
1

Speeding Up Queries with
Semi-Joins and Anti-Joins:

How Oracle Evaluates EXISTS,

NOT EXISTS, IN, and NOT IN

Roger Schrag
Database Specialists, Inc.

www.dbspecialists.com

2

Today’s Session

� “Semi-join” and “anti-join” defined

� EXISTS and IN clauses
– How Oracle evaluates them

– Prerequisites and hints

– Examples

� NOT EXISTS and NOT IN clauses
– How Oracle evaluates them

– Prerequisites and hints

– Examples

3

White Paper

� Fourteen pages of details I can't possibly cover

in a one hour presentation.

� Lots of sample code, execution plans, and

TKPROF reports that you will see are probably

not readable when I put them up on PowerPoint

slides—but they are readable in the white paper.

� Download: www.dbspecialists.com/presentations

4

Semi-Joins and Anti-Joins

� Two special types of joins with efficient access

paths.

� Can dramatically speed up certain classes of

queries.

� Can only be used by Oracle when certain

prerequisites are met.

5

“Semi-Join” Defined
A semi-join between two tables returns rows from

the first table where one or more matches are

found in the second table.

The difference between a semi-join and a

conventional join is that rows in the first table will

be returned at most once. Even if the second table

contains two matches for a row in the first table,

only one copy of the row will be returned.

Semi-joins are written using EXISTS or IN.

6

A Simple Semi-Join Example
“Give me a list of departments with at least one

employee.”

Query written with a conventional join:
SELECT D.deptno, D.dname
FROM dept D, emp E
WHERE E.deptno = D.deptno
ORDER BY D.deptno;

– A department with N employees will appear in the

list N times.

– You could use a DISTINCT keyword to get each

department to appear only once.

– Oracle will do more work than necessary.

7

A Simple Semi-Join Example
“Give me a list of departments with at least one

employee.”

Query written with a semi-join:
SELECT D.deptno, D.dname
FROM dept D
WHERE EXISTS

(SELECT 1
FROM emp E
WHERE E.deptno = D.deptno)

ORDER BY D.deptno;

– No department appears more than once.

– Oracle stops processing each department as soon
as the first employee in that department is found.

8

“Anti-Join” Defined

An anti-join between two tables returns rows

from the first table where no matches are

found in the second table. An anti-join is

essentially the opposite of a semi-join.

Anti-joins are written using the NOT EXISTS

or NOT IN constructs. These two constructs

differ in how they handle nulls—a subtle but

very important distinction which we will

discuss later.

9

A Simple Anti-Join Example

“Give me a list of empty departments.”

Query written without an anti-join:

SELECT D1.deptno, D1.dname
FROM dept D1
MINUS
SELECT D2.deptno, D2.dname
FROM dept D2, emp E2
WHERE D2.deptno = E2.deptno
ORDER BY 1;

10

A Simple Anti-Join Example

“Give me a list of empty departments.”

Query written with an anti-join:

SELECT D.deptno, D.dname
FROM dept D
WHERE NOT EXISTS

(
SELECT 1
FROM emp E
WHERE E.deptno = D.deptno
)

ORDER BY D.deptno;

11

Semi-Joins in Greater Detail

� How Oracle evaluates EXISTS and IN clauses.

� Semi-join access path prerequisites.

� Hints that affect semi-joins.

� Examples.

12

How Oracle Evaluates EXISTS and IN

� Oracle transforms the subquery into a join if at all

possible (according to Metalink document

144967.1). Oracle does not consider cost when

deciding whether or not to do this transformation.

� Oracle can perform a semi-join in a few different

ways:

– Semi-join access path.

– Conventional join access path followed by a sort

to remove duplicate rows.

– Scan of first table with a filter operation against

the second table.

13

How Oracle Evaluates EXISTS and IN

� Rule of thumb from the Oracle 8i/9i/10g

Performance Tuning Guide (highly simplified):

– Use EXISTS when outer query is selective.

– Use IN when subquery is selective and outer

query is not.

� My personal experience:

– Rule of thumb is valid for Oracle 8i.

– Oracle 9i often does the right thing regardless of

whether EXISTS or IN is used.

14

Semi-Join Access Path Prerequisites

� Oracle cannot use a semi-join access path in

queries that:

– use the DISTINCT keyword.

– perform a UNION (involves an implicit DISTINCT).

– have the EXISTS or IN clause on an OR branch.

� Oracle 8i will only use a semi-join access path if

the always_semi_join instance parameter is set to

“hash” or “merge”, or if a hint is used.

� Oracle 9i and later evaluate the cost of a nested

loops, merge, and hash semi-join and choose the

least expensive.

