- or 3- dimensional space, and the translocation between different
locations;

• the signalling states of single molecules, circuits or networks,
• the physiological state, behaviour or response of a cell.

Petri nets have already been applied to biological case studies like the regulation of the lac operon
[21], Duchenné muscular dystrophy [10], the response of S. cerevisiae to copulatory hormones [7] and the
yeast cycle [18]. Two examples for Petri nets applied to metabolic systems are the sucrose breakdown
pathway in the potato tuber [13] and the iron homoeostasis process in human body [20]. There are a
lot of other interesting articles dealing the application of Petri nets to biological systems, which can not
all be cited. The abstraction degree of a model can vary from single molecules to cells to multicellular
aggregations. Even a whole organism or population can be described by a Petri net. A Petri net can
always be extended or edited by refining the components of the model by subnets. Advantageously,
missing qualitative or kinetic information can be handled by Petri nets. The iterative process between
wet-lab experiment and model-based predictions enables the researcher to close such gaps.

Figure 2.2: Conceptual Framework. The Petri net formalism allows to switch between different network
classes to describe qualitative (QPN), stochastic (SPN) and continuous (CPN) information in a cohesive
Petri net model [12].

Petri nets may serve as umbrella formalism to integrate qualitative and quantitative modelling,
which allows to apply various analysis techniques. Several reliable software tools, which support the
Petri net formalism are developed by the international community on computational methods [19].
Several specialized Petri net classes like qualitative, stochastic, continuous, or hybrid Petri nets and their
coloured counterparts are available to describe different scenarios and to consider different simulative
approaches. All network classes are interconvertible with each other without changing the network
structure; see Figure 2.2. This allows the application of the same powerful analysis techniques to the
underlying qualitative structure of all Petri net classes [12]. The wide range of network classes allows

2.2. Standard Petri Net 5

the integration of qualitative, continuous and stochastic information. This allows the representation
of different kinetic processes and different data types. Petri nets link structural and dynamic analysis
techniques to investigate and validate a model such as graph theory, application of linear algebra to
check a model and simulation methods. This facilitates the performance of simulation studies to explore
the time-dependent dynamic behaviour, the in-depth analysis of structural criteria and the state space
of a model.

2.2 Standard Petri Net

A Petri net is represented by a directed, finite, bipartite graph, typically without isolated nodes. The
four main components of a general Petri net are: places, transitions, arcs and tokens; see Figure 2.3,
A.

Figure 2.3: Petri Net Formalism. Petri nets consist of places, transitions, arcs and tokens (A). Just
places are allowed to carry tokens (B). Two nodes of the same type can not be connected with each other
(C). The Petri net represents the chemical reaction of the water formation (D). A transition is enabled and
may fire if its pre-places are sufficiently marked by tokens.

Places are passive nodes. They are indicated by circles and refer to conditions or states. In a
biological context, places may represent: populations, species, organisms, multicellular complexes,
single cells, proteins (enzymes, receptors, transporters, etc.), molecules or ions. But places could also
embody temperature, pH-value or membrane potential; see also Section 3.3.1. Only places are allowed
to carry tokens; see Figure 2.3, B.

Tokens are variable elements of a Petri net. They are indicated as dots or numbers within a place
and represent the discrete value of a condition. Tokens are consumed and produced by transitions; see
Figure 2.3, D. In biological systems tokens refer to a concentration level or a discrete number of a
species, e.g., proteins, ions, organic and inorganic molecules. Tokens might also represent the value of
physical quantities like temperature, pH value or membrane voltage that effect biological systems. A
Petri net without any tokens is called “empty”. The initial marking affects many properties of a Petri
net, which are considered in Chapter 2.

Transitions are active nodes and are depicted by squares. They describe state shifts, system events
and activities in a network. In a biological context, transitions refer to (bio-)chemical reactions,
molecular interactions or intramolecular changes; see also Section 3.3.1. If a place is connected by
an arc with a transition, the place (transition) is called pre-place (post-transition). If a transition
is connected by an arc with a place, the transition (place) is called pre-transition (post-place); see
Figure 2.4. Transitions consume tokens from its pre-places and produce tokens within its post-places
according to the arc weights; see Figure 2.3, D.

6 Petri Net Basics

Figure 2.4: Places and Transitions. Place p1 is called pre-place of transition t1, and transition t1 is the
post-transition of place p1. Place p2 is called post-place of transition t2, and transition t2 is the
pre-transition of place p2.

Directed arcs are inactive elements and are visualised by arrows. They specify the causal relation-
ships between transitions and places and indicate how the marking is changed by firing of a transition.
Thus, arcs define reactants/substrates and products of a (bio-)chemical reaction. Arcs connect only
nodes of different types; see Figure 2.3, C. Each arc is connected with an arc weight. The arc weight
sets the number of tokens that are consumed or produced by a transition. The stoichiometry of a
(bio-)chemical reaction can be represented by the arc weights.

The Petri net Semantic describes the behaviour of the net, which is defined by firing rules
consisting of a precondition and the firing itself. The firing of a transition depends on the marking
of its pre-places. A transition is enabled and may fire, if all pre-places are sufficiently marked. If
a transition has no pre-places it is always enabled to fire. By firing a transition moves tokens from
preplaces to postplaces and possibly changes the number of tokens. The firing of a transition changes
the marking of the connected places. Thus, the marking of the net is changed to a new reachable
marking, where some transitions are not any more enabled while others get enabled. The behaviour of
a net is established by repeated firing of transitions. All possible ordered firing sequences result into
the whole net behaviour, which is also called state space.

Formal Definitions:

Definition 2.1 (Standard Petri net) A standard Petri net is a quadruple N = (P, T, f, m0),
where:

• P, T are finite, non-empty, disjoint sets. P is the set of places. T is the set of transitions.
• f: ((P × T) ∪ (T × P)) → N0 defines the set of directed arcs, weighted by non-negative integer

values.
• m0: P → N0 gives the initial marking.

How to read:
Assume the following small example of an enzymatic reaction; see Figure 2.5:

Figure 2.5: Running Example. To illustrate the definition, we use the example of an enzymatic reaction
A+ E ↔ AE → E +B.

The Petri net N = (P, T, f,m0) in our running example; see Figure 2.5, consists of places P ,
transitions t, directed arcs f and the initial marking m0:

2.2. Standard Petri Net 7

• Set of places P : P = {Enzyme, Substrate, EnymeSubstrateComplex, Product}
• Set of places T : T = {Association,Dissociation, Synthesis}
• Set of directed arcs: ((P × T) ∪ (T × P)) is the combination of the following subsets

– Places connected with (→) transitions:

(P × T) = {Substrate×Association,
Enymze×Assoication,
EnymeSubstrateComplex×Dissociation,
EnymeSubstrateComplex× Synthesis}

– Transitions connected with (→) places:

(T × P) = {Assoication× EnymeSubstrateComplex,
Dissociation× Substrate,
Dissociation× Product,
Synthesis× Product,
Synthesis× Enzyme}

• Initial Markingm0: m0 = {Enzyme = 1, Substrate = 1, EnymeSubstrateComplex = 0, P roduct = 0};
the amount of tokens must be expressed as an integer variable.

At this point, we also like to introduce further notions and notations, which we use during the
tutorial. The notation m(p) refers to the number of tokens on place p in the marking m. Place p is
clean (empty, unmarked) in m if m(p) = 0, otherwise place p is clean (empty, unmarked) in m. A set
of places is called clean if all places are clean, otherwise the set is marked. The postset and preset of a
node x ∈ P ∪ T , is defined as:

• Preset: •x := {y ∈ P ∪ T | f(y, x) 6= 0}
• Postset: x• := {y ∈ P ∪ T | f(x, y) 6= 0}

For places and transitions, we get four types of sets:

• •t - preplaces of transition t (reaction’s precursor)
• t• - postplaces of transition t (reaction’s products)
• •p - pretransitions of place p (all producing reactions of a component)
• p• - posttransitions of place p (all consuming reactions of a component)

This definition can be extended and generalized for a set of nodes X ⊆∈ P ∪T . Now, the set of prenodes
is given by •X :=

⋃
x∈X •x and the set of postnodes refers to X• :=

⋃
x∈X •x

Definition 2.2 (Firing Rule) Let N = (P, T, f, m0) be a Petri net:

• A transition is enabled in marking m, written as m [t〉, if ∀p ∈ •t : m(p) ≥ f(p, t), else disabled.
• A transition t, which is enabled in m, may fire.
• When t in m fires, a new marking m′ is reached, written as m [t〉m′, with ∀p ∈ P : m′(p) =
m(p)− f(p, t) + f(t, p).

• The firing happens atomically and does not consume any time.

How to read:
Assume the example above; see Figure 2.5:

• The transition Association is enabled in marking m0 = (1, 1, 0, 0), because the marking of both
pre-places (Enzyme = 1, Substrate = 1) of the transition Assoiciation are equal to the respective
arc weight (in both caes “1”).

8 Petri Net Basics

• Thus, the enabled transition Association may fire in m0.
• Firing of the transition Association in m0, leads to the marking m1 = (0, 0, 1, 0). The transition
Assoication removes one token from the place Enzyme and one token from the places Substrate,
both places do not get back any tokens. In consequence, both places are empty. The place
EnzymeSubstrateComplex gains one new token. The place Product is not involved and thus,
the number of tokens is not changed at all.

In addition, m ∈ N|P |0 defined the marking of the given token situation, whereby |P | denotes the
number of places in a Petri net. All markings, which can be reached from a given marking m by any
firing sequence, form the set of reachable markings [m〉. The set of markings [m0〉 reachable from the
initial marking m0 constitutes the state space of a model.

2.3 Extended Standard Petri Net

2.3.1 Extended Representation

For representationals reason of large networks two more specific types of nodes (transitions, places) have
been developed, called logical nodes and macro nodes. Both types allow to neatly arrange networks, but
do not affect the properties of the Petri net. Indeed, this nodes are very useful to represent biological
systems

• Logical nodes: A logical transition or places is indicated by a slight grey shade; see Figure
2.6. Logical nodes can be used to represent frequent elements in a network by identical copies
of a node, e.g., reactions or components. Thus, logical nodes are a kind of connectors bringing
together identical nodes that are repeated in the network structure. Logical places can be used to
represent components with many cross links, like second messengers (cAMP, DAG, IP3 etc.), or
energy equivalents (ATP, NADH etc.) that are linked to numerous reactions. Logical transition
are able to represent reactions that are repeated all over the network or reaction, where a lot of
components are involved. Such a reaction can be split in single parts using logical transitions.

Figure 2.6: Logical Nodes. Two representations of a reaction using logical places (A) and logical
transitions (B). The reaction A+E ↔ AE → E +B is split in single blocks. In (A) this blocks are chosen
according the reaction, substrates and products are represented as logical places. In (B) each block
represents all reactions that are related to the respective components. Here logical transitions are used.

• Macro nodes: A macro node or a macro place are visualised as boxed nodes; see Figure 2.7.
Macro nodes allow to hierarchically structure a network. Each macro node establish a new layer

2.3. Extended Standard Petri Net 9

of the network. Macro nodes can be arbitrarily nested. Advantegeously, macro nodes offer the
possibility to refine the network structure on a new layer. In addition, macro nodes also allow
to structure a model into meaningful parts of connected subnets, group species or reactions or
adapted the hierarchical structure of biological networks, e.g., compartmentalization of cells or an
entire organism. The boundary nodes of a macro place are transitions. Macro transitions have
only boundary places.

Figure 2.7: Macro Nodes. Macro nodes allow refining of places or transitions by a detailed subnets on a
deeper hierarchical level. The border nodes of a macro transition (place) are places (transitions).

2.3.2 Extended Expressiveness

In order to reinforce the expressiveness of Petri nets, two arc types have been introduced, read (or test)
edge and inhibitor edge; see Figure 2.8. Both types of arcs can be used to easier represent certain
relationships in the network.

Figure 2.8: Inhibitor Edge and Read Edge. (A) Read edge: Transition t1 is enabled if place A and B are
sufficiently marked. After firing, tokens are deleted from place B, but not from place A, which is connected
with transition t1 by a read edge. (B) Inhibitor edge: Transition t1 is enabled if place B is sufficiently
marked and place A is not sufficiently marked, which is connected with transition t1 by an inhibitor edge.
After firing tokens are deleted from place B, but not from A.

10 Petri Net Basics

• Read edges are represented by an edge and a filled dot at its end. Read edges only connect a
place with a transition. If a place p is connected with a transition t via a read edge, the transition
t is enabled if place p and all other places connected with transition t via the standard arc are
sufficiently marked. By firing transition t, the amount of tokens on place p is not changed. Read
edges can also be adapted by two opposed standard arcs. Thus, the qualitative analysis techniques
of Petri nets can also be applied to models containing read edges.

• Inhibitor edge are represented by an edge and an empty dot at the end. Inhibitor edges only
connect places with transitions. If a place p is connected with a transition by an inhibitor edge,
the transition t is enabled if place p is not sufficiently marked, meaning the amount of tokens
must be less than the respective arc weight, and all other places connected with transition t via
the standard arc are sufficiently marked. Tokens are not deleted from the place p if the transition
t fires. Inhibitor edges can not be reduced to the standard edges and thus they cause radical
modification. All here introduced qualitative analysis techniques are not applicable to models
containing inhibitor edges.

CHAPTER 3
Petri Net Modelling

After the theoretical excursion, we now address the modelling procedure itself. Here, we answer the
following questions:

What is a model?
What can you expect from your model?
What points need to be considered before modelling?
How can you create your own Petri net model?

Modelling a biological system is similar to designing a game board. In both cases you need to define
its structure and therewith the actions that are allowed and the different states that can be reached by
each action.

First of all, you need to be aware that a model is only a simple, abstract representation of reality. A
model can not explain every detail of the real biological system, but a model can help you to understand
the structural relationships and the time-dependent dynamic behaviour. You can not expect new
information about your biological system that you have not indirectly defined in the network structure
and in the kinetics of the model. But do not be afraid if you do not have all detailed information of the
biological system (components, reactions, kinetics) that you want to model. Even in this case, a model
can be very helpful in studying the behaviour of the model or in revealing missing components and
reactions. Even more, a model might also help to estimate kinetic parameters. This can be done by
testing various modifications and perturbations, which would never be possible in your real system or
would be too expensive. You may be able to test any hypotheses about the biological system by making
model predictions. Additionally, in the case of Petri net models, there are several reliable analysis
techniques available which might help you to better understand your model.
In the following sections, we talk about all steps that you need to consider while creating a qualitative
model. After constructing your model, you can analyse its structure and the time-dependent dynamic
behaviour. These two options are discussed in Chapter 4 and 5.

3.1 Analysing the System of Interest

Before starting the modelling procedure itself, you have to analyse your system very carefully and think
about the points listed below.

1. Step: Make assumptions and think about abstractions to keep your model as simple as possible.
2. Step: Set boundaries to reasonably limit your model.
3. Step: Identify the involved components (and perhaps their different states).

11

12 Petri Net Modelling

4. Step: Identify all actions, (bio-)chemical reactions and any other changes occurring in your system.
5. Step: Define the relationships between components and reactions.
6. Step: Define the stoichiometry.
7. Step: Define the initial state.

Ask yourself what you know about the biological system. Perhaps, you have to go to the literature
and collect more information about the components and reactions that are involved in your system. You
should decide what the model should reflect and in how much detail you want to describe your system.
Think of reasonable boundaries and of suitable assumptions to restrict the model of the biological
system. A model should always be self-contained and as simple as possible. Often, it is not necessary
to describe everything in detail. Start with a simple model. You can always refine your model and add
further information if necessary.

3.2 Assumptions and Modelling Guidelines

Before modelling you should think of reasonable boundaries and of suitable assumptions to restrict
the model of the biological system. But it is also important to agree on a conformable modelling
procedure. All three points are important requirements to create a consistent model and to avoid
errors, inconsistencies and contradictions while modelling.

Assumptions directly related to the biological context depend on the current issue and the chosen
abstraction level. Therefore, you have to think about:

• System boundaries:include all relevant components and reactions;
• Abstraction level of processes: consider reactions in detail or merge a set of reactions into one

bigger step;
• Abstraction level of the involved components: consider components as on unit, consider different

states of a component or consider even functional domains of components;
• Handling of non-limiting components: “pseudo reactions” could be used to independently produce

such components;
• Handling of products that have no more function in a model: “pseudo reactions” could be used

to remove such components;
• Space: consider different compartments of the biological system and the translocation of compo-

nents or neglect spatial information.

Additional scenarios are conceivable to model a biological system depending on the special context.

The decision on the modelling guideline goes along with the preassigned assumptions and boundaries.
Here, we suggest some useful guidelines that you can consider while modelling. The strict observance
depends also on the given issue, available information and chosen abstraction level.
The following guidelines are suitable for modelling biological systems:

• Reaction pathways (= Sequence of reactions reproducing its initial state, see also T-invariants,
Section 4.2.3) like signal cascades or metabolic routes cover the entire model to restore the initial
state of the model.

• The constant sum of molecules belonging to related components or different states of a component
must be preserved (=Sum of tokens over a set of place is constant, see also P-invariants, Section
4.2.3). Mass conservation is assured if this property holds for each component (place) in the
model.

• A Petri net model should be transition-bordered (all places have pre- and post-transitions), or
place-bordered (all transitions have pre- and post-places), or not contain any border nodes at all
(closed network structure).

– Use input transitions to ensure that substrates do not limit the internal processes in a model.

3.3. Creating a Petri Net Model 13

Figure 3.1: Representation of Enzymatic Reactions: Petri net shown in (A) refers to a simple

annotation of an enzymatic reaction S
E→ P. We couple the enzyme with the reaction by a read edge.

Thereby the enzyme does not get consumed. The Petri net in (B) illustrates the single steps of an enzymatic
reaction S + E → ES → EP → P + E. The enzyme is temporarily consumed, but at the end released again.

– Use output transitions to ensure that products do not infinitely increase.
– Use input places to ensure that initial substrates limit internal processes in the model.
– Use output places to ensure that products accumulate.

• High abstraction level:

– Reactions triggered by a component or a specific condition (temperature, pH value, mem-
brane voltage) are considered as one single simplified reaction. Enzymes and similar triggers
are not consumed by the reaction. They are connected with the corresponding transition via
a read edge; see Figure 3.1, A.

– A reaction sequence is reduced to one step.

• Low abstraction level:

– Enzymatic reactions are refined into subreactions; see Figure 3.1, B.
– Each reaction is split into elementary steps.

3.3 Creating a Petri Net Model

To construct a Petri net model of a biological system, the involved reactions and components must
be identified according to the assumptions and the modelling guidelines in the step before. You need
to represent all reactions as transitions. Places represent specific conditions (temperature, membrane
voltage, pH-Value) or components. Afterwards you need to define the relationships between places
and transitions with the help of arcs, and the stoichiometry by arc weights. Section 3.6 gives several
examples of how to translate chemical and enzymatic reactions into Petri nets.

3.3.1 Biological Interpretation of Places and Transition

In this section, we summarize biological interpretations of places and transitions. Both list are not
complete and you can always add your own interpretation depending on your biological system.
A place could represent:

• molecular level:

– atoms,
– ions,

14 Petri Net Modelling

– small inorganic molecules (oxygen, water, carbon dioxide, phosphates, acids, bases, etc.),
– small organic molecules (hydrocarbons, carbohydrates, nucleic acid, amino acids, etc.),
– second messengers (cAMP, DAP, IP3, PIP2, etc.),
– energy equivalents (ATP/ADP, GTP/GDP, NAD+/NADH, NADP+/NADPH, etc.),
– proteins (enzymes, transporter, ion-channels, protein complexes, protein domains, etc.),
– molecules in certain localisations

• cellular level:

– specific cell types (epidermal cells, neurons, germ cells, blood cells, etc.),
– state of a single cell (healthy, infected, diseased, etc.),
– single cell organism (bacteria, virus, etc.),
– compartment of a cell (nucleus, endoplasmic reticulum, lysosome, mitochondria, etc.),
– structural component of a cell (membrane, DNA, ribosome, cytoplasm, etc.)

• multicellular level:

– cell complexes (layer of identical, different cells, etc.),
– tissue (muscles tissue, nervous tissue, epithelial tissue, etc.),
– organs (skin, muscles, liver, lunges, etc.),
– multicellular organism (human, animal, plants, fungi, etc.),
– populations (single-cell organisms, multicellular organisms, etc.),
– state of the multicellular complex (healthy, infected, diseased, etc.),

• non-biological factors:

– environmental factors (sun, wind, food, stress, etc.),
– physical properties (pH-value, temperature, membrane voltage, pressure, red light, etc.),
– abstract factors or conditions.