15

Hints that Affect Semi-Joins

� Apply the HASH_SJ, MERGE_SJ, and NL_SJ

hints to the subquery of an EXISTS or IN clause to

tell Oracle which semi-join access path to use.

� Oracle will disregard semi-join hints if you ask for

the impossible. (eg: A HASH_SJ hint in a query

with a DISTINCT keyword will be ignored.)

� In my experience Oracle is good about knowing

when to use a semi-join access path. However, I

have seen cases where Oracle chose a nested

loops semi-join where a hash semi-join was much

more efficient.

16

Semi-Join Example #1

“List the gold-status customers who have placed an

order within the last three days.”

SELECT DISTINCT C.short_name, C.customer_id
FROM customers C, orders O
WHERE C.customer_type = 'Gold'
AND O.customer_id = C.customer_id
AND O.order_date > SYSDATE - 3
ORDER BY C.short_name;

Rows Row Source Operation
------- ---

2 SORT UNIQUE (cr=33608 r=30076 w=0 time=6704029 us)
20 HASH JOIN (cr=33608 r=30076 w=0 time=6703101 us)
10 TABLE ACCESS FULL CUSTOMERS (cr=38 r=36 w=0 time=31718 us)

2990 TABLE ACCESS FULL ORDERS (cr=33570 r=30040 w=0 time=6646420 us)

17

Semi-Join Example #1

What we see on the previous slide:

– The query was written with a conventional join

and DISTINCT instead of an EXISTS or IN

clause.

– Oracle performed a conventional hash join

followed by a sort for uniqueness in order to

remove the duplicates. (18 of the 20 rows

resulting from the hash join were apparently

duplicates.)

– The query took 6.70 seconds to complete and

performed 33,608 logical reads.

18

Semi-Join Example #1
Rewritten with a semi-join:

SELECT C.short_name, C.customer_id
FROM customers C
WHERE C.customer_type = 'Gold'
AND EXISTS

(
SELECT 1
FROM orders O
WHERE O.customer_id = C.customer_id
AND O.order_date > SYSDATE - 3
)

ORDER BY C.short_name;

Rows Row Source Operation
------- ---

2 SORT ORDER BY (cr=33608 r=29921 w=0 time=6422770 us)
2 HASH JOIN SEMI (cr=33608 r=29921 w=0 time=6422538 us)
10 TABLE ACCESS FULL CUSTOMERS (cr=38 r=0 w=0 time=61290 us)

2990 TABLE ACCESS FULL ORDERS (cr=33570 r=29921 w=0 time=6345754 us)

19

Semi-Join Example #1
What we see on the previous slide:

– An EXISTS clause was used to specify a semi-

join.

– Oracle performed a hash semi-join instead of a

conventional hash join. This offers two

benefits:

• Oracle can move on to the next customer record

as soon as the first matching order record is

found.

• There is no need to sort out duplicate records.

– The query took 6.42 seconds to complete and

performed 33,608 logical reads.

20

Semi-Join Example #1

Adding a hint to specify a nested loops semi-join:

SELECT C.short_name, C.customer_id
FROM customers C
WHERE C.customer_type = 'Gold'
AND EXISTS

(
SELECT /*+ NL_SJ */ 1
FROM orders O
WHERE O.customer_id = C.customer_id
AND O.order_date > SYSDATE - 3
)

ORDER BY C.short_name;

Rows Row Source Operation
------- ---

2 SORT ORDER BY (cr=833 r=725 w=0 time=358431 us)
2 NESTED LOOPS SEMI (cr=833 r=725 w=0 time=358232 us)
10 TABLE ACCESS FULL CUSTOMERS (cr=38 r=0 w=0 time=2210 us)
2 TABLE ACCESS BY INDEX ROWID ORDERS (cr=795 r=725

780 INDEX RANGE SCAN ORDERS_N1 (cr=15 r=13 w=0 time=5601 us)

21

Semi-Join Example #1

What we see on the previous slide:

– The NL_SJ hint in the subquery suggests a

nested loops semi-join.

– Oracle performed a nested loops semi-join as

requested.

– The same benefits as with the hash semi-join

apply here, but are now more pronounced.

– The query took 0.36 seconds to complete and

performed 833 logical reads.

22

Semi-Join Example #2

“List the assignments for projects owned by a
specified person that involve up to five specified
people.”