If you think of transitions, they can be interpreted as:

• (bio-)chemical reaction,
• dissociation/association,
• state shifts,
• actions,
• molecular changes,
• transport (active, inactive)/diffusion,
• phosphorylation/dephosphorylation,
• translation/transcription,
• degradation/synthesis,
• any event related to the above mentioned interpretation of places.

To keep this tutorial as simple as possible, we generalize the interpretation of places to components
and the interpretation of transitions to reaction.

3.3.2 Petri Net Models of Biomolecular Reactions

Among the biological systems, a lot of similar processes are involved and in addition processes can be
categorised by their functionality. Biological processes of one group can be simplified to a generalized
mechanism. Here, we summarize such generalized mechanisms that you can find very frequently in
biological systems. For each of those examples, we provide the Petri net structure of and small biological
cartoon. You can reuse the Petri net models in your own model and connect different submodels with
each other. The first Figure 3.2 shows typical chemical reactions and their corresponding Petri net
structure. Figure 3.3, we consider different transport mechanisms and how to represent them by
a Petri net. Some Petri nets of general mechanisms in signal transduction are given in Figure 3.4.
Posttranslational modifications (PTMs) regulate the functionality and activity of proteins and are thus,
important in many biological mechanisms. Figure 3.5 shows generalized Petri net models of the most
common PTMs.

3.3. Creating a Petri Net Model 15

Figure 3.2: Chemical Reactions.

Here we depict Petri net structures of typical chemical reactions (adopted from [17].

Figure 3.3: Molecular Transport Mechanisms. Molecular Transport Mechanisms translated into Petri net
models.

16 Petri Net Modelling

Figure 3.4: Signalling Mechanisms. Most common signalling mechanisms translated into Petri net models
(adopted from [15]).

3.3. Creating a Petri Net Model 17

Figure 3.5: Posttranslational modification. Posttranslational modifications(PTMs) of proteins translated
into Petri net models.

18 Petri Net Modelling

3.4 Initial State of a Petri Net Model

After setting the network structure of the Petri net, its initial state has to be defined, e.g., according
to the initial state of the biological system. It is not necessary to put tokens on every single place. To
set the initial marking you have to consider the following points:

• What is your input (substrates, signals)?
• Which internal components are available at the beginning?
• Which is the initial state of a component?
• Which are the structural components in your system (membranes, compartments, cell organells,

DNA etc.)?

Another way to set an initial marking is to consider P-invariants; see Section 4.2.3. Every P-
invariant should be initially marked by a token. The reactions in your model can only occur (transitions
can only fire) if places are sufficiently marked. Thus, the initial marking determines the state spaces,
meaning which states can be reached. With the help of the initial marking you can also simulate
limitation, knock-downs or knock-outs and mutations or overexpression. You can test the influence of
different manipulations and perturbations in your model on general and behavioural network properties,
the state space and time-dependent dynamic behaviour.

3.5 Neat Arrangement of a Petri Net Model

Sometimes the network structure of a biological system grows very fast and the reflected processes are
very complex. Additionally, in biological networks some components are highly interactive and act at
several reactions, like second messenger and energy equivalents. Thus, the model might not be very
readable, but confusing. To enhance the readability of your model you can use macro nodes and logical
nodes if necessary; see Section 2.2, Figure 2.7.

Figure 3.6: Joining Submodels. Macro nodes can be used to build neatly arranged and hierarchically
structured submodels. Separate submodels can be coupled by logical places that refer to the same component
in all submodels.

The application of macro nodes leads to a hierarchical model with different levels that are connected
with each other. Hierarchical models allow you to neatly display the network structure. The hierarchical
structure of a model does not change any properties of the flat model. With the help of macro nodes
you can refine single places or transitions by a detailed subnet on a lower level and/or you can organize
your model into functional units. A model could be subdivided into reaction sets, signal cascades or
related components. To represent highly cross-linked components and transitions with multiple input
and output, you should consider using logical places and transitions. By using macro nodes and logical
places you can construct separate Petri net models and join them afterwards; see Figure 3.6. The
submodels are connected via logical places, i.e., places of components that are shared among different
submodels. The construction and analysis of separate Petri net models might also avoid errors and
inconsistencies.

3.6. Examples 19

3.6 Examples

The next pages more examples of different enzymatic reactions like enzyme inhibition, signal amplifi-
cation, feedback inhibition and gene regulation. As before in Section 3.3.2, these general structures
can be reused in any biological system.

Example 3.1 (Enzymatic Reaction) Here are two possibilities showing how to represent an enzy-
matic reaction using Petri nets. In A, the enzymatic reaction is simplified to one reaction. In B, we
consider in addition the formation of an enzyme-substrate-complex. The enzymatic reaction is split into
two steps.

Example 3.2 (Enzymatic Reaction Coupled with Gene Expression) The simple enzymatic
reaction in A can be extended by adding more and more details about the gene expression, see B and
C.

20 Petri Net Modelling

Example 3.3 (Feedback Inhibition) In this example, the negative feedback is initiated by the prod-
uct that inhibits the first enzyme of the reaction sequence. To realise the inhibition the product is
connected with the first transition of the sequence via an inhibitor edge.

Example 3.4 (Signal Amplification) In signal amplification multiple enzymes activate each other
step by step. Signal amplification can be found in different signal pathway, e.g., in the mitogen-activated
protein kinase (MAPK) cascade, where each enzyme can activate several enzymes in the next step of
the signal pathway.

3.6. Examples 21

Example 3.5 (Competitive Enzyme Inhibition) The substrate and the inhibitor can both bind to
the active site of the enzyme. The inhibitor and substrate can not bind at the same time to the enzyme,
they exclude each other.

Example 3.6 (Allosteric Enzyme Inhibition) The inhibitor binds to a distinct site at the enzyme.
Thus, the inhibitor does not compete with the substrate and can inhibit the enzyme independently whether
the substrate is bound or not.

CHAPTER 4
Qualitative Petri Net Analysis

In this chapter we talk about qualitative properties of the network structure and their meanings. All
definitions and classifications are taken from reference [12]. Also, consider reference [12] if you are
interested in more mathematical details. Here, we answer the questions:

Which properties can be determined for a Petri net model?
What does each property mean in general?
And what is the biological meaning of each property?
Which are important components?
How do I know, if my system can reach a certain state?

Again, the game board is a nice analogy to the modelling of a biological system. Each game has
certain structures and rules. It is not possible to play chess on a merels boards, or vice versa. The same
applies for biological systems. Each biological system has defined properties that should be reflected
by its model.

The Petri net formalism allows you to characterize elementary system properties of the underlying
Petri net model. Those properties can be determined without considering kinetic information and,
therefore, without considering the the the time-dependent dynamic behaviour. It is not just possible to
make statements about the pure qualitative properties of the network structure. The network structures
also allows you to draw conclusions about behavioural properties independent of time of the model.
The fulfilment of certain properties is important for the consistency and strict observance of rules
important for a biological system. These properties may vary among different case studies and depend
on the specific issue, assumptions and modelling guideline. However, the properties of a Petri net can
be used to validate the model and to check relevant system properties. Each property has a significant
biological meaning.

4.1 Qualitative Properties

4.1.1 Structural Properties

The structural properties given in Table 4.1 are elementary properties of a Petri net graph, which
directly depend on the arrangement of places, transitions and arcs (including arc weights). Those prop-
erties characterize the network structure and are independent of the marking. They can be considered
as an initial consistency check to prove that the model adheres to the assumptions and the modelling

23

24 Qualitative Petri Net Analysis

guideline. Next to the informal description of each of those behavioural properties, we give the biological
interpretation.

Table 4.1: Qualitative Properties of a Petri net and their biological Meaning

Property Informal Definition Biological Meaning

PUR Pure There are no two nodes, directly
connected in both directions. This
precludes read arcs and double arcs.

No component is produced and con-
sumed by the same reaction. Thus,
enzymatic or enzyme-like reactions
are formulated in more detail.

ORD Ordinary All arc weights are equal to 1. Every stoichiometric coefficient of
each reaction is equal to one.

HOM Homogeneous All outgoing arcs of a given place
have the same multiplicity.

Each consuming reaction associated
with one component takes the same
amount of molecules of this compo-
nent.

CON Connected A Petri net is connected if it holds
for every two nodes a and b that
there is an undirected path between
a and b. Disconnected parts of
a Petri net can not influence each
other, so they can be usually anal-
ysed separately. In the following we
only consider connected Petri nets.

All components in a system are di-
rectly or indirectly connected with
each other through a set of reac-
tions, e.g., metabolic paths, signal
flows.

SC Strongly Con-
nected

A Petri net is strongly connected if
it holds for every two nodes a and b
that there is a directed path from a
to b, vice versa. Strong connected-
ness involves connectedness and the
absence of boundary nodes. It is a
necessary condition for a Petri net
to be live and bounded at the same
time.

All components in a system are di-
rectly connected with each other
through a set of reactions, e.g.,
metabolic paths, signal flows.

NBM Non-blocking
Multiplicity

The minimum of the multiplicity of
the incoming arcs for a place is not
less than the maximum of the mul-
tiplicities of its outgoing arcs.

The amount of produced and con-
sumed molecules of a certain com-
ponent is always equal.

CSV Conservative All transitions add exactly as
many tokens to their post-places as
they subtract from their pre-places
(token-preservingly firing). A con-
servative Petri net is structurally
bounded.

The total amount of consumed and
produced molecules by a certain re-
action is always equal.

SCF Static conflict
free

There are no two transitions sharing
a pre-place. Transitions involved in
a dynamic conflict compete for the
tokens on shared places.

For every reactant exist just one
possible reaction or there are no two
reactions sharing at least one reac-
tant.

FT0 No input transi-
tion

There exist no transitions without
pre-places.

Infinite source of a component.

TF0 No output tran-
sition

There exist no transitions without
post-places.

Sink of a component.

4.1. Qualitative Properties 25

FP0 No input place There exist no places without pre-
transitions.

The component can not be produced
by any reaction. Thus, such compo-
nents are limiting.

PF0 No output place There exist no places without post-
transitions

Components can infinitely accumu-
late in the system. Thus, they are
not consumed by any reaction.

4.1.2 Behavioural Properties

Behavioural properties of a Petri net are listed in Table 4.2 and 4.4; they characterize the system
behaviour of a model, which depend on the qualitative network structure and on the initial marking.
The listed behavioural properties are independent of the time-dependent dynamic behaviour and thus,
independent of kinetic information. Therefore, behavioural properties of a Petri net are determined by
time-free decision about the systems behaviour, meaning time aspects are not considered. Next to the
informal description of the behavioural properties, we give the biological interpretation.

4.1.2.1 General Behavioural Properties

General behavioural properties as shown in Table 4.2 illustrate the properties of a Petri net model char-
acterizing the boundedness, liveness and reversibility based on the underlying network structure. These
properties are independent of the special functionality of the network itself. The informal definitions of
the named properties are given below:

• Boundedness: For every place it holds that: Whatever happens, the maximum number of tokens
on this place is bounded by a constant. This precludes overflow by unlimited increase of tokens;
see 1-B, k-B, SB in Table 4.2.
• Liveness: For every transition it holds that: Whatever happens, it will always be possible to reach

a state where this transition gets enabled. In a live net all transitions are able to contribute to
the net behaviour forever, which precludes dead states, i.e., states where none of the transitions
are enabled; see also Liv, DSt, DTr in Table 4.2.
• Reversibility : For every state it holds that: Whatever happens, the net will always be able to

reach this state again. So the net has the capability of self-reinitialization; see also REV in Table
4.2.

The biological interpretation of those properties is given in Table 4.2.

Table 4.2: General Behavioural Properties of a Petri net and their biological Meaning

Property Informal Definition Biological Meaning

SB Structurally
bounded

A Petri is structurally bounded if it
is bounded in any initial marking.

It is not possible that any compo-
nent accumulates in the system in-
dependent of the initial conditions.

1-B 1-bounded A Petri net is 1-bounded if all its
places are 1-bounded.

Number of molecules or the concen-
tration of every component is lim-
ited to one only.

k-B k-bounded A Petri net is k-bounded if all its
places are k-bounded.

Number of molecules or the concen-
tration level of each component is
limited to a constant number k.

LIV Liveness Every transition of a Petri net con-
tributes to the network behaviour
forever.

All involved reaction will repeatedly
occur and contribute to the time-
(and spatial-) dependent develop-
ment.

26 Qualitative Petri Net Analysis

REV Reversibility The initial marking can be reached
again from each reachable marking.

The initial state of a system can
be reproduced by any possible state
reached from the initial conditions.

DCF Dynamically
conflict free

A Petri net is has no dynamic con-
flicts if no state exists, in which two
transitions are enabled, which could
disable each other by firing.

The occurrence of a reaction inhibits
another reaction which could also
occur at the same time. The shared
reactants are consumed by one of
the reaction and no reactants are left
or one reaction produces a compo-
nent that directly inhibits the other
reaction.

DSt Dead states A Petri net has a dead state if no
transition can be enabled any more.

The system can run into a state,
where no reaction can occur.

DTr Dead transition A transition in a Petri net is dead if
it can not be enabled in any marking
reachable from the initial marking.

The system can run from the initial
state chosen initial state into at least
one state, where at least one reac-
tion can not occur any more.

Formal Definitions:

Definition 4.1 (Boundedness)

• A place p is k-bounded if there exists a positive integer number k, which represents an upper
bound for the number of tokens on this place in all reachable markings of the Petri net:
∃k ∈ N0 : ∀m ∈ [m0〉 : m (p) ≤ k.
• A Petri net is k-bounded if all its places are k-bounded.
• A Petri net is structurally bounded if it is bounded in any initial marking.

How to read:
Please consider the example given in Figure 2.5. First, we need to consider all marking m reachable
from the initial marking m0 by simply playing the token game. As result we get:

Table 4.3: Reachable markings of the Petri net given in Figure 2.5

Place m0 m1 m2

Enzyme 1 0 1
Substrate 1 0 0
EnzymeSubstrateComplex 0 1 0
Product 0 0 1

Now, we can draw the following conclusion according to the definition

• Each component has an upper bound k. In addition, the upper bound for all components is equal
to “1”.

• All components are 1-bounded. Thus, the resulting Petri net is 1-bounded.
• You can think of any marking, the tokens will never infinitely accumulate in the Petri net. Thus,

the Petri net is structurally bounded. The amount of Product molecules produced by Synthesis is
limited by Substrate. The stoichiometry of the reactionAssociation andDissociation is balanced.
Thus, the number of molecules on place Enzyme or Substrate will not increase. The total
number of Enzyme, (Enzyme+ EnzymeSubstrateComplex) and the total number of substrate
and product (Substrate+ Product+ EnzymeSubstrateComplex) is constant for each marking.

4.1. Qualitative Properties 27

Definition 4.2 (Liveness)

• A transition t is dead in the marking m if it is not enabled in any marking m′ reachable from:
@m′ ∈ [m〉 : m′(t).

• A transition t is live, if it is not dead in any marking reachable from m0.
• A marking m is dead, if there is no transition which is enabled in m.
• A Petri net is deadstate-free, if there are no reachable dead markings.
• A Petri net is live, if each transition is live.

How to read:
Please consider the example given in Figure 2.5 and Table 4.3.

• In marking m0/m1/m2 transition(s) Synthesis and Dissociation/Association/Association and
Dissociation is (are) dead. Thus, transitions Association, Dissociation and Synthesis are dead.

• Transitions Association, Dissociation and Synthesis are not live, because they are dead.
• Marking m2 is dead, non of the transitions Association, Dissociation and Synthesis can be

enabled.
• Because of m2 the Petri net has a deadstate.
• The Petri net is not live, because all transitions are not live.

Definition 4.3 (Reversibility) A Petri net is reversible if the initial marking can be reached again
from each reachable marking: ∀m ∈ [m0〉 : m0 ∈ [m〉.

How to read:
Please consider the example given in Figure 2.5 and Table 4.3.

• The Petri net is not reversible, because the initial marking m0 can not be reached from marking
m3.

4.1.2.2 Further Behavioural Properties

In order to consider the following properties, one need to consider important structural motifs of a Petri
net: traps, siphons and invariants; see Section 4.2.

A Property related to siphon and traps is STP; see Table 4.4. This property depends on the initial
marking. Consider also the information about traps and siphons given in Sections 4.2.1 and 4.2.2.
The properties CPI, CTI and SCTI refer to the invariants of the model; see Table 4.4. They do not
depend on the initial marking. Additional information about invariants can be found in Section 4.2.3.

Table 4.4: Behavioural Properties of a Petri net related to Traps and Siphons and their biological Meaning

Property Informal Definition Biological Meaning

STP Siphon trap
property

Every siphon includes an initially
marked trap. This excludes input
places.

The part of the system that repre-
sents an outflow of certain compo-
nents by a siphon contains also an
initial active trap. Thus, the out-
flow does not stop, because it gets
new input from the trap.

CPI Covered by
place invariants

A Petri net is covered by P-
invariants if every place belongs to
a P-invariant.

Mass Conservation is given in the
entire system.

CTI Covered by
transition in-
variants

A Petri net is covered by T-
invariants if every transition belongs
to a T-invariant.

The initial state of all sequences of
reactions can be restored.

28 Qualitative Petri Net Analysis

SCTI Strongly cov-
ered by transi-
tion invariants

A Petri net is strongly covered by
T-invariants, if it is covered by
non-trivial T-invariants. Trivial T-
invariants consist of only two reac-
tions.

There are no two reactions that re-
store each other.

4.2 Structural Motifs

4.2.1 Trap

In general, a trap refers a device designed to catch something. In terms of Petri nets, a trap is subnet
that catches tokens and retain at least one of them; see Figure 4.1. The number of tokens in a trap
can decrease but never become zero. A trap can not become empty, if it has contained tokens. Post-
transitions in a trap will always return tokens to the trap.
Cyclic structures in a biological system that are activated by an input should be represented in a model
as trap. Another example is of molecules that can assume certain states, but in the end they are caught
in a cellular compartment.

Figure 4.1: Trap. The red coloured subnet of the Petri net indicates a trap. The place set {C, D, E} can not
become empty once it has contained a token. The post-transitions of the set {t4, t5} are contained in set of
pre-transitions {t1, t3, t4, t5}. The repeated firing of transition t4 and t5 will reduce the total token number
in the trap, but can not remove all of them.

Formal Definitions:

Definition 4.4 (Trap) A set of places Q ⊆ P is called trap if Q• ⊆ •Q (the set of post-transitions
is contained in set of pre-transitions), i.e., every transition which subtracts tokens from a place of the
trap, also has a post-place in this set.

How to read:

Consider the example given in Figure 4.1.

• Set of all places P = {A,B,C,D,E},
• Set of places constituting a trap Q = {C,D,E}
• Q ⊆ P : Q is a subset of P ; meaning places C,D,E of set Q are contained in the set P
• Q•: Set of post-transitions of places in set Q; Q• = {t4, t5}
• •Q: Set of pre-transitions of places in set Q; •Q = {t1, t3, t4, t5}
• Q• ⊆ •Q: Q• is a subset of •Q; meaning post-transitions t4, t5 of set Q• are contained in the set

of pre-transitions •Q.

4.2. Structural Motifs 29

4.2.2 Siphon

In the technical context, a siphon is a bent pipe or tube with one end lower than the other, in which
hydrostatic pressure exerted due to the force of gravity moves liquid from one reservoir to another.
Generally speaking, a siphon is a device that loses its content. In terms of Petri nets, a siphon refers to
a subnet that releases all its tokens. Figure 4.2 illustrates a possible structure of a siphon in a Petri
net. A Petri net without siphons is live, while a system in a dead state has a clean siphon.
In biological terms, a siphon is a finite source of molecules or energy. It could also be a cyclic structure
that might produce molecules by consuming itself.

Figure 4.2: Siphon. The red coloured subnet of the Petri net indicates a siphon. The place set {A, B} will
become empty after a finite time. The pre-transitions of the set {t1, t2} are contained in set of
post-transitions {t1, t2, t3}. The tokens can rotate by sequential firing of transition t1 and t2. Each cycle
also produces tokens on place E. The cycle is cleaned up by firing of transition t3.

Formal Definitions:

Definition 4.5 (Siphon) A non-empty set of places D ⊆ P is called siphon if •D ⊆ D• the set of
pre-transitions is contained in set of post-transitions, i.e., every transition which fires tokens onto a
place in this siphon, also has a pre-place in this set.

How to read:
Consider the example given in Figure 4.2.

• Set of all places P = {A,B,C,D,E},
• Set of places constituting a trap D = {A,B}
• D ⊆ P : D is a subset of P ; meaning places A,B of set D are contained in the set P
• •D: Set of pre-transitions of places in set D; •D = {t1, t2}
• D•: Set of post-transitions of places in set D; D• = {t1, t2, t3}
• •D ⊆ D•: •D is a subset of D•; meaning pre-transitions t1, t2 of set •D are contained in the set

of post-transitions D•.

4.2.3 Invariants

In general, invariants are special features in a system. In mathematics, an invariant of a system is a
predicate, which is not changed by the involved processes in the system. Meaning if the predicate is
true at the initial state before the start of a sequence of processes, then it must be true at the end of
the sequence ans always in between. In the Petri net context, invariants indicate states in the Petri
net graph that are not changed after a transformation or a sequence of transformations. Petri net
invariants can be split into place invariants and transition invariants; see Figure 4.3. Both types of
invariants have a biological interpretation and thus, are meaningful to represent a biological system.

A P-invariant ; see Figure 4.3, stands for a set of places over which the weighted sum of tokens
is constant and independent of any firing. The total effect of each every transition on a P-invariant is

30 Qualitative Petri Net Analysis

Figure 4.3: P- and T-invariants. T-invariants restore an initial state, while P-invariants ensure the token
preservation.

zero. Thus, a P-invariant conserves the number of tokens. Obviously, each place in a P-invariant is
bounded. In the biological context, with the help of P-invariants you can assure mass conservation and
avoid an infinite increase of molecules in your model. P-invariants may describe components that are
related with each other or the different states of a component.

A T-invariant ; see Figure 4.3, stands for a sequence of transitions, which by their partially
ordered firing reproduce an initial state, which enabled the firing of the transitions in the T-invariant.
In a biological context, T-invariants describe a sequence of reactions that reproduce an initial state.
T-invariants ensure that the model of the biological system can reinitialize a certain initial state. Also,
the firing of transitions in a T-invariant leads to a steady state behaviour.

By looking at the P- and T-invariants, you can check their biological plausibility and thereby, prove
the structural consistency of your model and/or gather new insights about the biological system itself.

Formal Definitions:

Definition 4.6 (P-invariants, T-invariants)

• The incidence matrix of N is a matrix C : P × T → Z, indexed by P and T, such that C(p, t) =
f(t, p)− f(p, t).
• A place vector (transition vector) is a vector x : P → Z, indexed by P (y : T → Z, indexed by

T)
• A place vector (transition vector) is called P-invariant (T-invariant) if it is a non-trivial non-

negative integer solution of the linear equation system x · C = 0 (C · y = 0).
• The set of nodes corresponding to an invariant’s nonzero entries are called the support of this

invariant x, written as supp(x).
• An invariant x is called minimal, if @ invariant z: supp(z) ⊂ supp(x), i.e., its support does not

contain the support of any other invariant z, and the greatest common divisor of all nonzero
entries of x is 1.
• A net is covered by P-invariants (T-invariants), if every place (transition) belongs to a P-

invariant (T-invariant).

How to read:
Consider the example given in Figure 2.5.

• First of all, we have to write down the incidence matrix C of from the Petri net of our example.
The incidence matrix is similar to the stoichiometric matrix of a reaction system.

Association Dissociation Synthesis

Enzyme −1 1 1
Substrate −1 1 0
EnzymeSubstrateComplex 1 −1 −1
Product 0 0 1

 = C

4.3. State Space 31

P-Invariants T-Invariants

• Place vector x:
x =

(
x1 x2 x3 x4

)
Four places mean 4 entries in the vector.

• Transition vector y:

y =
(
y1 y2 y3

)′
Three transition mean 3 entries in the

• Solution of x · C = 0:
x1
x2
x3
x4

′

·

−1 1 1
−1 1 0
1 −1 −1
0 0 1

 = 0

We get two solutions:

– P-invariant 1: x =
(
1 0 1 0

)
– P-invariant 2: x =

(
0 1 1 1

)

• Solution of C · y = 0:
−1 1 1
−1 1 0
1 −1 −1
0 0 1

 ·
y1y2
y3

 = 0

We get only one solutions:

– T-invariant 1: x =
(
1 1 0

)

• Support of the P-invariants (non-zero ele-
ments):

– P-Invariant 1:

{Enzyme,
EnzymeSubstrateComplex}

– P-Invariant 2:

{Substrate, Product,
EnzymeSubstrateComplex}

• Support of the T-invariants (non-zero ele-
ments):

– T-Invariant 1:

{Association,Dissociation}

• The support of P-invariant 1 is not a sub-
set of P-invariant 2, vice versa. The great-
est divisor of the non-zero elements in both
P-invariants is equal one. Thus, both P-
invariants are minimal.

• The first condition is not relevant in the
case of only one T-invariant. The great-
est divisor of the non-zero elements in the
T-invariant is equal one. Thus, the T-
invariant is minimal.

• Each place is contained in at least one of
the two P-invariants. Thus, the Petri net of
our example is covered by P-invariants.

• Transition Synthesis is not contained in the
T-invariant. Petri net of our example is not
covered by T-invariants

4.3 State Space

In order to decide boundedness, liveness and reversibility it might be necessary to consider the state
space; Section 4.1.2. The state space comprises all possible states that can be reached from the initial
marking. It can also be visualised by a graph, where nodes correspond to a state (marking) of the Petri
net and directed arcs indicate the firing of a single transition that leads to the next possible marking.

The state space is computed by determining all enabled transition at the initial marking and the
follow-up marking reached by firing of a single enabled transition. This procedure must be repeated
for each state. The state space represents all possible states and all firing sequences required to reach
a certain state from the initial marking independent of time aspects. Nodes in the graph of the state

32 Qualitative Petri Net Analysis

Figure 4.4: Reachability and Coverability Graph. The reachability graph is constructed for bounded Petri
nets (A). The initial marking of the bounded Petri net is depicted in red. The state space of an unbounded
Petri net (B) is infinite. Thus, the coverability graph is constructed. The transition marked in red is always
enabled. Therefore, the number of tokens infinitely increases in Petri net. In both graphs, the nodes display
the marking of the current state. A place that is not marked, is not displayed. A marked place is followed
the number of tokens. If a place carries only one token, the number is not displayed (trivial). Places that
are unbounded, are indicated by “inf”. Nodes with an empty marking are indicated by “()”. Each arc is
named by the transitions that induces the next state.

space that have more than one successor (branching nodes), reflect either alternative or concurrent
behaviour. Thus, branching nodes indicate dynamic conflicts, which have to be checked on the Petri
net level. Nodes with out any successor represent dead states. Based on the state space graph, it is
also possible to check for dead transitions.
The state space of a bounded Petri net can be visualised by a reachability graph. If the Petri net is not
bounded, the coverability graph is constructed.
Based on the reachability graph we can decide the following behavioural properties of the underlying
bounded Petri nets:

• k-bounded: The marking of each node in the state space is limited by a constant k.
• Reversibility: The reachability graph is strongly connected.
• Deadstate-free: The reachability graph has no terminal nodes, nodes without a successor.

4.3. State Space 33

• Liveness: The reachability graph is partitioned into strongly connected components (SCC), which
refer to maximal sets of strongly connected nodes. A SCC is called terminal if no other SCC is
reachable in the partitioned graph. A transition is live if and only if it is included in all terminal
SCCs of the partitioned reachability graph. A Petri net is live if and only if this holds for all
transitions.

Formal Definitions:

Definition 4.7 (State Space) Let N = (P, T, f,m0) be a Petri net. The state space of N can be
visualised by a graph G(N) = (VN , EN), where

• VN := [m0〉 is the set of nodes,
• EN := {(m, t,m′) |m,m′ ∈ [m0〉 , t ∈ T : m [m0〉} is the set of arcs.

How to read:
Consider the example given in Figure 2.5.

• First, we have to construct the state space. We have already thought of all possible markings
reachable from mo in Section 4.1.2.1, see Table 4.3.
• VN = {m0,m1,m2} contains the marking of all states that we have determined.
• EN = {(m0, Association,m1) , (m1, Dissociation,m0) , (m1, Synthesis,m2)} gives us the infor-

mation of actual node, the enabled transition and the marking reached by the switching the
respective transition.

• Based on VN and EN , we can now draw the reachability graph; see Figure 4.5:

Figure 4.5: Reachability of the Running Example. Reachability graph of the running example shown in
Figure 2.5. The nodes are indicated by their marking; see also Table 4.3. The corresponding transition of
each arc is written next to it.

34 Qualitative Petri Net Analysis

4.4 Examples

Example 4.1 (Analysis: RKIP Pathway [11]) The Raf-1 interacting protein (RKIP) is an in-
hibitor of the MAP pathway [26]. RKIP binds to Raf-1 and thereby inhibits the phosphorylation of
MEK by Raf-1. But RKIP is not a substrate of Raf-1. The interaction of the Raf-1-RKIP complex with
ERK leads to the phosphorylation of RKIP and the dissociation of the complex. The Petri net model
shown here is taken from [11] and refers to an ODE model given in [5].

• Petri net:

• Assumptions:

– Raf1 is always active (Raf1Star).
– MEKpp is always phosphorylated.
– Just a subset of ERK pathways that are regulated by RKIP are considered.

• Meaning of transitions:

– t1: RKIP binds to Raf1Star (active state of Raf1) and thereby inhibits the binding of MEK
to Raf-1 and consequently the phosphorylation of MEK.

4.4. Examples 35

– t2: Dissociation of the Raf1Star-RKIP complex.
– t3: Phosphorylated ERK (ERKpp) interacts binds to the Raf1Star-RKIP complex.
– t4: Dissociation of the Raf1Star-RKIP-ERKpp complex.
– t5: ERKpp phosphorylates RKIP and thereby causes the release of Raf1Star. ERK gets

dephosphorylated by protein phosphatases (PP2A, MAPK phosphatases)
– t6: Binding of phosphorylated MEK (MEKpp) to ERK.
– t7: Dissociation of the MEKpp-ERK complex.
– t8: MEKpp phosphorylates ERK causing the release of ERKpp.
– t9: Binding of the RKIP phosphatase (RP) to phosphorylated RKIP (RKIPp).
– t10: Dissociation of the RKIPp-RP complex.
– t11: RP promotes dephosphorylation of RKIP causing the release of RKIP.

• Properties:

– PUR = Y
The model contains no read arcs; side con-
ditions for reactions. Enzymatic reactions
are split into single steps.

– ORD = Y
The stoichiometry in all reactions is “1”.

– HOM = Y
Each consuming reaction associated with
one component takes the same amount of
molecules of this component.

– NBM = Y
The amount of molecules of a component
being produced or consumed by each asso-
ciated reaction is always equal.

– CSV = N
The reactions in the model involve associa-
tion/dissociation of different components.

– SCF = N
There are reactions sharing the same com-
ponents as reactants.

– CON = Y
The involved components build a connected
molecular network.

– SC = Y
Moreover, each component has a direct
path of reactions to all other components.

– FT0 = Y
No external sources.

– TF0 = Y
No external sinks.

– FP0 = Y
No component acts only as a reactant.

– PF0 = Y
No component acts only as a product.

– STP = Y
The involved reactions form circles, the to-
tal amount of molecules in these circles will

never become zero.
– CPI = Y

Mass conservation is ensured. A P-
invariant comprises all states of one com-
ponent.

– CTI = Y
All reactions in the model are contained in
circles of reactions. Each circle can restore
its initial state.

– SCTI = N
Some of the circles make up by related re-
actions consist only of two steps.

– SB = Y
Independently of the initial state, no com-
ponent can infinitely accumulate.

– k-B = Y
For each component exists an upper bound.

– 1-B = Y
In more detail, the upper bound for each
component is restricted to one molecule.

– DCF = N
If, e.g., the RafStar-RKIP complex disso-
ciates it loses the possibility to bind phos-
phorylated ERK.

– DSt = 0
At least one reaction can always take place.

– DTr = N
For each reaction it is possible to reach a
state, where the reaction can occur.

– LIV = Y
Due to the cyclic reactions that restore
each other, all reactions contribute forever
to the signalling.

– REV = Y
Due to the cyclic reactions that restore
each other, the initial state can be repro-
duced.

36 Qualitative Petri Net Analysis

• P-invariants: Here, Here, each P-invariant describes all specific states of one component.

• T-invariants: Here, each T-invariant describes a circle of related reactions.

• Siphons:
Here, each P-invariant makes up a siphon. The reactions involved in a P-invariant give at least
one output to another P-invariant. Each P-invariant is connected with another P-invariant via
at least one shared place. Thus, each P-invariant/siphon triggers the next reaction level and vice
versa.

• Traps:
Here, each P-invariant also constitutes a trap by definition. P-invariants can never run out of
tokens. The reactions involved in a P-invariant give at least one input to another P-invariant.
Each P-invariant is connected with another P-invariant via at least one shared place. Thus the
corresponding traps in this model will always contain tokens. Meaning whatever happens, each
protein will be available in at least one of its specific states.

4.4. Examples 37

• Reachability Graph:
Due to the boundedness of the model, the reachability graph has been constructed. The initial
marking is set to:
Raf1Star, RKIP, MEKpp, ERK, RP = 1

– Nodes:13
– Edges: 30
– SCC: 1
– Terminal SCC: 1

Place m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13
Raf1Star 1 0 0 1 1 0 0 1 1 1 1 1 1
RKIP 1 0 0 1 1 0 0 0 0 0 0 0 0
Raf1Star RKIP 0 1 1 0 0 1 0 0 0 0 0 0 0
Raf1Star RKIP ERKpp 0 0 0 0 0 0 1 0 0 0 0 0 0
ERK 1 1 0 0 0 0 0 1 0 0 0 0 1
RKIPp 0 0 0 0 0 0 0 1 1 1 0 0 0
MEKpp 1 1 0 0 1 1 1 1 0 1 1 0 1
MEKpp ERK 0 0 1 1 0 0 0 0 1 0 0 1 0
ERKpp 0 0 0 0 1 1 0 0 0 1 1 0 0
RP 1 1 1 1 1 1 1 1 1 1 0 0 0
RKIP RP 0 0 0 0 0 0 0 0 0 0 1 1 1

38 Qualitative Petri Net Analysis

Example 4.2 (Analysis: MAP Kinase Cascade [11]) The mitogen-activated protein kinase
(MAPK) cascade is the core of the ubiquitous ERK-MAPK pathway regulating, e.g., cell division,
cell differentiation. In this model (taken from [12]), we do not describe the signalling of the membrane
receptors leading immediately to the activation of the intracellular MAPK pathway. Here, we consider
the RasGTP complex as input which activates Raf by phosphorylation. Raf double phosphorylates MEK;
and MEK in turn phosphorylates ERK twice. Double phosphorylated ERK serves as the output of our
model. The dephosphorylation of the three signalling proteins is done by its corresponding phosphatase.

• Biological Cartoon:

• Petri net:

4.4. Examples 39

• Meaning of transitions:

– a ProteinA ProteinB: Association of protein A and protein B
– d ProteinA ProteinB: Dissociation of protein A and protein B
– pk ProteinA ProteinB: Phosphorylation of protein A by protein B (protein kinase)
– dpk ProteinA ProteinB: Dephosphorylation of protein A by protein B (protein phosphatase)

• Properties:

– PUR = Y
The model contains no read arcs; side con-
ditions for reactions. Enzymatic reactions
are split into single steps.

– ORD = Y
The stoichiometry in all reactions is “1”.

– HOM = Y
Each consuming reaction associated with
one component takes the same amount of
molecules of this component.

– NBM = Y
The amount of molecules of a component
being produced or consumed by each asso-
ciated reaction is always equal.

– CSV = N
The reactions in the model involve associa-
tion/dissociation of different components.

– SCF = N
There are reactions sharing the same com-
ponents as reactants.

– CON = Y
The involved components build a connected
molecular network.

– SC = Y
Moreover, each component has a direct
path of reactions to all other components.

– FT0 = Y
No external sources.

– TF0 = Y
No external sinks.

– FP0 = Y
No component acts only as a reactant.

– PF0 = Y
No component acts only as a product.

– STP = Y
The involved reactions form circles, the to-
tal amount of molecules in these circles will
never become zero.

– CPI = Y
Mass conservation is ensured. A P-
invariant comprises all states of one com-
ponent.

– CTI = Y
All reactions in the model are contained in
circles of reactions. Each circle can restore
its initial state.

– SCTI = N
Some of the circles make up by related re-
actions consist only of two steps.

– SB = Y
Independently of the initial state, no com-
ponent can infinitely accumulate.

– k-B = Y
For each component exists an upper bound.

– 1-B = Y
In more detail, the upper bound for each
component is restricted to one molecule.

– DCF = N
If, e.g., MEK gets dephosphorylated it
loses the possibility to phosphorylate ERK.

– DSt = 0
At least one reaction can always take place.

– DTr = N
For each reaction it is possible to reach a
state, where the reaction can occur.

– LIV = Y
Due to the cyclic reactions that restore
each other, all reactions contribute forever
to the signalling.

– REV = Y
Due to the cyclic reactions that restore
each other, the initial state can be repro-
duced.

40 Qualitative Petri Net Analysis

• P-invariants:

P-invariant Places Meaning
1 ERKp ERKptase, ERKpp ERKptase, ERKptase States of ERKptase
2 MEKp MEKptase, MEKpp MEKptase, MEKptase States of MEKptase
3 RasGTP, Raf RasGTP States of RasGTP
4 Rafptase, Rafp Rafptase States of Rafptase
5 ERK, ERK MEKpp, ERKp, ERKp MEKpp , ERKp ERKptase, ERKpp,

ERKpp ERKptase
States of ERK

6 MEK, MEK Rafp, MEKp, MEKp Rafp, MEKp MEKptase, MEKpp,
MEKpp MEKptase, ERK MEKpp, MEK, ERKp MEKpp

States of MEK

7 MEK Rafp, Raf, Raf RasGTP, Rafp, Rafp Rafptase, MEKp Rafp States of Raf

• T-invariants:

T-invariant Transitions Meaning
1 a Raf RasGTP, d Raf RasGTP Association and dissociation of Raf and RasGTP
2 a Raf Rafptase, d Raf Rafptase Association and dissociation of Raf and Rafptase
3 a k ERK MEK, d k ERK MEK Association and dissociation of ERK and double phos-

phorylated MEK
4 a MEK Raf, d MEK Raf Association and dissociation of MEK and phosphory-

lated Raf
5 a Raf RasGTP, pk Raf RasGTP,

a Raf Rafptase, dpk Raf Rafptase
Binding of Raf to RasGTP, phosphorylation of Raf
and release, binding of phosphorylated Raf to Rafp-
tase, dephosphorylation of phosphorylated Raf and re-
laese

6 a MEKp Raf, d MEKp Raf Association and dissociation of phosphorylated MEK
and phosphorylated Raf

7 a MEKp MEKptase, d MEKp MEKptase Association and dissociation of phosphorylated MEK
and MEKptase

8 a MEK Raf, pk MEK Raf,
a MEKp MEKptase, dpk MEKp MEKptase

Binding of MEK to phosphorylated Raf, phosphoryla-
tion of MEK and release, binding of phosphorylated
MEK to MEKptase, dephosphorylation of phosphory-
lated MEK and release

9 a MEKpp MEKptase, d MEKpp MEKptase Association and dissociation of double phosphorylated
MEK and MEKptase

10 a MEKp Raf, pk MEKp Raf,
a MEKpp MEKptase,
dpk MEKpp MEKptase

Binding of phosphorylated MEK to phosphorylated
Raf, second phosphorylation of MEK and release,
binding of double phosphorylated MEK to MEKptase,
dephosphorylation of double phosphorylated MEK and
release

11 a k ERKp MEK, d k ERKp MEK Association and dissociation of phosphorylated ERK
and double phsophorylated MEK

12 a ERKp ERKptase, d ERKp ERKptase Association and dissociation of phosphorylated ERK
and ERKptase

13 a k ERK MEK, pk ERK MEK,
a ERK ERKptase, dpk ERKp ERKptase

Binding of ERK to double phosphorylated MEK, phos-
phorylation of ERK and release, binding of phospho-
rylated ERK to ERKptase, dephosphorylation of phos-
phorylated ERK and release

14 a ERKpp ERKptase, d ERKpp ERKptase Association and dissociation of double phosphorylated
ERK and ERKptase

15 a k ERKp MEK, pk ERKp MEK,
a ERKpp ERKptase, pk ERKpp ERKptase

Binding of phosphorylated ERK to double phospho-
rylated MEK, second phosphorylation of ERK and
release, binding of double phosphorylated ERK to
ERKptase, dephosphorylation of double phosphory-
lated ERK and release

• Siphons:
Here, each P-invariant makes up a siphon. The reaction involved in a P-invariant give at least
one output to another P-invariant. Each P-invariant is connected with another P-invariant via
at least one shared place. Thus, each P-invariant/siphon triggers the next reaction level and vice
versa.

4.4. Examples 41

• Traps:
Here, each P-invariant also constitutes a trap by definition. P-invariants can never run out of
tokens. The reactions involved in a P-invariant give at least one input to another P-invariant.
Each P-invariant is connected with another P-invariant via at least one shared place. Thus the
corresponding traps in this model will always contain tokens. Meaning whatever happens, each
protein will be available in at least one of its specific states.

• Reachability Graph:
Due to the boundedness of the model, the reachability graph has been constructed. The initial
marking is set to:
RasGTP, Rafptase, ERK, MEK, Raf, MEKptase, ERKptase = 1

– Nodes:118
– Edges: 468
– SCC: 1
– Terminal SCC: 1

Note: The state space is to large to describe the different states in more detail.

42 Qualitative Petri Net Analysis

Example 4.3 (Analysis: Phosphoslipase C Signalling) The G-protein coupled receptor (GPCR)
activates Phospolipase C (PLC) via its coupled G-protein. PLC itself activates two different signal
pathways by catalyzing the hydrolysis of the membrane-bound PIP3 to Inositol-1,4,5-triphosphat (IP3)
and Diacylglycerin (DAG), which are both important second messengers. IP3 diffuses into the cytoplasm
and binds to the IP3 receptor (IP3R) at the endoplasmic reticulum (ER). As a result Ca2+ is released
from the ER and diffuses across to the membrane. DAG remains at the membrane. Ca2+ and DAG
recruit and activate PKC. PKC itself is now able to phosphorylate its target proteins.

• Petri net:

• Meaning of transitions:

– t1: Binding of the ligand to GPCR
– t2: Dissociation of the ligand from the GPCR
– t3: Activation of the G-Protein by the ligand bound GPCR
– t4: Inactivation of the G-Protein
– t5: Activation of PLC by the activated G-Protein
– t6: Inactivation of PLC
– t7: Splitting of PIP3 into IP3 and DAG catalysed by activated PLC

4.4. Examples 43

– t8: Binding of IP3 to IP3R at the ER
– t9: Dissociation of IP3 from IP3R at the ER
– t10: Release of Ca2+ from the ER into intracellular space
– t11: Influx of Ca2+ from the intracellular space into the ER
– t12: Diffusion of Ca2+ from the intracellular space to the membrane
– t13: Diffusion of Ca2+ from the membrane to the intracellular space
– t14: Binding of DAG and Ca2+ to inactive PKC causing activation of PKC
– t15: Dissociation of DAG and Ca2+ from active PKC causing inactivation of PKC

• Properties:

– PUR = N
The model contains read arcs; side condi-
tions for reactions, e.g., some components
act as a direct trigger on the next reaction
and get not consumed.

– ORD = Y
The stoichiometry in all reactions is “1”.

– HOM = Y
Each consuming reaction associated with
one component takes the same amount of
molecules of this component.

– NBM = N
The amount of molecules of a component
being produced or consumed by each asso-
ciated reaction is always equal expect for
PIP3. PIP3 is only a reactant but never a
product.

– CSV = N
The reactions in the model involve associa-
tion/dissociation of different components.

– SCF = N
There are reactions sharing the same com-
ponents as reactants.

– CON = Y
The involved components build a connected
molecular network.

– SC = N
Not every component has a direct path of
reactions to all other components, e.g., IP3
and DAG can not interact with components
in the upper part of the signal pathway.

– FT0 = Y
No external sources.

– TF0 = Y
No external sinks.

– FP0 = N
No component acts only as a reactant ex-
pect PIP3.

– PF0 = Y
No component acts only as a product.

– STP = N
Once all molecules of PIP3 are consumed,

PIP3 is no longer available and the hydrol-
ysis to IP3 and DAG can not take place
any more.

– CPI = Y
Mass conservation is ensured. A P-
invariant comprises all states of one com-
ponent.

– CTI = N
The reactions build cycles that are able to
restore their initial state. Just the degra-
dation of PIP3 is not a part of an reaction
cycle.

– SCTI = N
Some of the circles made up by related re-
actions consist only of two steps.

– SB = Y
Independently of the initial state, no com-
ponent can infinitely accumulate.

– k-B = Y
For each component exists an upper bound.

– 1-B = Y
In more detail, the upper bound for each
component is restricted to one molecule.

– DCF = N
If a component gets deactivated, it loses its
function to trigger the next step in the sig-
nal pathway.

– DSt = 0
At least one reaction can always take place.

– DTr = N
For each reaction it is possible to reach a
state, where the reaction can occur.

– LIV = N
The hydrolysis of PIP3 stops, if PIP3 is
used up. This reaction can not contribute
to the dynamic behaviour forever.

– REV = N
The initial state of the signal pathway can
not be restored because of the limiting fac-
tor PIP3 and IP3/DAG that can not be
withdrawn once produced.

44 Qualitative Petri Net Analysis

• P-invariants:

Here, each P-invariant comprises the specific states of one protein (active (bound) or inactive
(unbound) states of GPCR, G-protein, PLC, PKC, IP3R) or related states of a non-protein (dif-
ferent localizations of Ca2+, bound or unbound state of the ligand, PIP3 its products (IP3, DAG)
and their bound states). This ensures the mass conservation for each involved component.

4.4. Examples 45

• T-invariants:

Each T-invariant describes reactions of a component that restore the initial state of the respective
component. This includes activation/inactivation triggered by an another active protein (this is
the case for G-protein, PKC) or by binding/dissociation of a non-protein (this is the case for
GPCR, IP3R, PKC) and the binding/dissociation of the non-proteins themselves (DAG, IP3,
ligand, Ca2+). The model is not covered by P-invariants because PIP3 is a limiting factor that
can not be recovered.

• Siphons:
Here, each P-invariant (1-4, 6) that is connected with another P-invariant via a read edge also
indicates a siphon. Those siphons trigger activation of other components without consuming
themselves. Thus, the siphons will not run out of components. P-invariants 8, 9 constitute a

46 Qualitative Petri Net Analysis

closed cycle and are therefore also siphons that can not run out of molecules. PIP3 is also a
siphon, but it will be cleaned if PIP3 is completely degraded to IP3 and DAG.

• Traps:
Here, each P-invariant also constitutes a trap by definition. P-invariants can never run out of
tokens. Thus the corresponding traps in this model will always contain tokens. Meaning whatever
happens, each component will be available in at least one of its specific states.

• Reachability Graph:
Due to the boundedness of the model, the reachability graph has been constructed. The initial
marking is set to: GPCR, Ligand, GProtein inact, PLC inact, PIP3, IP3R, Ca ER, PKC inact
= 1

– Nodes:72
– Edges: 336
– SCC: 2
– Terminal SCC: 1 (red nodes)

Note: The state space is to large to describe the different states in more detail.

CHAPTER 5
Quantitative Petri Net Analysis

In this chapter, you learn, how to perform simulations with your model. Here, we will answer the
questions:

Which kinetic considerations are possible?
What is the formal background of these considerations?
What you have to do with you qualitative model to get its time-dependent dynamic be-
haviour?

Several specialized Petri net classes are available to describe different scenarios and to consider
different simulative approaches. Therefore, the kinetics of the qualitative Petri net model can be con-
sidered as stochastic, continuous or as a mixture of both (hybrid) [12]. Advantageously, the qualitative
properties of a Petri net are independent of its kinetic consideration, meaning they do not change.

5.1 Stochastic Petri Nets

Since most bio-molecular processes are stochastic by their very nature, the applications of stochastic
simulations are straightforward. The modelling of bio-molecular networks by stochastic Petri nets
(SPN) was first proposed in [9], where they applied SPNs to a gene regulatory network. In the
following years SPNs have been applied to several biological case studies discussed in [25], [17], [22],
[23], [6].
The formal definition of a stochastic Petri net is given below. Here, we summarize the explanation of
stochastic Petri nets given in [12].
The network structure of a quantitative time-dependent stochastic Petri net is given by the respective
qualitative time-independent Petri net. Thus, the qualitative network structure and the discrete
marking of the qualitative Petri net is maintained in the stochastic Petri net. In stochastic Petri nets,
transitions become enabled as usual. A transitions gets enabled if pre-places are sufficiently marked.
Before firing of an enabled transition t ∈ T , a waiting time has to elapse. The waiting time is an
exponential distributed random variable Xt ∈ [0,∞) with the probability density function:

fxt (τ) = λt (m) · e−λt(m)·τ , τ ≥ 0.

The firing itself does not consume any time. The semantics of a stochastic Petri net is described
by a continuous time Markov chain (CTMC). The CTMC of a stochastic Petri net without parallel
transitions is isomorphic to the reachability graph. The arcs between the states are now labelled by
the transition rates. Thus, in stochastic Petri nets all reactions defined in the network structure can
still occur, but the likelihood depends on the probability distribution. Thus, the state space is also

47

48 Quantitative Petri Net Analysis

maintained in the stochastic consideration, all sequences of events can still take place. Consequently,
the same powerful analysis techniques can be applied to stochastic Petri nets as before to qualitative
Petri nets.
The general procedure of a simulation run is not hard to understand. Each transition has its own local
timer. The timer is set to an initial value if it is enabled (pre-places are sufficiently marked). Therefore,
a waiting time is computed by the corresponding probability distribution at the respective time-point.
The value will be different for each simulation run. The timer is decremented at a constant speed, and
the transition will fire when the elapsed. If more than one transition is enabled at a certain time-point,
a waiting time is computed for each of those transitions. Consequently, the transition with the smallest
waiting time will fire and win the race. After firing, all waiting times will be set to zero and new waiting
times will be computed for the enabled transitions at the reached state.

8

10

12

14

16

18

20

A
v

e
ra

g
e

d
 N

u
m

b
e

r
o

f
To

k
e

n
s

A, 1 simulation run

A, 1000 simulation runs
A

B

20

Firing Rate = 0.1

0

2

4

6

0 20 40 60 80 100 120 140 160 180 200

A
v

e
ra

g
e

d
 N

u
m

b
e

r
o

f
To

k
e

n
s

Time Units

Figure 5.1: Stochastic Simulation Using Different Firing Rates. The figure illustrates the stochastic
simulation of an ordinary reaction given by the Petri net above using two different numbers of simulation
runs and two different firing rates. In both cases, the time curves using just 1 simulation run (red) produced
staircase-shaped in contrast to the blue curve, where 1000 simulation runs have been averaged. The edges of
the single simulation runs have been smoothed out by averaging all simulations runs. In contrast to the
firing rate defined by a single weighting parameter (left), the “MassAction” (right) considers the number of
tokens on place A. Thus, the more tokens are on place A, the more tokens of A are consumed by firing of
the transition. The firing rate in the left diagram results in a more or less linear function, where the firing
rate on the right causes a curved line.

Various probability functions can be chosen to define the random variables. Exponential distribu-
tions are suitable to describe (bio-)molecular systems. Meaning, the likelihood of a reaction (firing of
a transition) follows an one-parametric exponential function with a marking-dependent parameter λ.
Parameter λ specifies the local timer of each transition. However, the semantic of stochastic Petri nets
with exponential distributed waiting times can be represented by a time Markov chain. The default
firing rate for each transitions can be weighted by a second parameter; see Figure 5.1, left. Thus,
you can weight the likelihood of two concurrent reaction to occur. In addition, the default firing rate
of a transitions can be modified by defining specific mathematical and semantic function. Allowing the
introduction of mass action functions, which consider the total number of tokens at the pre-places of
an enabled transition; see Figure 5.1, right. Obviously, the likelihood of a reaction increases with an
increase in its reactants.
The stochastic simulation of the time-dependent dynamic behaviour of a network indicates the time-
dependent token flow for each place in the model, as well as firing frequency of each transition. One
simulation run describes at least one path in the state space graph Section 4.3. It is also possible to
perform multiple simulation runs and average the results of all runs. Thus, an averaged time course
will be computed. The more simulation runs are performed, the more precise is the averaged time

5.1. Stochastic Petri Nets 49

course. All single simulation runs will fluctuate around the averaged time course.
To define the firing rates more precisely kinetic information of the biological system should be inte-
grated. Ideally, the kinetic information are known from experiments. Experimental data could also
be used to evaluate the time-dependent dynamic behaviour, time-dependent token flow, of the model.
Nevertheless, stochastic simulations can be performed without knowing the exact kinetic parameters.
To perform first test runs, a suitable set of kinetic parameters could also be estimated by trial and error
to investigate the principle time-dependent dynamic behaviour of the model. However, more sophisti-
cated methods to estimate parameters should also be considered. If it is not possible to reproduce the
time-dependent dynamic behaviour of the biological system by the respective model, you may have to
revise the network structure.

Formal Definitions:

Definition 5.1 (Stochastic Petri Net) A biochemically interpreted stochastic Petri net is a quin-
tuple SPNBio = (P, T, f, v, m0), where:

• P, T are finite, non empty, disjoint sets. P is the set of places. T is the set of transitions.
• f: ((P × T) ∪ (T × P)) → N0 defines the set of directed arcs, weighted by non-negative integer

values
• v: T → H is a function, which assigns a stochastic hazard function ht to each transition t,

whereby

H :=
⋃
t∈T

{
ht|ht : N|

•t|
0 → R+

}
is the set of all stochastic hazard functions, and v(t) = ht for

all transitions t ∈ T.
• m0: P → N0 gives the initial marking.

How to read:
The definition for stochastic Petri nets is an extension of the definition for standard Petri nets; see
Definition 2.1. Thus, the explanation of P , T and m0 is similar. In addition, for stochastic Petri
nets we need to define a hazard function ht for each transitions, which is similar to the firing rate. The
firing rate is expressed by an arbitrary equation using numerical constants, pre-defined parameters and
pre-places, which produces results in R+. In our example; see Figure 2.5, we use the following firing
rates: Figure 5.2 shows the averaged results of 10000 simulation runs.

• Association: k1 · Enzyme · Substrate,
• Dissociation: k2 · EnzymeSubstrateComplex,
• Synthesis: k3 · EnzymeSubstrateComplex,

with k1, k2, k3 = 0.1

Figure 5.2: Stochastic Simulation of Running Example. We simulate the stochastic time-dependent
dynamic behaviour of the model shown in Figure 2.5 using the firing rates, which we defined on the left.

50 Quantitative Petri Net Analysis

5.1.1 Examples

Example 5.1 (Stochastic Simulation: Feedback Inhibition) In this example, we show the time-
dependent dynamic behaviour of the feedback inhibition as shown before. For this purpose, we slightly
modified the Petri net. The network structure and kinetic parameters result in a damped oscillation.At
the end all components are in balanced steady state.

• Petri net: • Simulation:

Example 5.2 (Stochastic Simulation: Allosteric Enzyme Inhibition) Here, we simulate the
time-dependent dynamic behaviour of the allosteric enzyme inhibition shown before. For this purpose,
we assume that there is a reverse reaction, where the product feeds into the substrate. The simulation
graph shows, that the amount of product is reduced if the inhibitor is added to the systems.

• Petri net: • Simulation:

5.1. Stochastic Petri Nets 51

Example 5.3 (Stochastic Simulation: RKIP Pathway [11] see Example 4.1) For the simula-
tion of the time-dependent dynamic behaviour of the RKIP pathway, we choose two different markings.
In the first case, the amount of tokens on each initially marked place (see Example 4.1) is set to one
and in the second case, we put 100 tokens each initially marked place. Anyway, the marking is related
to the level semantic explained in the next example, see Example 5.4. In both cases, we averaged 100
simulation runs.

• Simulation:

The continuous behaviour can be very well adapted by employing the 100 level version to represent the
concentration range.

Example 5.4 (Stochastic Simulation: MAP Kinase Cascade [12], see Example 4.2) As you
now from the sections before, tokens can also be interpreted as discrete concentration levels. For this
reason the maximum molar concentration M can be split in N+1 different levels, ranging from 0, ..., N .
The discrete levels 0, (0, 1∗M/N], (1∗M/N, 2∗M/N], ..., (N −1∗M/N,N ∗M/N] stands for equivalent
continuous states. In this example, all components have the same concentration range (0.1...0.4), we
employ 4 levels and 8 levels to represent the concentration range. Here, performed 10000 simulation
runs.

• Simulation:

To approximate the continuous behaviour it is sufficient to employ the 8 level version to represent the
continuous concentration range.

52 Quantitative Petri Net Analysis

5.2 Continuous Petri Nets

To be complete, we give a brief introduction into continuous Petri nets, we refer to the content given
in [12]. Again, the network structure of a continuous Petri net is adopted from the structure of the
underlying qualitative Petri net. Thus, we obtain the same qualitative state space from the network
structure and can apply the same structural analysis techniques to continuous Petri nets. In continuous
Petri nets, the marking is now given by a positive real number, called token value, instead of an integer
as before in the case of qualitative and stochastic Petri nets. The token value can be considered as
concentration. The formal definition of a continuous Petri net is given below. Here, we summarize the
explanation of continuous Petri nets given in [12].
A transition is enabled in its current marking state if the token value of all pre-places is positive and
greater than zero, ∀p ∈ •t : m(p) > 0. As in the case of stochastic Petri nets, several arbitrary firing rates
can be defined by mathematical functions, like mass-action kinetic or the Michaelis-Menten kinetics,
just to name two popular kinetics for biological systems. The firing rate may also be negative; in this
case the reaction takes place in the reverse direction. In that way, reversible reactions are modelled
using only one transition. The corresponding positive firing rate describes the forward direction.
The semantic of a continuous Petri net is given by the corresponding set of ODE equations, describing
the continuous change over time on the token value of a given place. Where the pre-transition flow
results in a continuous increase and post-transition flow results in a continuous decrease. A continuous
Petri net is the structured description of an ODE-system. This description maybe less error prone than
manually deduction of the ODE system.
In addition, it is also possible to convert stochastic and continuous Petri nets and thereby compare the
obtained results of both simulative approaches. The qualitative structure is preserved.
Formal Definitions:

Figure 5.3: Continuous Simulation. The figure illustrates the continuous simulation of an ordinary
reaction given by the Petri net above using a mass action kinetic equation. The blue line corresponds to the
decrease of the token value on place A. The results obtained from the continuous Petri net are equivalent to
the results obtained from the respective ODE-system.

Definition 5.2 (Continuous Petri Net) A continuous Petri net is a quintuple CPNBio = (P, T,
f, v, m0), where:

• P, T are finite, non empty, disjoint sets. P is the set of continuous places. T is the set of
continuous transitions.
• f: ((P × T) ∪ (T × P)) → R+

0 defines the set of directed arcs, weighted by non-negative integer
values
• v: T → H is a function, which assigns a firing rate function ht to each transition t, whereby
H :=

⋃
t∈T

{
ht|ht : R|•t| → R+

}
is the set of all firing rate functions, and v(t) = ht for all

transitions t ∈ T.
• m0: P → R+

0 gives the initial marking.

5.2. Continuous Petri Nets 53

How to read:
The definition for continuous Petri nets is an extension of the definition for standard Petri nets; see
Definition 2.1. Thus, the explanation of P and T is similar. The The initial marking m0 is now
interpreted as real number. In addition, like in this case of stochastic Petri nets; see Definition 5.2,
we need to define a firing rate for each transition. The firing rate is expressed by an arbitrary equation
using numerical constants, pre-defined parameters and pre-places, which produces results in R+. In
our example; see Figure 2.5, we use the same firing rates as before in the case of the stochastic
interpretation:

• Association: k1 · Enzyme · Substrate,
• Dissociation: k2 · EnzymeSubstrateComplex,
• Synthesis: k3 · EnzymeSubstrateComplex,

with k1, k2, k3 = 0.1

Figure 5.4: Continuous Simulation of Running Example. We simulate the continuous time-dependent
dynamic behaviour of the model shown in Figure 2.5 using the firing rates, which we defined on the left.

5.2.1 Examples

Example 5.5 (Continuous Simulation: Virus Infection) The model shows the infection of
healthy uninfected cells (UC) by a virus (V). After the virus enters the cell, the replication of the
virus starts. Subsequently, the infected cell (IC) dies and a huge amount of the virus is released, which
may infect other cells.

• Reaction equations:

� mu cell→ UC (cell growth)

UC
k cduc→ � (cell death)

UC + V
k vi→ IC (infection)

IC
k cdic→ � (cell death)

IC
mu virus→ 10V (virus release)

V
k vd→ � (virus degradation)

• ODEs:

dUC
dt = mu cell − k cduc · UC − k vi · UC · V

dIC
dt = k vi·UC ·V −k cdic·IC−mu virus·IC

dV
dt = 100·mu virus·IC−k vi·UC ·V −k vd·V

54 Quantitative Petri Net Analysis

• Petri net: • Simulation:

Example 5.6 (Continuous Simulation: Lotka-Voltera Model) The Lotka-Voltera model
(predator-prey model) is a famous model which describes the time-dependent oscillating behaviour
of biological and ecological systems. The classic stability analysis of the model results in two fixed
points. An unstable stable point, where the prey is eradicated, causing the predators to die of starvation.
If predators are eradicated, the prey population grows infinitely. The second fixed point causes oscillation
as shown here; the levels of the predator and the prey population cycle. A high number of predators
leads to a low number of prey and vice versa.

• Reaction equations:

Prey
k1→ 2Prey

Prey + Predator
k2→ 2Predator

Predator
k3→

• ODEs:

dPrey
dt = k1 · Prey − k2 · Prey · Predator

dPredator
dt = k2·Prey ·Predator−k3·Predator

• Petri net: • Simulation:

CHAPTER 6
Model Checking for Petri Nets

In this chapter we introduce some basics about model checking for Petri nets and the use of temporal
logics. In the next sections, we address to the following questions:

What is model checking in general?
What are temporal logics?
How to apply model checking with temporal logics to your system?

Be reminded that we just explain very basic facts about model checking and temporal logics. We
restrict ourself to an informal introduce of the here introduced concepts. Again we stick to the content
given in references [12] and [11].

6.1 Introduction to Model Checking

Model checking is an automatic, model-based, property-verification approach. It is used to proof the
correctness of a model and ensure specific systems properties, e.g., in time. Originally, model checking
has been designed to automatically verify software, concurrent and reactive systems (systems inter-
acting with heir environment). Since biological systems contain concurrent mechanisms and interact
with environmental factors, model checking can also be used to verify models of biological system.
In addition to general Petri net properties, model checking can be used to check special behavioural
properties of the expected transient behaviour which reflect the intended functionality of the system.
Properties are specified by mathematical equations using temporal logics; see Section 6.2. The truth
of a specified property is determined by model checking.
The principle procedure of verifying a (biological) system via model checking is shown in Figure 6.1.
The model checker gets an appropriate model of the system as input as well as system properties
that should be verified. System properties are formulated using linear temporal logics. The actual
verification entails proving the truth of the defined property. In the case of correctness the output of
the model checker is “true”, else the trace/path leading to the breach of the specified property maybe
displayed as a counter example.

6.2 Temporal Logics

To specify properties φ of a model temporal logics are employed. Temporal logic has found an important
application in formal verification, where it is used to state certain requirements of a system in a time
line. Beside the classical propositional logic, temporal logics allow to specify temporal relations by

55

56 Model Checking for Petri Nets

Figure 6.1: Verification via Model Checking. Based on a (biological) system a model and properties of
the system are derived. Properties that should be verified are formulated using temporal logics. Both, the
specified properties and the model serve as input for the model checker. The model checker execute the
verification step and proves the truth of the defined property. If the property is satisfied by the model, the
output is “true”, else “false” and a counter example.

using additional operators (path quantifiers, temporal operators). Thereby, it is possible to describe,
e.g., situation, where a certain state will be reached at the next time point, at some point, after another
certain state or never. In a temporal logic you can express statements like “A certain signal molecule
is always synthesized”, “A certain signal molecule will eventually be synthesized”, or “A certain signal
molecule will be synthesized until the input signal is withdrawn”. Consider the statement: “A molecule
is produced”. Though its meaning is constant in time, the truth value of the statement can vary
in time. Sometimes the statement is true, ans sometimes it is false, but it is never true and false
simultaneously. In temporal logics, specified properties can have a truth value which can vary in time,
where atemporal logic can not.
Temporal logics always have the ability to reason about a time line. Temporal logics are distinguished
into two classes: linear-time logics and branching-time logics; see Figure 6.2. Linear time logics
think of time as a set of paths; where a path is a sequence of time instances. Branching time logics
represent time as a tree. The tree is rooted at the present moment and branches out in the future.
Thus, branching-time logics can reason about multiple time lines. This presupposes an environment
that may act unpredictably. To continue the example above for branching-time logics, you can state
“There is a possibility that a certain signal molecule will never be produced”.

6.2. Temporal Logics 57

• Linear-time logics

– Set of paths

– A path is a sequence of states

– Every sate has an unique successor

– Infinite sequences

– Linear Time Temporal Logic (LTL),
Probabilistic Linear Time Temporal
Logic (PLTL)

• Branching-time logics

– Tree

– A tree consists of a root and several
branches in the future

– Every sate has several successor

– Infinite tree

– Computation Tree Logic (CTL),
Branching-time Continuous Stochastic
Logic (CSL)

Figure 6.2: Linear-time and Branching-time Logics. Temporal logics are used to specify properties of a
Model. They can be categorized into linear-time logics (left) and branching-time logics (right) with distinct
properties.

In the case of Petri nets, the path/traces needed for linear-time logics can be gained from the
entire state space (reachability graph) of the model or from simulation. The computation tree need for
branching-time logics can only be constructed from the entire state space (reachability graph) of the
model. Indeed, model checking requires boundedness.
Next, we will explain the most important temporal logics used for Petri nets: Computation Tree
Logic (CTL) and Branching-time Continuous Stochastic Logic (CSL) represent branching-time logics.
Linear Time Logic (LTL) and Probabilistic Linear Time Logic (PLTL) represent linear-time logics.
Furthermore model checking can be divided into analytical model checking (CTL, CSL, LTL); see
Section 6.3, and simulative model checking (PLTL/LTLc); see Section 6.4. Model checking for Petri
nets with the here introduced temporal logics can been done with Snoopy [19], Charlie [8] and/or Marcie
[16]; see Table 6.1.

Table 6.1: Model Checking Tools and Temporal Logics

Snoopy [19] Charlie [8] Marcie [16]
CTL + +
CSL +
LTL +
PLTL +

58 Model Checking for Petri Nets

6.3 Analytical Model Checking

Analytical approaches used for model checking construct and analyse the entire state space of a model.
Thus, the state space must be finite. Analytical model checking can not be applied to bounded models
with an infeasible state space caused by the state space explosion problem. In such cases the computa-
tional effort will be to high. Computation Tree Logic (CTL) and Branching-time Continuous Stochastic
Logic (CSL) represent branching-time logics and are used to state properties both operate on the reach-
ability graph of the Petri net. But also Linear Time Logic (LTL) can used for analytical model checking
operating on single paths.

6.3.1 Computation Tree Logic (CTL)

Computation Tree Logic (CTL) offers an impressive formalism to describe the properties of a computa-
tion tree. CTL represents a branching time logic with interleaving semantics. In the case of Petri nets,
the computation tree is constructed by unwinding the reachability graph; see Figure 6.3.

Figure 6.3: Unwinding the Reachability Graph. Unwinding the reachability graph (left) into an infinite
computation tree (right). The root of the computation tree is the initial state of the reachability graph.

CTL is an extension of the classical propositional logic. In addition to standard logical operators,
CTL also has path quantifiers and temporal operators. The single modules of CTL are:

• Atomic propositions:
Each atomic proposition φ1, φ2, ...φn ∈ Φ is a CTL formula. Atomic propositions consists of
statements of the current token situation in a given place. Places are read as integer variables
(Boolean variables) for k-bounded (1-bounded) Petri nets.

• Standard logical operators:
¬φ1 (negation), φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction), φ1 → φ2 (implication) are CTL
formulas.

• Path quantifiers:
Eφ (Existence: The proposition φ is valid for at least one path.
Aφ (All): The proposition φ is valid for all computed paths.

• Temporal operators:
Xφ (NeXt): The proposition φ is valid in the next, direct following state.
Fφ (Future): The proposition φ is eventually valid at some time in the future.
Gφ (Globally): The proposition φ is always globally valid forever.
φ1Uφ2 (Until): The propositions φ1 is valid until φ2 is valid. At this position φ1 does not have
to be valid any more.

6.3. Analytical Model Checking 59

The combination of temporal operators and path quantifiers make up eight operators, which can
be used to specify temporal properties of a model. Let φ[1,2] be an arbitrary temporal-logic formulae.
Than, the following formulae are valid in state m:

• EXφ: if there is a state reachable by one step where φ holds.
• EFφ: if there is a path where φ holds finally, i.e., at some point.
• EGφ: if there is a path where φ holds globally, i.e., at some point.
• E(φ1Uφ2): if there is a path where φ1 holds until φ2 holds.

The other operators you can get by replacing the Existence operator by the All operator. The
formulation “there is a path” has than to be changed in “for all paths”; see also Figure 6.4 for the
graphical illustration of the eight temporal operators.

Figure 6.4: Temporal Logics for Branching-time Logics. The eight CTL operators and their semantics
in the computation tree, which we get by unwinding the reachability graph, compare Figure 6.3. The two
path quantifier E,A relate to the branching structure in the computation tree: E - for some computation
path (left column), A - for all computation paths (right column)

60 Model Checking for Petri Nets

Example 6.1 (CTL Model Checking: RKIP Pathway [11], see Example 4.1) Places are in-
terpreted as Boolean variables in the following formulae, in order to simplify the notations.

• Property Q1: There is a state where ERK is phosphorylated and RKIP is not phosphorylated:

EF [(ERKpp ∨Raf1Star RKIP ERKpp)∧
(RKIP ∨Raf1Star RKIP ∨Raf1Star RKIP ERKpp)]

Meaning: There is finally a state in one of the paths, where ERK is phosphorylated (ERKpp)
or phosphorylated and bound to the Raf1Star-RKIP complex and RKIP, is in its initial state,
in complex with Raf1Star or in complex with Raf1Star and ERK. This state corresponds to the
marking m5 in the reachability graph. The shortest firing sequence is r6, r7.

• Property Q2: The phosphorylation of ERK (to ERKpp) is independent of the phosphorylation
of RKIP:

AG [(ERK ∧ ¬ (RKIPp ∨RKIPp RP))→ E [¬ (RKIPp ∨RKIP RP) UERKpp]]

Meaning: If we are in any state where ERK is phosphorylated and RKIP is not phosphorylated
(RKIPp, RKIPp RP), then there is a path where RKIP can not become phosphorylated as long as
ERK is not phosphorylated.

• Property Q3: A cyclic behaviour w.r.t. the presence/absence of RKIP is possible forever:

AG [(RKIP → EF (¬RKIP)) ∧ (¬RKIP → EF (RKIP))]

Meaning: In any state where RKIP is marked exists a path to a state, where RKIP is not marked
any more, and vice versa.

Example 6.2 (CTL Model Checking: MAP Kinase Cascade [12], see Example 4.2) Places
are interpreted as Boolean variables in the following formulae, in order to simplify the notations.

• Property Q1: There is just one possible pathway to fully activate ERK by passing through the
states Rafp, MEKp, MEKpp and ERKp in order to reach ERKpp:

¬ [E (¬RAFpUMEKp) ∨E (¬MEKpUMEKpp)∨
E (¬MEKppUERKp) ∨E (¬ERKpUERKpp)]

Meaning: it exists no path, where MEKp appears but RAFp has not been there; or where MEKpp
appears but MEKp has not been there; or where ERKp appears but MEKpp has not been there; or
where ERKp appears but ERKpp has not been there.

• Property Q2: Dephosphorylation takes place independently. E.g., the duration of the phospho-
rylated state is independent of the duration of the phosphorylated states of MEK and Raf:

(EF [RAF ∧ (ERKp ∨ ERKpp)] ∧EF [RAFp ∧ (ERKp ∨ ERKpp)]∧
EF [MEK ∧ (ERKP ∨ ERKPP)] ∧EF [(MEKp ∨MEKpp) ∧ (ERKP ∨ ERKPP)])

Meaning: There is a path that contains states, where Raf is not phosphorylated and ERK is
phosphorylated (ERKp or ERKpp) and where Raf is phosphorylated (Rafp) and ERK is phospho-
rylated, where MEK is not phosphorylated and ERK is phosphorylated and where MEK (MEKp
or MEKpp) is phosphorylated and ERK is phosphorylated.

6.3. Analytical Model Checking 61

6.3.2 Branching-time Continuous Stochastic Logic (CSL)

In the case of stochastic Petri nets (see also Chapter 5.1), we can now apply Branching-time Contin-
uous Stochastic Logic (CSL). This allows to perform probabilistic analysis of the transient and steady
state behaviour. CSL uses the CTMC for the verification of properties, which is isomorph to the reach-
ability graph. In addition to the state space, the firing rates are also involved in CSL to consider the
probability of a specified property. CSL replaces the path quantifiers (E, A) in CTL by the probability
operators P./p (transient analysis) and S./p (steady state analysis) whereby . / p specifies the proba-
bility of the given formula (comparison operator ./ can be replaced by <,≤,=, 6=, >,≥). The operator
P=? is used to return the probability (rather than compare probabilities).

• P./p [φ] - probability that paths fulfil φ is . / p
• S./p [φ] - probability that φ holds in the steady state . / p

In CSL, we can now use the following abbreviation:

• trueUφ⇒ Fφ
• EFφ⇒ P≥0 [Fφ]
• AFφ⇒ P≥1 [Fφ]

Example 6.3 (CSL Model Checking: RKIP Pathway [11], see Example 4.1) For the CSL
model checking, we employ again a 7-level model. Places are now read as integer variables.

• Property S1a: There are reachable states where ERK is phosphorylated and RKIP is not phos-
phorylated.

P>0 [F (ERKpp+Raf1Star RKIP ERKpp ≥ 1∧
RKIP +Raf1Star RKIP ERKpp+Raf1Star RKIP = 7)]

• Property S2a: The phosphorylation of ERK (to ERKpp) is independent of the phosphorylated
state of RKIP

P>? [G ((ERK = 7 ∧RKIPp = 0 ∧RKIPpRP = 0)→
P>0 [(RKIPp = 0 ∧RKIPp RP = 0) U (ERKpp ≥ 1)])]

As this property always holds true, the returned probability is 1.

• Property S3a: A cyclic behaviour w.r.t. the presence/absence of RKIP is possible forever.

S>0 [RKIP = 0]

S>0 [RKIP ≥= 1]

Here the steady state operator is used to state the non-zero probabilities of RKIP being absent or
present after long time, hence RKIP can cycle.

Example 6.4 (CSL Model Checking: MAP Kinase Cascade [12], see Example 4.2) For the
CSL model checking, we employ again the model with 4 and 8 Levels. Than, we compute the probability
of the suggested properties by varying the initial level L, e.g., 0-N. For the sake of efficiency, we restrict
the U operator to 100 time steps. Places are now read as integer variables. (Note: expression in curly
bracket {...} indicate the initial state.)

• Property S1a: What is the probability of Rafp increasing, when starting in a state where the
amount of Rafp is for the first time at N:

P=?

[
(RafP = L) U<100 (RafP > L) {RafP = L}

]

62 Model Checking for Petri Nets

Figure 6.5: Probabilities of the Accumulation of Rafp. The graphs show the probabilities of the
accumulation of Rafp (A - Probability of property S1a, B - Probability of property S1b)as a function of the
initial level. Here we compare the probabilities of two models with 4 and 8 total levels (reproduced from [12].

Figure 6.5, A indicates that it is absolutely certain that the concentration of RAfp increases
from an initial level 0. The Rafp concentration is not increasing from a level N. More precisely,
the increase of Rafp is very likely for low levels. At intermediate levels the increase and decrease
of Rafp is equal. The likelihood of an Rafp increase is very low (but not impossible) for high levels.
Therefore, the total amount of Rafp will not accumulate in the first layer.

• Property S2a: What is the probability that, given the initial concentrations of Rafp, MEKpp,
ERKpp being zero, the concentration of Rafp rises above some Level L while the concentration of
MEKpp and ERKpp remain at zero, i.e., Rafp is the first to react?

P=?

[
((MEKpp = 0) ∧ (ERKpp = 0)) U<=100 (Rafp > L)

{(MEKpp = 0) ∧ (ERKpp = 0) ∧ (Rafp = 0)}]

Figure 6.5, B points out, that it is very likely that Rafp rises, while MEKpp and ERKpp are zero
for low levels of the upper half and even more likely for the bottom half if the levels. The decrease
of the likelihood for higher level can be explained by property S1a. This property corresponds to
properties Q1 of Example 6.2 and C1 of Example 6.9.

The analytical model checking approaches CTL and CSL have both high computational efforts.
Analytical model checking constructs and analyses the entire state space, which might become infeasible
due to state explosion problems. Thus, analytical model checking becomes more and more impractical
with increasing state space. Additionally, CTL and CSL can not handle unbounded models with infinite
state spaces. In order to avoid the enormous computational power required for large state spaces, time-
dependent stochastic behaviour can be simulated by dedicated algorithms, and evaluated by simulative
stochastic model checking or approximated by a deterministic continuous behaviour. Simulative model
checking we be considered in the following sections.

6.3.3 Linear Time Logic (LTL)

As indicated before the Linear Temporal Logic (LTL) operates along paths. Paths are extracted from
the reachability graph. In addition, paths could also be generated by simulating the time-dependent dy-
namic behaviour of model if stochastic and continuous Petri nets are used. In that case, the probabilistic
extension of LTL (PLTL) should be considered; see Section 6.4.1. LTL allows to make statements
about (all) paths staring in a state. In contrast to CTL, LTL uses no path quantifiers; see Figure 6.6.
Thus, LTL implies the same modules as CTL despite of the path quantifiers; compare Section 6.3.1.

6.4. Simulative Model Checking 63

• Atomic propositions:
Each atomic proposition φ1, φ2, ...φn ∈ Φ is a CTL formula. Atomic propositions consists of
statements of the current token situation in a given place. Places are read as integer variables
(Boolean variables) for k-bounded (1-bounded) Petri nets.
• Standard logical operators:
¬φ1 (negation), φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction), φ1 → φ2 (implication) are CTL
formulas
• Temporal operators:

Xφ (NeXt): The proposition φ is valid in the next, direct following state.
Fφ (Future): The proposition φ is eventually valid at some time in the future.
Gφ (Globally): The proposition φ is always globally valid forever.
φ1Uφ2 (Until): The propositions φ1 is valid until φ2 is valid. At this position φ1 does not have
to be valid any more.

Figure 6.6: Temporal Logics for Linear-time Logics. The four temporal operators for LTL/PLTL and
their semantics applied to a path, which we get by simulating the time-dependent dynamic behaviour or by
extracting path from the reachability graph.

Example 6.5 (Traffic Light) An easy example to understand LTL is the traffic light:

• Once red, the light can not become green immediately: G (red→ X green)
• The light becomes green eventually: F green
• Once red, the light becomes green eventually: G (red→ F green)
• Once red, the light always becomes green eventually after being yellow for some time in between:

G (red→ X (red U X (yellow U green)))

Please consider further examples with a biological background given in Section 6.4.1.

6.4 Simulative Model Checking

Simulative model checking approaches handle the state space through approximating results by
analysing only a subset of the state space - a set of output from stochastic or continuous simula-
tion algorithms. Thus, even a model with an infeasible or infinite state space can be subjected to
model checking. But in consequence just linear time logics can be applied to state properties. Linear
time logics operate in-turn over sets of linear paths through the state space, equivalent to operating
on simulation traces. A given property holds if it holds in all paths. Consequently, there are no path
quantifiers in temporal logics. In case of stochastic Petri nets, Probabilistic Linear Time Temporal
Logic (PLTL) is used for simulative model checking; see Section 6.4.1. An extension of LTL is used

64 Model Checking for Petri Nets

to specify properties of the model for simulative model checking. For continuous simulation LTLc, an
modification of LTL is employed Section 6.4.2.

6.4.1 Probabilistic Linear Time Logic (PLTL)

The Probabilistic Linear Time Logic (PLTL) extends the standard LTL to a stochastic setting. In
PLTL we also use the probability operators P./p such as in CSL, and a filter construct, {φ}, defining
the initial state of the property. PLTL can be considered as a linear time counterpart to CSL. In PLTL
embed probability operators are not allowed. PLTL can not be used to perform steady state analysis.
The temporal operators in PLTL do not requires time bounds.
PLTL operates along sets of linear paths (traces) of temporal behaviour, which are generated by stochas-
tic simulation runs. Each generated trace is evaluated to a Boolean truth value, and the probability
of a property holding true is computed by the fraction of true values in the set over the whole set.
Thus model checking with PLTL incorporates two approximations. The truth value of a single trace is
approximated by operating over a finite sequence of states only, and the probability of the property is
approximated through sampling a finite number of traces (a subset of the model’s behaviour) only.
With the help of PLTL, you can easily evaluate the time-dependent behaviour of a model generated
by stochastic simulation runs, as well as experimental time series data. Using PLTL allows to employ
a greater number of tokens than in the case of analytical model checking. The efficiency of PLTL is
much higher. In general, for very high numbers of molecules, the stochastic behaviour tends to the
deterministic behaviour of the model.
Simulative model checking has its advantage when the range of behaviours that the model checker
operates over becomes computationally infeasible. The simulative approach allows to check a property
in a feasible time through approximating the state space of the model.

Example 6.6 (PLTL Model Checking: RKIP Pathway [11], see Example 4.1) Places are
read as integer variables. The properties are checked using 100 simulation traces from Gillespie’s
algorithm with a simulation time of 10, 000 s.

• Property S1s: There are reachable states where ERK is phosphorylated and RKIP is not phos-
phorylated.

P>0 [F (ERKpp+Raf1Star RKIP ERKpp ≥ 1∧
RKIP +Raf1Star RKIP ERKpp+Raf1Star RKIP = 7)]

• Property S2s: The phosphorylation of ERK (to ERKpp) is independent of the phosphorylated
state of RKIP

P≥1 [(RKIPp+RKIPp RP = 0) U (ERKpp ≥ 1)]

Remember, that embed probability operators are not allowed in PLTL. Thus, this property is much
weaker than in the case of CSL. The property says, from the initial state of the system, ERK can
phosphorylate without RKIP being phosphorylated. In fact, this is always true from the initial
state.

• Property S3s: A cyclic behaviour w.r.t. the presence/absence of RKIP is possible forever.

P>0 [F (RKIP ≥ 1) {time ≥ 5000 ∧RKIP = 0}]
P>0 [F (RKIP ≥ 0) {time ≥ 5000 ∧RKIP ≥ 1}]

Direct steady state analysis is not possible in PLTL. But steady state analysis can be approximated
by very long simulation runs. Than, the property is checked at/near the end of the simulation.
Here, the property of RKIP being absent and present. Here, the property of RKIP being absent
and present in turns holds for long simulation runs.

6.4. Simulative Model Checking 65

Figure 6.7: Simulative Model Checking of Property S1s. Simulative model checking of property S1s at a
varying number of molecules; 4, 40, 400, 4000. This shows a progression towards the deterministic
behaviour as the number of molecules increases (reproduced from [12].

Example 6.7 (PLTL Model Checking: MAP Kinase Cascade [12], see Example 4.2)
Places are read as integer variables. The properties are checked using 100 simulation traces from
Gillespie’s algorithm with a simulation time of 300 s.

• Property S1s: What is the probability of the concentration of Rafp increasing, when starting in
a state where the level is for the first time at L:

P=? [(RafP = L) U (RafP > L) {RafP = L}]

Figure 6.7 illustrates the probability of Rafp increasing for the stochastic and deterministic be-
haviour varying the amount of molecules from 4 up to 4000 molecules. From the deterministic

66 Model Checking for Petri Nets

Figure 6.8: Simulative Model Checking of Property S2s. Simulative model checking of property S2s at a
varying number of molecules; 4, 40, 400, 4000. This shows a progression towards the deterministic
behaviour as the number of molecules increases (reproduced from [12].

behaviour it can be observed, that the Rafp will always increase until it reaches the maximum num-
ber, which corresponds to a concentration of around 0.1182 mMol. With increasing molecules, the
maximum possible number of molecules in the stochastic behaviour of Rafp tends towards the de-
terministic behaviour. In more detail, the stochastic behaviour tends to a probability of 0.5. in its
possible concentration range, due to the steady increase and decrease.

• Property S2s: What is the probability that, given the initial concentrations of Rafp, MEKpp,
ERKpp being zero, the concentration of Rafp rises abvoe some Level L while the concentration of

6.4. Simulative Model Checking 67

MEKpp and ERKpp remain at zero, i.e., Rafp is the first to react?

P=? [((MEKpp = 0) ∧ (ERKpp = 0)) U (Rafp > L)

{(MEKpp = 0) ∧ (ERKpp = 0) ∧ (Rafp = 0)}]

Figure 6.8 shows, that the stochastic behaviour drifts against the deterministic behaviour. In the
deterministic scenario, the probability for ERKpp, MEKpp and Rafp being 0 is just given at the
initial, else the probability is 1. The stochastic behaviour becomes less curved and more step-like
shaped with an increasing amount of molecules and thereby tends towards the vertical line in the
deterministic behaviour.

6.4.2 Continuous (Probablistic) Linear Time Logic (LTLc/PLTLc)

In the case of continuous Petri nets, the discrete number of tokens is replaced by continuous value.
Hence, the deterministic behaviour can not describe the behaviour of individual levels of molecules but
their concentration. Repeated deterministic simulation will always yield into the same time-dependent
behaviour. The state space of such models is continuous and linear. The natural choice to analysis
continuous linear behaviour are natural linear time-dependent logics like LTL and PLTL. Here, LTL
and PLTL are used in a deterministic setting and interpreted over the continuous simulation trace of
ODEs. The deterministic model has only on (averaged) behaviour. Thus, the resulting probability for
properties formalized in PLTL is 1 or 0.

Example 6.8 (LTLc Model Checking: RKIP Pathway [11], see Example 4.1) Places are in-
terpreted as real number variables. We used a simulation time of 10, 000 s to evaluate the deterministic
behaviour. We use parameter significant and noise to compare the concentration of spezies with cer-
tain thresholds. In this example, we applied PLTL to formalize the properties. All properties can be
transferred into the LTL setting as well.

• Property C1: There are reachable states where ERK is phosphorylated and RKIP is not phos-
phorylated.

P≥1 [F (ERKpp+Raf1Star RKIP ERKpp > noise∧
RKIP +Raf1Star RKIP ERKpp+Raf1Star RKIP ≥ significant)]

• Property C2: The phosphorylation of ERK (to ERKpp) is independent of the phosphorylated
state of RKIP

P≥1 [(RKIPp+RKIPp RP ≤ noise) U

(ERKpp+Raf1Star RKIP ERKpp > noise)]

Remember, that embed probability operators are not allowed in PLTL. Thus, this property is much
weaker than in the case of CSL. The property says, from the initial state of the system, ERK can
phosphorylate without RKIP being phosphorylated. In fact, this is always true from the initial
state.

• Property C3: A cyclic behaviour w.r.t. the presence/absence of RKIP is possible forever.

P≤0 [F (RKIP ≥ 1) {time ≥ 5000 ∧RKIP ≤ noise}]
P≤0 [F (RKIP ≤ noise) {time ≥ 5000 ∧RKIP < noise}]

Direct steady state analysis is not possible in PLTL. But steady state analysis can be approximated
by very long simulation runs. Than, the property is checked at/near the end of the simulation.
Here, the property of RKIP being absent and present. Here, the property of RKIP being absent
and present in turns holds for long simulation runs.

68 Model Checking for Petri Nets

Example 6.9 (LTLc Model Checking: MAP Kinase Cascade [12], see Example 4.2) Places
are interpreted as real number variables. We used a simulation time of 400 s to evaluate the determin-
istic behaviour. We use parameter significantspecies and noisespecies to compare the concentration of
a species (Rafp, MEKpp, ERKpp) with certain their thresholds. In this example, we applied LTL to
formalize the properties. All properties can be transferred into the PLTL setting as well. Note, that
properties C1, C2 and C3 correspond to the qualitative properties Q1; see Example 6.2., and that S2
of Example 6.7 is the stochastic counterpart of C1.

• Property C1: The concentration of Rafp rises to a significant level, while the concentration of
MEKpp and ERKpp remain close zero, i.e., Rafp is really the first species to ract:

((MEKpp < noiseMEKpp) ∧ (ERKpp < noiseERK)) U (Rafp > significantRafp)

• Property C2: If the concentration of Rafp is at a significant concentration level and that of
ERKpp is close to zero, them both species remain in these state until the concentration of MEKpp
becomes significant, i.e., MEKpp is the second species to react:

((Rafp > significantRafp) ∧ (ERKpp < noiseERK))⇒
((Rafp > significantRafp) ∧ (ERKpp < noiseERK)) U (MEKpp > significantMEKpp)

• Property C3: If the concentration of Rafp and MEKpp are significant, they remain so, until the
concentration of ERKpp becomes significant, i.e., ERKpp is the third species to react:

((Rafp > significantRafp) ∧ (MEKpp > significantMEKpp))⇒
((Rafp > significantRafp) ∧ (MEKpp > significantMEKpp)) U (ERKpp > significantERKpp)

CHAPTER 7
Petri Net Editor: Snoopy

In this chapter, we introduce the Petri net editor Snoopy [19]. The following information about Snoopy
can also be looked up in detail in references [19, 14]. Snoopy is a tool to design and animate hierarchical
graphs, among others Petri nets. Thus, Snoopy allows constructing of Petri nets, as well as to animate
and simulate the resulting token-flow. The tool has been developed - and is still under development
- at the University of Technology in Cottbus [3], Dep. of Computer Science, “Data Structures and
Software Dependability” [1]. The tool is in use for the verification of technical systems, especially
software-based systems, as well as for the validation of natural systems, i.e., biochemical networks as
metabolic, signal transduction, gene regulatory networks. Several Petri net classes are comprised in the
unifying framework offered by Snoopy, like qualitative, stochastic, continuous and Hybrid Petri nets and
in addition the coloured counterparts. Snoopy facilitates the consideration of the qualitative network
structure of a model under specific kinetic aspects of the specialized Petri net class. The framework
of Snoopy allows investigating Petri net models in various complementary ways. Therefore, Petri net
models can be converted into each other. Different Petri net classes can be used simultaneously in
Snoopy.

The three outstanding main characteristics of Snoopy are:

1. it is extensible; it’s generic design facilitates the implementation of new Petri net classes
2. it is adaptive; several models can be used simultaneously, the graphical user interface adapts

dynamically to the network class in the active window
3. it is platform independent ; it is executable on all popular operating systems (linux, mac, windows)

Two specialized types of nodes support the design, systematic construction and neat arrangement
of large Petri nets. Logical nodes act as connector or multiple used places or transitions sharing the
same factor or function. Macro nodes allow to hierarchically design a Petri net.
All elements in each Petri net class can be individually edited and coloured. Computed node sets can
be visualized on the network structure. The network layout can be changed manually or automatically.
Syntactical errors in the network structure of a Petri net is prevented by the implementation of the
graphical editor.
The tool design of Snoopy and its features facilitate the intuitive construction of Petri nets and the
animation/simulation of the time-dependent dynamic behaviour. Snoopy is still under development and
tries to cope with the needs of biological models. The constructed Petri net models can be exported
and analysed in Charlie.
The next chapters are concentrated on the stochastic Petri net class. All other Petri net classes are
similarly built.

69

70 Petri Net Editor: Snoopy

7.1 Editor Mode

In this section, we explain the graphical user interface of the editing mode in Snoopy based on the
stochastic Petri net class.
First, to open a new document, you have to start Snoopy and go to File/New or press the new button in
the tool bar. A template dialogue opens, where you can now select the document template; see Figure
7.1.

Figure 7.1: Select Template.A new template of the chosen Petri net class can be opened in this dialogue.

Figure 7.2: Graphical Editor User Interface in Snoopy. The window is divided into four functional
units: Menu bar (contains several functions), Tool bar (contains some short cuts), Graph elements (lists all
available elements), Hierarchy browser (lists all levels) and Editor pane (canvas)

7.2. Elements of the Stochastic Petri Net Class 71

Figure 7.2 shows the graphical editor user interface in Snoopy of the stochastic Petri net class.
The drop down menus in the Menu bar offer the following commands:

• File: New/Open/Close Window/Save/Save as, Print, Export/Import, Preferences (change the
default visualisation) and Exit
• Edit : Undo/Redo, Select All/Copy/Copy in new net/Paste/Cut, Clear/Clear all, Hide/Unhide,

Edit selected elements/Transform Shapes, Layout (automatic layout function), Sort Nodes (by ID
or name), Check Net (duplicate nodes, syntax, consistency) and Convert to
• View : Zoom 100%/Zoom In/Zoom Out, Net Information (numer of each element used in the

model), Toogle Graphelements/Hierachy browser/Filebar/Log window, Show Attributes (choose
for each elements which attributes to be shown in the model), Start Anim-Mode/Simulation-
Mode/Steering-Mode
• Elements (list of all available elements): Select/ Place/Transition/ Coarse Place/Coarse Tran-

sition/ Immediate Transition/Deterministic Transition/Scheduled Transition/Parameter/Coarse
Parameter/LookupTable, Edge/Read Edge/Inhibitor Edge/Reset Edge/Equal Edge/Modifier
Edge and Comment
• Hierarchy (edit and browse hierarchy): Coarse (chosen elements are encapsulate in a macro

node)/Flatten (chosen macro nodes are decapsulate) and Go Up in Hierarchy/Go To First Child
in Hierarchy/Go To Next Sibling in Hierarchy/o To Previous Sibling in Hierarchy
• Search: Search nodes (by ID or name)
• Extra: Load node sets (visualise, e.g., T-, P-invariants, siphons and traps), Interaction and General

Information (title, author, description, literature)
• Window (arrange all opened windows): Cascade/Tile Horizontally/Tile vertically, Arrange

Icons/Next/Previous and Open Files
• Help: Help, About (current version), check update

The tool bar contains four short cuts to:

• Open a new document;
• Load a document;
• Save a document;
• Select an element.

The panel for the Graph elements displays all elements available in the current net class. To use
one of them make a left-click on one of the elements. To edit or select all elements of the same class,
use a right click on the respective element in the Graph elements panel.

The Hierarchy Browser lists all levels. A left-click the chosen hierarchical level opens the subnet in
a new window.

The Editor pane is the canvas, on which to draw the network. Activate the element you want to
use in Graph elements panel to use it on the canvas. A left-click on the Editor pane places the selected
element on the canvas. To draw an arc between two nodes click left onto one node, hold the left-click
and drag the line to the other node, now drop the left-click. To add edges to an arc push the CRTL key
and click left on the arc. You can now drag the edge with another left-click. For a better orientation
on the canvas, it is possible to use a grid which can be activated under File/Preferences in the canvas
tab. You can also choose between to two edge styles in the Preference dialogue in the elements tab,
choose among line or spline.

7.2 Elements of the Stochastic Petri Net Class

Next, we provide an overview of all elements available in the stochastic Petri net class in Snoopy, their
visualisation and attributes; see Table 7.1. In the following subsections, all elements are explained in
more detail.

72 Petri Net Editor: Snoopy

Table 7.1: bersicht zu den Petri-Netz-Elementen und ihren Attributesn

Types of Nodes
Elements Graphic Attributes

Standard Place ID, name, marking, comment, logic, graphic

Standard Transition ID, name, function, comment, logic, graphic

Coarse Place name, comment, graphic

Coarse Transition name, comment, graphic

Immediate Transition ID, name, weight function, comment, logic, graphic

Deterministic Transition ID, name, delay, comment, logic, graphic

Scheduled Transition ID, name, begin/repetition/end, comment, logic,
graphic

Edge
Elements Graphic Attributes

Standrad Edge ID, arc weight, comment, graphic
Read Edge ID, arc weight, comment, graphic
Inhibitor Edge ID, arc weight, comment, graphic
Reset Edge ID, comment, graphic
Equal Edge ID, arc weight, comment, graphic
Modifier Edge ID, comment, graphic

Additional elements for modeling
Elements Graphic Attributes

Lookup Table ID, name, (x, f(x))- values, graphic

Parameter
1

ID, name, parameter value, comment, graphic

Coarse Parameter name, comment, graphic

Comment comment, graphic

You can edit the attributes of each element. A double click on an element opens a property dialogue
with different tabs where you can now modify the attributes of the chosen element. Here, we show as
example the place editing dialogue in Figure 7.3. Advantageously, you can edit several elements at the
same time by selecting all elements you like to edit.

7.2.1 Places

Snoopy offers two types of places, the standard place and the coarse place. Coarse places correspond to
macro places and facilitate the hierarchical arrangement of Petri nets by opening a new layer to model
a place in more detail; see Section 2.3.1.

7.2. Elements of the Stochastic Petri Net Class 73

Figure 7.3: Place Dialogue. In the first tab ”General”, the name of the place can be changed, comments
can be provided and the place can be declared as logic. In the tab ”Marking” (not available for coarse
places), the number of tokens of the corresponding place can be specified (default is zero). The ”Graphic”
tab allows you to change the visualisation of the place.

7.2.2 Transitions

Several types of transitions are available in Snoopy. Among them are standard transitions and coarse
transitions. Coarse transitions correspond to macro transitions and facilitate the hierarchical arrange-
ment of Petri nets by opening a new layer to model a transition in more detail; see Section 2.3.1. There
are three more specific transitions available: deterministic transitions, immediate transitions and sched-
uled transitions. Those specific transitions are very useful to model timed input signals corresponding
to the wet-lab experiment.

Figure 7.4 explains the differences between the different types of transition. The rate function
of the standard transitions and the weight function of the immediate transition can be defined by
various mathematical equations. Snoopy offers a function/weight assistant to define such mathematical
expressions; see Figure 7.5. The function/weight assistant indicates which elements are allowed to be
used in the equation; see Figure 7.5. In general, you can use pre-places of a transition and parameters
to define the respective rate/weight function. Places that are not a pre-place of a transition can not be
used in rate/weight functions. If you want to use such places in the firing rate, they must be connected
with the respective transition via a modifier edge; see Section 7.2.3. Places connected via a modifier
arc with a transition do affect the kinetic, but not the ability of the transition to be enabled. The
function/weight assistant also offers several pre-defined mathematical functions that can be used to
define individual equations; see Table 7.3.

Table 7.2: Classification and Meaning of specific transitions.

Transition Type Informal Definition Meaning

Immediate Transition Immediate Transition Immediate transitions fire as soon as they are
enabled. The waiting time is equal to zero.

Standard Transition Timed Transition A waiting time is computed as soon as the
transition is enabled. The transition fires if
the timer elapsed zero and the transitions is
still enabled.

74 Petri Net Editor: Snoopy

Deterministic Transition Fixed timed transi-
tions with periodic
firing trails

Deterministic transitions fire as soon as the
fixed time interval elapses during the entire
simulation run time. The respective determin-
istic transitions must be enabled at the end of
each repeated interval.

Scheduled Transition Fixed timed transi-
tions with periodic
firing trails between
two time points

Scheduled transitions fire as soon as the fixed
time interval elapsed during the given time-
points. The respective deterministic transi-
tions must be enabled at the end of each re-
peated interval.

Figure 7.4: Comparison of the Standard Transitions and Specific Transitions. For each transition,
we show here its functionality by simulating their time-dependent dynamic behaviour. See also Table 7.2
for further explanations.

7.2. Elements of the Stochastic Petri Net Class 75

Table 7.3: Pre-defined mathematical Functions.

Name Meaning of the Function

BioMassAction(.) Stochastic law of mass action. Tokens are interpretated as single
molecules.

BioLevelInterpretation(.) Stochastic law of mass action. Tokens are interpretated as concentration.
ImmediateFiring(.) Refers to immediate transitions.
TimedFiring(.) Refers to deterministic transitions.
FixedTimedFiring Single(.) Refers to deterministic transitions that only fires once after a given time-

point.
FixedTimedFiring(., ., .) Refers to scheduled transitions.
abs(.) Absolute value
acos(.) Arc cosine function
asin(.) Arc sine function
atan(.) Arc tangent function
ceil(.) Rounding up
cos(.) Cosine function
exp(.) exponential function
sin(.) Sine function
sqrt(.) Square root
tan(.) Tangent function
floor(.) Round off
log(.) Natural logarithm with constant e as base
log10(.) Common logarithm with constant 10 as base
pow(.) Exponent

Figure 7.5: Rate/Wight Assistant. The rate/weight assistant helps to define mathematical functions. All
allowed elements (places, parameters) that can be used to define the rate/weight function of a transition are
displayed. The assistant also offers several pre-defined mathematical functions that can be used to define
rate/weight function. In addition, the assistant proofs whether or not the semantic of the equation is correct.

7.2.3 Edges

In addition to the standard edge, Snoopy offers also several specific edge types: read edge, inhibitor edge,
reset edge, equal edge and modifier edges. Those specific edge types can be very useful to model certain

76 Petri Net Editor: Snoopy

scenarios, e.g., timed inputs, different stimulation patterns. The function of those specific edge types is
explained in Table 7.4.

Table 7.4: Edge types and their meanings.

Edge Illustration Meaning

Standard Edge

A B

C

The transition is enabled and may fire if both pre-places A
and B are sufficiently marked by tokens. After firing of the
transition, tokens are removed from the pre-places A and B;
new tokens are produced on place C.

Read Edge

C

BA

The transition is enabled and may fire if both pre-places A
and B are sufficiently marked by tokens. After firing of the
transition, tokens are removed from the pre-place B but not
from pre-place A; new tokens are produced on place C. The
firing of the transition does not change the amount of tokens
on pre-place A.

Inhibitor Edge

A B

C

The transition is enabled and may fire if pre-place B is suffi-
ciently marked by tokens. The amount of tokens on pre-place
A must be smaller than the given arc weight. After firing of the
transition, tokens are removed from the pre-place B but not
from pre-place A; new tokens are produced on place C. The
firing of the transition does not change the amount of tokens
on pre-place A.

Reset Edge

C

BA

The transition is enabled and may fire if pre-place B is suffi-
ciently marked by tokens. The amount of tokens on pre-place
A has no effect on the ability to enable the transition and af-
fects only the kinetics. After firing of the transition, tokens are
removed from the pre-place B according the arc weight and all
tokens on pre-places A are deleted; new tokens are produced
on place C.

Equal Edge

A B

C

The transition is enabled and may fire if number of tokens
on pre-place A is equal to the correpsonding arc weight and
place B is sufficiently marked. After firing of the transition,
tokens are removed from the pre-place B but not from pre-
place A; new tokens are produced on place C. The firing of the
transition does not change the amount of tokens on pre-place
A.

Modifier Edge

C

BA

The transition is enabled and may fire if pre-place B is suffi-
ciently marked with tokens. The amount of tokens on pre-place
A has no effect on the ability to enable the transition and af-
fects only the kinetics. After firing of the transition, tokens are
removed from the pre-place B but not from pre-place A; new
tokens are produced on place C. The firing of the transition
does not change the amount of tokens on pre-place A.

7.3. Configuration Sets 77

7.2.4 Parameters

The element parameter can be used to define individual parameters. Parameters can be used to define
rate/weight functions but not to define the number of tokens on a certain place. Coarse parameters
are a third group of macro elements, which allow encapsulating parameters. Thereby, high numbers of
parameters are not visible on the top-level or can also be categorized by the use of coarse parameters.

7.3 Configuration Sets

Snoopy supports the deposition of configuration sets for each type of node (e.g. standard places, standard
transitions) and parameters; see Figure 7.6. Configuration sets offer a fast and convenient way to
flexibly switch between, e.g., different initial markings, firing rates and parameter values at once.
The editing, adding and deletion of configuration sets is organized an overview dialogue. The button
to display the overview dialogue can be found in editor dialogue of each type of node or parameter. For
The standard configuration set for these elements can not be deleted or renamed. All configuration sets
can be exported using file/export/export to CSV. The chosen configuration sets will be displayed on the
Petri net itself and used for animation and simulation.

Figure 7.6: Configuration Set. For each type of node and parameter exists an overview, where all elements
are displayed and their values (marking, rate/weight function, parameter value). In the overview dialogue it
is possible to edit single entries, to add new sets, rename set and delete sets.

7.4 Animation Mode

The animation mode in Snoopy allows you to observe the token-flow; see Figure 7.7. To start the
animation mode go to View/Start Anim-Mode or simply press F5. A new window opens, where you can
now steer the animation. The animation mode is very useful to get a first expression of the causality of
a model and how it works. Playing with the token-flow in the animation mode may help to understand
the modelled mechanism.
You can animate the token-flow manually by clicking on the transition. If you want to fire a transition
that is not enabled, you get the notification “This transition is not enabled”. You can quickly add tokens
by clicking-left on a place and withdraw tokens by clicking-right on a place. You can also animate the
token-flow by using the radio buttons on the animation steering panel. The animation can be controlled
via the radio buttons step-wise forward and backward or sequentially as long as one transition can be
enabled, otherwise you get the notification “Dead State: There are no more enabled transitions.”. In
the animation steering panel you find also information about the transition with the shortest waiting

78 Petri Net Editor: Snoopy

time which fires next. You can also change further animation properties under options, like refreshment,
duration and stepping.
In the animation mode, you have also access to the configuration sets. You can choose, which configu-
ration sets, you want to use for the animation of the token-flow. The “Stochastic Simulation” button
at the bottom of the dialogue starts the stochastic simulation mode.

Figure 7.7: Animation Mode. The token-flow can be animated by clicking on a transition or via the control
keys in the animation steering panel.

7.5 Simulation Mode

To perform stochastic simulations with the current model in the active window, you can start the
stochastic simulation mode: View/Start Simulation, simply press F6 or use the stochastic simulation
button the animation control panel.
The stochastic simulation mode allows you to simulate the time-dependent dynamic behaviour of the
model indicated by the token-flow or the firing frequency of the transitions. The token-flow indicates
how the concentration levels or the discrete number of the components change over time. The firing
frequency shows how often reactions are performed during the simulation time. Thus, you will get an
impression of the time-dependent changes in your model, which might help to understand the wet-lab
system. You can perform several simulation studies with your model by manipulating the structure
and/or perturbing the initial state (test various stimuli, mutations, knock-outs/downs etc.) and kinetics.
All results can be manually or automatically exported in the standard *.csv-format and thus, can be
processed and analysed in other mathematical programs.

The graphical interface of the stochastic simulation mode can be divided in three functional units;
see Figure 7.8:

• Simulation Control : The simulation control allows choosing the main settings and properties for
the simulation. It can be further divided in 4 panels:

7.5. Simulation Mode 79

Figure 7.8: Simulation Mode. The graphical simulation interface is tripartite, consisting of a panel for the
simulation control to change the setting and simulation properties (red), display of simulation results as
table or plot (green), viewer/node choice.

– Configuration Sets: Modify configuration sets by editing single entries or adding new sets
and choosing the configuration sets that should be used for the simulation run.

– Simulation Properties: Set interval start (time-point from which simulation results should be
displayed), interval end (time-point where the simulation ends) and output step count (num-
ber of time-points that should be displayed in the given interval), choose simulator (Gillespie
or FAU) and change other properties, e.g., simulation run count (number of simulation runs
that should be performed to average the simulation results).

– Export Properties: Different automatic export settings are available to the *.csv-format.
– Start Simulation: Start simulation with the chosen settings and properties. The bar indicates

the progress of the simulation and the required time is given below.

• Viewer/Node Choice: Choose which and how you want to display the simulation results.

– Viewer Choice: You can choose between data tables and data plots. It is also possible to
edit, add and delete the data tables and data plots with the buttons below. You can also
choose if you want to display the token-flow (places) or the firing frequency (transitions) in
a data table or data plot.

– Place Choice: You can select the nodes that should be displayed in the data table or data
plot.

• Display : In this panel the simulation results are displayed as data table or as data plot . If data
plot is chosen, the x-axis shows the time-interval and the y-axis indicates the averaged number

80 Petri Net Editor: Snoopy

of tokens. You can also edit the view of the plot via the buttons below: compress/stretch x-axis,
compress/stretch y-axis, zoom in/out, centre view. There is also a button csv export which allows
you to export the simulation results of the chosen places manually. With the print... button, you
can also save an image of the current plot. The value of the averaged number of tokens or firing
frequency is displayed in the plot by points and which are connected via interpolated lines. If you
choose the data table the token-flow for the selected places is shown in a table. At the bottom of
the window you find some options used for model checking, which are explained in Section 7.6.

7.6 Model Checking Mode

Based on the stochastic simulation, Snoopy is also enabled to perform model checking of linear-time
properties; see Section 6. In more detail, a subset of probabilistic linear-time temporal logic (PLTL)
can be employed to formulate and verify properties of the form:

P=?

[
F[t1,t2] [ap]

]
The following grammar defines the atomic proposition ap of PLTL formulas:

ap =

’!’ ap

| ap logicbinop ap

| term cmp term

logicbinop =

’&’ | ’|’ | ’->’ | ’<-’ | ’<->’

cmp =

’=’ | ’!=’ | ’>=’ | ’>’ | ’<=’ | ’<’

term =

term binop term | placename | number

binop =

’+’ | ’-’ | ’*’ | ’/’

Snoopy allows also to check several properties at the same time. Therefore, you have to separate the
atomic proposition ap by ’;’.

The following precedence rules apply to the logic operators:

• ! has higher precedence than &,
• & higher than |,
• | higher than →,
• → higher than ←,
• ← higher than ↔.

So for example, P |Q& !R→ S is short for (P | (Q& (!R)))→ S.

The binary logical connectives are given in Table 7.5.

The order of arithmetic operations, or precedence, is expressed here (from high to low):

• terms inside parentheses,
• multiplication and division (as they appear left to right),

7.6. Model Checking Mode 81

Table 7.5: Truth table for used logical operators.

P Q P &Q P |Q P → Q P ← Q P ↔ Q
T T T T T T T
T F F T F T F
F T F T T F F
F F F F T T T

• addition and subtraction (as they appear left to right),

a+ b ∗ c ≡ a+ (b ∗ c) 6≡ (a+ b) ∗ c

Operators of the same priority, or precedence, are evaluated as they appear from left to right.

To perform model checking in Snoopy, you have to open the simulation window and chose the table
view; see Figure 7.8. At the bottom of the window, you find three more buttons; see Figure 7.9:

Figure 7.9: Model Checking in Snoopy. Snoopy employs a basic model checker in the simulation mode.
You can define or load properties that are checked by simulating the time-dependent dynamic behaviour. It
is also possible to apply model checking on the averaged simulation results.

• Enter State Property : Here, you can specify an ap directly in the dialogue. An empty text removes
the current ap and no model checking is performed.

• Load state property : You can load an ap, that is defined in a text file.
• Check state property : The model checking is performed on the average behaviour of the previous

simulation.

To perform model checking on all simulation traces, you have enter or load a property and run the
simulation.

With the help of the simulation run count, you can state a number of simulation traces to which
model checking should be applied:

• Default value “1” run: You only get the information if the defined property holds “true” or not
“false”.

82 Petri Net Editor: Snoopy

• Arbitrary number of runs: The probability of the defined properties is computed based on the
number of simulation runs. In general, a high accuracy requires a high number of simulation runs.
If you use the option Check state property, you will also just get an information if the defined
properties is “true” or “false”, because model checking is done on the averaged simulation results.

By interval start and interval end, you can set the time interval where model checking should be
applied.

Figure 7.10: Model Checker Log Window. The log window shows the results of the model checking. You
get information about the checked formula, the number of simulation runs and threads used for the
simulation, the probability of the defined property, its variance and the resulting confidence interval.

The the model checking results are displayed in the log window; see Figure 7.10. The explanations
are given below:

• Formula: shows the formula checked during simulation.
• Runs: shows the number of simulation runs performed.
• Runtime: shows the number of threads used for simulation.
• Threads: shows the number of threads used for simulation.
• Prop: shows the computed probability for the formula.
• Ŝ2: shows the variance of the probability.
• Confidence Interval: shows the size of the confidence interval.
• [a, b]: shows the interval of the probability, calculated from the confidence interval

7.7 Get started

In this section, we give you a brief schedule and helpful hints on how to construct a Petri net in Snoopy
and simulate its time-dependent dynamic behaviour. We will also pay attention to the hierarchically
arrangement of a Petri net.

7.7.1 Modelling

We start with some useful points, you should consider while constructing a Petri net in Snoopy.

1. Start Snoopy
2. Open a new template for a stochastic Petri net: File/New - choose Stochastic Petri Net
3. Chose the class of node

• Click on the canvas to set, e.g., standrad transition or standard place
• Provide an unique name for each node or use the logic-functions if you want to use multiple

identical copies of one node.

7.7. Get started 83

• Define the properties of the node (initial marking, rate/weight function, delay, etc.)

4. Choose the type of edge

• Connect nodes via the chosen edge in the right way
• Assign an arc weight corresponding to the stoichiometry if necessary

5. Choose parameters if you want to use them in rate/weight functions (strongly recommended)

• Provide an unique name
• Define parameter value

6. Provide any comments if you like

Figure 7.11: Application of Coarse Nodes. Select the target nodes that you want to encapsulate by a
coarse node. Use a coarse transition (place) if the target subnet is bounded by places (transitions).

Figure 7.12: Hierarchical Structure of a Model. The levels introduced by the coarse nodes of the top-level
are displayed in the hierarchy browser. The selected submodels are displayed in separate windows
corresponding to their levels. The top-level shows just the coarse nodes instead of the submodel.

There are two possibilities to structure your model hierarchically and thus, provide a neat arrange-
ment.

• Use coarse nodes from the beginning: Connect coarse transitions (coarse places) with all places
(transitions), that you want to use on the new level. Construct the subnet on the separate level.

84 Petri Net Editor: Snoopy

• Encapsulate parts of your model after construction via coarse nodes. To do so, consider the
following steps:

1. Select the elements that should be directed to a new layer; see Figure 7.11. Remember if
you want to use coarse transitions (coarse places), the subnet must be bounded by places
(transitions) that are not selected.

2. Go to Hierarchy/Coarse. A new dialogue opens. Choose the coarse node you want to use;
see Figure 7.11. After the coarse function is applied to the selected subnet, a new level is
displayed in the Hierarchy Browser ; see Figure 7.12. The subnets are now hidden by the
coarse node in the top-level.

3. Name the coarse nodes.
4. To view or edit a subnet, you can open it in a new window by clicking-right on the coarse

node or clicking on the entry in the Hierarchy Browser.

Further, the coupling of two separate Petri nets with common nodes can be done in two ways:

• Use logical nodes: Indicate nodes that are contained in both models as logical nodes.
• Merge nodes: Drag the shared node of the first model on the respective node of the second model;

see Figure 7.13. A dialogue opens, which allows to merge the two nodes and automatically adopt
all connections to other nodes.

Figure 7.13: Merge Nodes. Two separate models can be connected via common places that are merged by
dragging one onto the other.

If you want to undo any coarse node or decapsulate the subnet of a coarse node, you need to flatten
the coarse node. To do so, go to Hierarchy/Flatten.

7.7. Get started 85

7.7.2 Simulation/Animation

In this section, we mention a few more words on how to perform a simulation.

1. Define your rate/weight functions and delays if you have not already done this before. The
rate/weight assistant helps you to define mathematical equation and check whether the expression
is correct or wrong.

2. Start the simulation mode:View/Start Simulation or simply press F6
3. Select the configuration sets, you want to use for the simulation run
4. Set simulation parameters: interval start, interval end, output step count and simulation run

count (select the highest thread count number if you want to perform several simulation runs,
this speeds up the computation).

5. Start the simulation
6. After the simulation has finished, choose the viewer, data plot or data table, and select the nodes

you want to display.
7. Export the simulation results if you like to reuse them in other mathematical programs.

CHAPTER 8
Petri Net Analyser: Charlie

In this chapter, we introduce Charlie [8] a software tool to analyse Place/Transition nets. The tool
has been developed - and is still under development - at the University of Technology in Cottbus [3],
Dep. of Computer Science, “Data Structures and Software Dependability” [1]. The tool is in use for
the verification of technical systems, especially software-based systems, as well as for the validation of
natural systems, i.e., biochemical networks as metabolic, signal transduction, gene regulatory networks.
The main features of Charlie are [1]:

• Structural properties (net classes, siphons/traps);
• Invariant based analysis (P- and T-invariants, dependent node sets);
• Reachability graph based analysis;

– Behavioural properties (boundedness, liveness, reversibility);
– Explicit CTL model checking;
– Explicit LTL model checking;
– Shortest path;

• Reachability/coverability graph visualisation using the JUNG library.

We use Charlie to determine the structural properties of a Petri net and use the analysis results to
interpret the biological system. In the next sections, we show how to work with Charlie and explain
the main features. See Chapter 4 for a list of structural Petri net properties and their biological
interpretation.

8.1 Graphical User Interface

In this section, we explain the graphical user interface and the offered analysis options. Charlie consists
of three parts: the main window, a protocol window and the analyser-thread manager ; see Figure 8.1.
In the main window, you can find the menu bar, the tool bar and the analysing dialogues. The menu
bar consists of four drop down menus:

• File:

– Open: Open a Petri net, e.g., created in Snoopy. A file dialogue pops up and you can now
select the Petri net file, you want to analyse. Charlie supports the file formats: spept, apnn,
spmnet, sptpt, spm, spstochpn, spped, spcontped.

– Reload : Reload the file that you already opened in Charlie. This is useful if you edit the
Petri net while analysing and you now want to analyse the changes

– Save session: Save all results that Charlie computed for the recent Petri net.

87

88 Petri Net Analyser: Charlie

Figure 8.1: Charlie User Graphical Interface. The user interface is divided into three parts: the main
window (red), protocol window (green), analyser-thread-manager (blue). The main window contains the
analysers which could be applied to the loaded Petri net.

– Load Session: Load results that have been computed for a Petri net that you have analysed
before.

– Recent files: List of the files, you used recently. After every start, Charlie checks if the files
are still available.

– Exit : Close Charlie

• Show :

– Show in Snoopy : The currently loaded Petri net will be opened in Snoopy. Before using this
option for the first time, you have to set up a path to the Snoopy executable. You can now
specify the path in the file dialogue.

– Debug Petri net : A new window opens with properties of the loaded Petri net, e.g., ids of
places and transitions. This item is intended to be used by programmers of Charlie/Charlie
plug-ins.

• Preferences:

– Always apply rules: Based on some analysis results it is possible to deduce the fulfilment of
other properties by certain rules. The rules are always applied automatically if you mark the
check box.

– Write log files: If you mark this check box, the analysis results are automatically written to
a log-file.

– Filter : The filter allows setting of some output filter options for the log file.
– Update: Check for an updated version of Charlie.

• Help:

– Help: A new window opens where you can find several facts about Charlie.
– About : Gives you information about the current version, you are using.

The tool bar contains some useful short cuts to open a Petri net, to reload the currently opened
Petri net, to show the protocol and a fast access combo box to open selected analysing dialogues.
In the main menu, you can also call an analyser. With the help of the analysers, you can investigate your
model by computing several Petri net properties. Charlie incorporates several analysers/ functionalities:

8.1. Graphical User Interface 89

• Marking Editor,
• IM-based Analysis,
• Siphon/Trap Computation,
• Model Checking,
• Path Search (not considered),
• Net Properties.

To open any of those analysers just click on the tab or use the fast access combo box. Each analyser
has several options that you can chose, which we explain in the next sections.

In the protocol window, additional information about the Petri net structure and all analysis results
of performed analysis are written down, as well as the fulfilment of the typical Petri net properties
given in Chapter 4.

The analyser-thread manager shows which analyser have been performed (green), which are still
running (blue), which have been paused (orange) and which have been cancelled (pink). Each analyser
has four buttons. One to pause or restart an analyser and a second to cancel the analysis. A third
button allows you to display some statistical information about the analysis and the fourth button
displays information about the chosen analyser options. The computation time for each analyser is
displayed in the corresponding panel. With the clear button on the top of the dialogue, you can clear
the analyser-thread manager.

8.1.1 Marking Editor

Figure 8.2: Marking Editor. The marking editor allows adding and editing of marking sets which can be
applied to the analysis.

By opening a Petri net for structural analysis in Charlie, all main marking sets of the loaded Petri
net are imported and the chosen marking is applied to the analysis. With the help of the marking
editor, you can add new marking sets and edit them. To do so, click on show marking editor and a new
window pops up. The marking editor displays the list of places and list of marking sets in a table. The
main marking set can not be deleted or edited.
You can change the marking of the marking sets. Additionally, you can generate new marking sets.
Click on new and an empty marking set (all entries equal to zero) appears in a new column. You can

90 Petri Net Analyser: Charlie

also you copy a selected marking using the copy button. In both cases, you can afterwards edit the
marking. It is also possible to remove marking sets using the delete button. However, the main marking
set can not be removed, renamed or edited.
The marking editor also allows filtering of places by names or by the number of tokens. To search for
a specific place, enable the check box filter place names and type the name of the place. Enable the
check box filter token count if you want to filter places with a specific number of tokens, set the bound
and choose a mathematical operation in the drop-down menu (< - less, <= -less-than-or-equal, = -
equal, > - greater, >= - greater-than-or-equal-to, ! = - unequal). After applying on of a filter, only
those places are shown, which fulfil the property.
You can also load marking sets form a file or save them to a file or save the Petri net and chosen marking
to the Abstract Petri Net Notation format (*.APPN).
Use the drop-down menu to select a marking that you want to apply to the analysis. The marking
editor is very helpful, if you want to investigate how a marking influences the properties of your Petri
net model.

8.1.2 IM-based Analysis

All analysers that are contained in the tab IM-Based Analysis; see Figure 8.3; perform their computa-
tion based on the representation of a Petri net by its incidence matrix and linear algebra. The different
analysers are:

• Rank theorem: Computes the rank of the incidence matrix. Based on the results some rules can
be applied to deduce other properties, e.g., liveness.
• Check structural boundedness: See Section 4.1.2.1 and Table 4.2 B, SB.
• P-invariants: See Section 4.1.2.2 and Table 4.4 D, CPI.
• T-invariants: See Section 4.1.2.2 and Table 4.4 D, CTI, SCTI.

Figure 8.3: IM-based Analysis. Based on the incidence matrix the integrated analysers compute the matrix
rank, decide on structural boundedness and determine all P- and T-invariants of the model.

8.1. Graphical User Interface 91

To use one of the analysers mark the respective check box and click on compute. The P-invariant
analyser and the T-invariant analyser have additional options, where the rank theorem analyser and
the check of structural boundedness analyser have no further settings. All rules that can be applied to
the results of the rank theorem analyser and the check of structural boundedness analyser, can be looked
up in the rule set help; see Section 8.1.6). For the computation of invariants you have the following
options:

• Delete trivial invariants (only for T-invarinats): removes all trivial invariants from the list, i.e.,
only those invariants are listed that are not trivial.
• Check coverage: Checks if the Petri net is covered by the computed invariants
• Check strong coverage (only for T-invariants): Checks if the Petri net is covered by the computed

invariants
• Export invariants to file: with this option you can set a path to a file, where all calculated

invariants are written as text; this file can be imported by Snoopy. A file chooser opens to set the
path.

To compute the coverage or strong coverage of the Petri net by invariants, you can also load invariants
that have been computed before. To do so, click on the load button and a file chooser opens. By
enabling the check box dependent sets, you can also calculate the dependent sets when invariants are
computed. By default only the abstract depended sets are computed. Further calculations can be set
by opening the options menu for dependent sets.

• Strong dependent sets: The strongly dependent sets of the invariants are computed.
• Export sds to file: Enable this check box in order to export the strong dependent sets to a file; a

file chooser will be opened.
• Abstract dependent sets: The abstract dependent sets of the invariants are computed.
• Export ads to file: Enable this check box in order to export the abstract dependent sets to a file;

a file chooser will be opened.
• Connected ADS : The connected abstract dependent sets of the invariant are computed.
• Export cads to file: Enable this check box in order to export the connected abstract dependent

sets to a file; a file chooser will be opened.

Finally, you also have the opportunity to export the incidence matrix of the load Petri net in a several
file formats using the export incidence matrix button. You can reuse the file for your own computations
using, e.g., matlab to perform flux balance analysis.

8.1.3 Siphon/Trap Computation

In this tab, the siphon/trap analyser ; see Figure 8.4, allows you to compute traps and siphons; see
Chapter 4.2.1 and 4.2.1; by activating the corresponding check box and clicking on the compute
button. You can choose between several options:

• Export : By selecting the check box export siphons (resp. export traps) one can choose a file to
that the siphons (traps) shall be exported. The exported place sets can be visualised on the Petri
net opened in Snoopy.
• Proper Sets: If the check box proper sets is selected then only the proper sets are computed and

exported (if exporting is selected).
• When computing siphons is selected, one can additionally check the loaded Petri net for the

siphon-trap-property by selecting the check box stp; see Table 4.4, STP. The analyser can also
compute bad siphons and sound siphons if you check the respective boxes.

The siphon/trap tab offers also an integrated place set analyser. By clicking on the button place set
analyser a new window opens, where all places are listed. One can click on the entries to manually
check if the selected places constitute a siphon or a trap (check boxes at the bottom). In addition, it is
shown, whether the set of places selected is a bad siphon or not. You can choose to display the names
of the places, the IDs of the places or both in the menu place settings.

92 Petri Net Analyser: Charlie

Figure 8.4: Siphon/Trap Analysis. The analyser allows computing traps and siphons. It can also be
checked if the siphon-trap properties hold. Additionally, a place set analyser is available.

8.1.4 Reachability Graph/Coverability Graph

The reachability/coverability graph analyser computes the state space of the loaded Petri net and selected
marking; see Figure 8.5. The reachability graph is constructed if the net is bounded, otherwise the
coverability graph is constructed. Click on the compute button to start the analyser. After computing,
the analyser gives some information about the constructed graph in the rg info dialogue about the
number of edges, states, strong connected components (ssc) and the computation time. The analyser
offers several options to define the computation of the state space:

• Check boundedness: Enable check box to check boundedness of the Petri net while computing the
state space.

• Stubborn reduction: Enable check box to reduce the state space by stubborn sets. Stubborn sets
are sets of transitions that are not affected by transitions that are not contained in the stubborn
set. The state space is reduced but terminal states are persevered. The state space has no dead
states if the reduced stubborn state space has no dead states.

• Fire rules: Choose a firing rule by enabling the respective check box.

– Single step: Enable check box to compute all successor states of the current state by consid-
ering that just one enabled transition in the current state can fire at the same time.

– Max step: Enable check box to compute the successor state of the current state that could
be reached if all enabled transition in the current state fire at the same time.

– Max depth: Define the number of firing events in a sequences that should be computed,
meaning the depth of the graph, layers (“0” means that the entire state space is computed).

To visualise the constructed graph click on view RG or on show window. You can select the graph
that should be displayed in the drop-down menu above. A new window pops-up, the graph visualizer,
and shows the selected graph; see Figure 8.5. All strongly connected components are highlighted in
a different colour. You have several options to change the visualization of the graph. You can open
different graphs of the same Petri net (with variable markings) and/or different views of the graph in

8.1. Graphical User Interface 93

Figure 8.5: Reachability/Coverability Graph analyser. Compute the state space of the loaded Petri net
and visualise the computed state space as a graph. Several options allow to modify the visualization.

separate tabs at the same time. The visualization of the graph can be changed in the visualization
control at the right site of the window.

• Visualisation:

– Nodes: Enable check box to display the state/marking of each node.

– Edges: Enable check box to display the name of the transition at each arc.

– Buttons: zoom in, zoom out, go up, go down.

• Visual Options

– Layouts: Choose between different automatic layouts in the drop-down menu: TreeLayout,
ISOMLayout, FRLayout, SpringLayout, CycleLayout to change the arrangement of the nodes
and arcs in the graph.

– Logic sates: Enable check box if you want to display states that can be reached from different
states as logical nodes.

– Vertical : Enable check box to vertically arrange the current view.

– Max nodes: Choose a maximal number x of nodes that should be displayed. Just the first x
nodes that can be reached from the initial marking are displayed.

– Layers: Choose a number of layers that should be displayed meaning the depth of the graph,
number of iteration for computing successor nodes.

– X distance: Change the horizontal spaces between the nodes with the slider.

– Y distance: Change the vertical spaces between the nodes with the slider.

– Add view : Opens a new tab and apply the visual options to the graph.

94 Petri Net Analyser: Charlie

• Path (not considered)
• Filter (not considered)

You can also manually manipulate the graph or the view:

• Move the entire graph by clicking on the canvas and dragging the graph.
• Rotate the entire graph by holding SHIFT and clicking on the canvas.
• Tilt the entire graph by holding CRTL and clicking on the canvas.
• Move single nodes by clicking and dragging the respective node.

By clicking on any node in the graph, the node will be highlighted and all outgoing arcs and the
marking is displayed. A menu with the following options pops-up if you use a right-click:

• Copy marking : Copy the marking given as text next to current node. You can paste it in any
text editor.

• Create/Copy filter : Creates an expression in the form of a boolean expression that can be used
to create a filter.

• Start path: Selects the current node as start node of a path and stores the path.
• Show next states: All states that can be reached from the current state are displayed.
• Show previous states: All states that lead to the current state are displayed.

In the menu bar of the graph visualiser are two more tab available with the following options:

– File:

∗ Load Graph: Load a graph that has been saved before.
∗ Save graph layout : Save the actual graph layout to a file.
∗ Export graph layout : Saves an image of the actual graph layout in a *.pdf file.
∗ Save session: Save all results the Charlie computed for the recent Petri net.
∗ Load Session: Load results that have been computed for a Petri net that you analysed

before.
∗ Exit : Close graph visualiser.

– Sequences:

∗ Reduce sequence: Aggregates nodes of repeated firing sequences.
∗ Expand sequence: Expands aggregated nodes of repeated firing sequences.

8.1.5 Model Checking

Charlie offers also a model checker ; see Figure 8.6; to perform explicit CTL and LTL model checking;
see also Sections 6.3.1 and 6.3.3 for further explanations. Before, we have a closer look at the
options, we give you the CTL and LTL grammar used in Charlie.

• CTL grammar:

START = ctl_formula ’;’

ctl_formula = ap

| ’(’ ctl_formula ’)’

| unop ctl_formula

| ctl_formula binop ctl_formula

| ae ’(’ ctl_formula ’U’ ctl_formula ’)’

| untemp ctl_formula

unop = ’!’ | ’~’

binop = ’&’ | ’|’ | ’->’ | ’<-’ | ’<->’

8.1. Graphical User Interface 95

Figure 8.6: Model Checking in Charlie. Charlie uses explicit CTL and LTL model checking to verify
specific properties of the loaded model.

ae = ’A’ | ’E’

untemp = ’AX’ | ’EX’ | ’AF’ | ’EF’ | ’AG’ | ’EG’

ap = PLACE cmp INT | ’true’ | ’false’

cmp = ’==’ | ’!=’| ’>=’ | ’>’ | ’<=’ | ’<’

• LTL grammar:

START = ltl_formula

ltl_formula = ap

| ’(’ ltl_formula ’)’

| unop ltl_formula

| ltl_formula binop ltl_formula

| ’(’ ltl_formula ’U’ ltl_formula ’)’

| untemp ltl_formula

unop = ’!’ | ’~’

binop = ’&’ | ’|’ | ’->’ | ’<-’ | ’<->’

untemp = ’X’ | ’F’ | ’G’

ap = PLACE cmp INT | ’true’ | ’false’

96 Petri Net Analyser: Charlie

cmp = ’=’ | ’!=’| ’>=’ | ’>’ | ’<=’ | ’<’

Before you can use the model checker, the reachability graph must be computed. The model checker
thas the following options:

• RG : Choose a reachability graph from the drop-down menu.
• Mode: Choose between CTL and LTL.
• Use file: Choose a file that you already loaded in the drop-down menu.
• Load formula: Load an ap, that is defined in a text file.
• Edit : A small assistant opens, which helps you to define your CTL or LTL formula and checks

the syntax.
• Quick formula: Enter an ap.
• Compute: Starts verification of the defined properties.

The output window shows the results, whether the property is true or false.

8.1.6 Net Properties

The dialogue net properties is not an analyser itself but shows the properties of the net that already have
been analysed; see Figure 8.7. All properties and their short cuts as well as an informal description
can be found in Tables 4.1 - 4.4.

Figure 8.7: Net properties. The dialogue net properties shows the computed properties of the loaded Petri
net. In this dialogue, you can also open a new windows that gives additional information about the output
and the rules that are implemented in Charlie.

The qualitative properties given in Table 4.1 are computed while loading a Petri net. Other properties
are computed based on the results of the different analysers or are deduced from certain rules. A property
with a grey background has not yet been analysed or it has not been found by a rule. Properties that
either have been analysed or been implied by a rule have either a red, green or yellow background
depending on the truth value. A green background always implies that the Petri net has the specific
property, while a red background implies that the Petri net does not have the specific property. If the

8.2. Visualisation of Analysis Results in Snoopy 97

background is yellow then an analyser found additional information for this property. Examples for
this are the net class (NC) or the k-boundedness. Those colours can change from green/red to yellow
but not vice versa and they will never change from red to green or vice versa.
Furthermore, you can go through the different results that either an analyser or a rule provided with
the help of the radio buttons below; see Figure 8.7. The last result set always contains a summary of
all results gained so far.
With the button output, one can open the output dialogue. In the output dialogue the analysers print
out some additional information. Finally, you can get some additional information, by pressing the help
button, about the rule set that is stored in the system. The rules that are listed in the rule set can be
applied to the results that are either gained by an analyser or by another rule.

8.2 Visualisation of Analysis Results in Snoopy

All node sets, e.g., P-invariants, T-invariants, siphons, traps, that have been computed in Charlie can
be opened in a text editor or be depicted on the respective Petri net in Snoopy. The visualisation of
the place sets makes it much easier to understand their biological meaning. To do so, consider the next
steps:

Figure 8.8: Visualise Node Sets in Snoopy. All node sets computed in Snoopy can be imported in Snoopy
and depicted on the respective Petri net.

• Export the node set in Charlie.
• Open the respective Petri net in Snoopy.
• Load the node set: Extras/Load node set file... and browse to the file, you want to display.

After choosing the file path, a new window pops-up, which allows you to browse through the node sets.
The node sets are depicted on the Petri net if you select one in the dialogue. You can select multiple
node sets if you hold SHIFT. The buttons First/Next/Prev/Last can also be used to browse through the

98 Petri Net Analyser: Charlie

node sets. The intersection/union of the selected node sets is shown if the check box intersection/union
is enabled. You can also choose between different colours in the colour menu. There are three more
options, you can choose:

• Gradient Colouring : Transitions/Places are shown in a lighter colour the edges.
• Keep Colouring : The selected elements of the displayed node sets still coloured after closing the

dialogue.
• Select Nodes: The selected elements of the displayed node sets are selected to, e.g., copy or edit

them.

Bibliography

[1] http://www-dssz.informatik.tu-cottbus.de.

[2] http://www.informatik.uni-hamburg.de/TGI/

PetriNets/.

[3] http://www.tu-cottbus.de.

[4] W. Brauer and W. Reisig. Carl Adam Petri and
’Petri Nets’. Informatik-Spektrum, 29:369–374,
2006.

[5] K.-H. Cho et al. Mathematical Modelling of
the Influence of RKIP on ERK Signalling Path-
way. Computational methods in systems biology,
2602:127–141, 2003.

[6] E. Curry. Stochastic Simulation of entrained cir-
cadian rhythem. Master’s thesis, School of Infor-
matics, University of Edinburgh, 2006.

[7] A. Doi et al. Construction biological pathway
models with hybrid functional Petri nets. In Silico
Biology, 4:271–291, 2004.

[8] A. Franzke. Charlie 2.0 - A Multithreaded Petri
Net Analyzer. Master’s thesis, Brandenburg Uni-
versity of Technology Cottbus, 2009.

[9] P.J.E. Goss and J.Peccoud. Quantitative model-
ing of stochastic systems in molecular biology by
using stochastic Petri nets. Proceedings of the Na-
tional Academy of Sciences USA, 95:2340–2361,
1998.

[10] S. Grunwald et al. Petri net modeling of gene
regulation of the Duchenne muscular dystrophy.
Biosystems, 89:189–205, 2008.

[11] M. Heiner, R. Donaldson, and D. Gilbert. Petri
Nets for Systems Biology, chapter 3, pages 61–97.
Jones & Bartlett Learning, LCC, 2010.

[12] M. Heiner, D. Gilbert, and R. Donaldson. Petri
Nets for Systems and Synthetic Biology, volume
5016 of LNCS, pages 215–264. Springer, 2008.

[13] I. Koch, B.H. Junker, and M. Heiner. Applica-
tion of Petri Net Theory for Modelling and Vali-
dation of the Sucrose Breakdown Pathway in the
Potato Tuber. In Proc. 5th Workshop CPN, Univ.
of Aarhus, October 2004, volume 21 of Bioinfor-
matics, April 2005, pages 1219 – 1226. (Advance
Access published November 16, 2004), 2005.

[14] S. Lehrack. A Modelling and Simulation Tool for
Stochastic Petri Nets Models of Biochemical Net-
works. Diploma thesis, Brandenburg University of
Technology Cottbus, 2007.

[15] C. Li et al. Modelling and simulation of sig-
nal transductions in an apoptosis pathway by us-
ing timed Petri nets. Journal of Biosciences,
32(1):113–127, 2007.

[16] M. Heiner M. Schwarick, C. Rohr. MARCIE -
Model checking And Reachability Analysis done
effiCIEntly. Proc. 8th International Conference
on Quantitative Evaluation of SysTems (QEST
2011), IEEE Computer Society 2011, Achen,
2011.

[17] W. Marwan, A. Sujatha, and C.Starostzik. Re-
constructing the regulatory network controling
commitment and sporulation in Physarum poly-
cephalum based on hierarchical Petri net modeling
and simulation. Journal of Theoretical Biology,
236:349–365, 2005.

[18] I. Mura and A. Csiksz-Nasy. Stochastic Petri net
extension of a yeast cell cycle model. Journal of
Theoretical Biology, 254:850–860, 2008.

[19] C. Rohr, W. Marwan, and M. Heiner. Snoopy
- a unifying Petri net framework to investigate
biomolecular networks. Bioinformatics, 26:974–
975, 2010.

[20] A. Sackmann et al. An analysis of the Petri net
based model of the human body iron homeostasis
process. Computational Biology and Chemistry,
31(1):1–10, 2007.

[21] A. Sackmann, M. Heiner, and I. Koch. Applica-
tion of Petri net based analysis techniques to sig-
nal transduction pathways. BMC Bioinformatics,
7:1–17, 2006.

[22] O. Schulz-Trieglaff. Modeling the randomness in
biological systems. Master’s thesis, School of In-
formatics, University of Edinburgh, 2005.

99

http://www-dssz.informatik.tu-cottbus.de
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.tu-cottbus.de

100 Petri Net Analyser: Charlie

[23] O.J. Shaw, L.J. Steggles, and A. Wipat. Au-
tomatic parameterization of stochastic Petri net
models of biological networks. Technical report,
CS-TR-909, School of CS, University of Newcas-
tle upon Tyne, 2005.

[24] S. Soliman and M. Heiner. A Unique Transfor-
mation from Ordinary Differential Equations to
Reaction Networks. PLoS ONE, 5:1–6, 2010.

[25] R. Srivastava, M.S. Peterson, and W.E. Bent-
ley. Stochastic kinetic analysis of the escherichia
coli stress circuit using σ32-targeted antisense.
Biotechnology and Bioengineering, 75:120–129,
2001.

[26] K. Yeung et al. Suppression of the Raf-1 Kinase
Activity and MAP Kinase Signalling by RKIP.
Nature, 401:173 – 177, 1999.

	Contents
	Introduction
	Petri Net Basics
	General Information about the use of Petri Nets in modeling biological processes
	Standard Petri Net
	Extended Standard Petri Net
	Extended Representation
	Extended Expressiveness

	Petri Net Modelling
	Analysing the System of Interest
	Assumptions and Modelling Guidelines
	Creating a Petri Net Model
	Biological Interpretation of Places and Transition
	Petri Net Models of Biomolecular Reactions

	Initial State of a Petri Net Model
	Neat Arrangement of a Petri Net Model
	Examples

	Qualitative Petri Net Analysis
	Qualitative Properties
	Structural Properties
	Behavioural Properties

	Structural Motifs
	Trap
	Siphon
	Invariants

	State Space
	Examples

	Quantitative Petri Net Analysis
	Stochastic Petri Nets
	Examples

	Continuous Petri Nets
	Examples

	Model Checking for Petri Nets
	Introduction to Model Checking
	Temporal Logics
	Analytical Model Checking
	Computation Tree Logic (CTL)
	Branching-time Continuous Stochastic Logic (CSL)
	Linear Time Logic (LTL)

	Simulative Model Checking
	Probabilistic Linear Time Logic (PLTL)
	Continuous (Probablistic) Linear Time Logic (LTLc/PLTLc)

	Petri Net Editor: Snoopy
	Editor Mode
	Elements of the Stochastic Petri Net Class
	Places
	Transitions
	Edges
	Parameters

	Configuration Sets
	Animation Mode
	Simulation Mode
	Model Checking Mode
	Get started
	Modelling
	Simulation/Animation

	Petri Net Analyser: Charlie
	Graphical User Interface
	Marking Editor
	IM-based Analysis
	Siphon/Trap Computation
	Reachability Graph/Coverability Graph
	Model Checking
	Net Properties

	Visualisation of Analysis Results in Snoopy