SELECT DISTINCT A.name, A.code, A.description,
A.item_id, A.assignment_id, FI.string0, FI.string1

FROM relationships R, assignments A, format_items FI,
relationships R1, relationships R2, relationships R3,
relationships R4, relationships R5

WHERE R.user_id = 134546
AND R.account_id = 134545
AND R.type_code = 0
AND A.item_id = R.item_id
AND FI.item_id = A.item_id
AND R1.item_id = A.item_id AND R1.status = 5 AND R1.user_id = 137279
AND R2.item_id = A.item_id AND R2.status = 5 AND R2.user_id = 134555
AND R3.item_id = A.item_id AND R3.status = 5 AND R3.user_id = 134546
AND R4.item_id = A.item_id AND R4.status = 5 AND R4.user_id = 137355
AND R5.item_id = A.item_id AND R5.status = 5 AND R5.user_id = 134556
ORDER BY A.name ASC;

23

Semi-Join Example #2

Rows Row Source Operation
------- ---

642 SORT UNIQUE (cr=23520269 r=34 w=0 time=2759937104 us)
64339104 TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=23520269 r=34 w=0 time=
95184881 NESTED LOOPS (cr=7842642 r=23 w=0 time=907238095 us)
2710288 NESTED LOOPS (cr=2266544 r=23 w=0 time=103840003 us)
317688 NESTED LOOPS (cr=484734 r=11 w=0 time=23494451 us)
50952 NESTED LOOPS (cr=43280 r=10 w=0 time=2688237 us)
4146 NESTED LOOPS (cr=19016 r=3 w=0 time=988374 us)
1831 NESTED LOOPS (cr=13353 r=0 w=0 time=608296 us)
4121 HASH JOIN (cr=7395 r=0 w=0 time=399488 us)
2046 TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=7211 r=0 w=0 ti
17788 INDEX RANGE SCAN RELATIONSHIPS_N3 (cr=71 r=0 w=0 time=81158
3634 TABLE ACCESS FULL ASSIGNMENTS (cr=184 r=0 w=0 time=25536 us)
1831 TABLE ACCESS BY INDEX ROWID FORMAT_ITEMS (cr=5958 r=0 w=0 time
1831 INDEX RANGE SCAN FORMAT_ITEMS_N1 (cr=4127 r=0 w=0 time=115113
4146 TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=5663 r=3 w=0 time
4264 INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=3678 r=0 w=0 time=224390
50952 TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=24264 r=7 w=0 time
70976 INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=8428 r=0 w=0 time=630831

... ...

24

Semi-Join Example #2

What we see on the previous slides:

– The query was written with conventional joins

and DISTINCT instead of semi-joins.

– Oracle performed a conventional nested loops

joins to the relationships tables.

– A substantial Cartesian product situation

developed, yielding 64,339,104 rows before

duplicates were eliminated.

– The query took 2759.94 seconds to complete

and performed 23,520,269 logical reads.

25

Semi-Join Example #2

Rewritten with semi-joins:

SELECT /*+ NO_MERGE (M) */
DISTINCT M.name, M.code, M.description,

M.item_id, M.assignment_id, M.string0, M.string1
FROM (

SELECT A.name, A.code, A.description,
A.item_id, A.assignment_id, FI.string0, FI.string1

FROM relationships R, assignments A, format_items FI
WHERE R.user_id = 134546
AND R.account_id = 134545
AND R.type_code = 0
AND A.item_id = R.item_id
AND FI.item_id = A.item_id
AND EXISTS

(SELECT 1 FROM relationships R1
WHERE R1.item_id = A.item_id AND R1.status = 5
AND R1.user_id = 137279)

AND EXISTS
(SELECT 1 FROM relationships R2 ...

) M
ORDER BY M.name ASC;

26

Semi-Join Example #2
Rows Row Source Operation
------- ---

642 SORT UNIQUE (cr=36315 r=89 w=0 time=1107054 us)
1300 VIEW (cr=36315 r=89 w=0 time=1085116 us)
1300 NESTED LOOPS SEMI (cr=36315 r=89 w=0 time=1082232 us)
1314 NESTED LOOPS SEMI (cr=32385 r=89 w=0 time=1002330 us)
1314 NESTED LOOPS SEMI (cr=28261 r=89 w=0 time=904654 us)
1314 NESTED LOOPS SEMI (cr=22822 r=89 w=0 time=737705 us)
1322 NESTED LOOPS SEMI (cr=18730 r=89 w=0 time=651196 us)
1831 NESTED LOOPS (cr=13353 r=89 w=0 time=530670 us)
4121 HASH JOIN (cr=7395 r=89 w=0 time=347584 us)
2046 TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=7211 r=0 w=0 t
17788 INDEX RANGE SCAN RELATIONSHIPS_N3 (cr=71 r=0 w=0 time=43770
3634 TABLE ACCESS FULL ASSIGNMENTS (cr=184 r=89 w=0 time=91899 us
1831 TABLE ACCESS BY INDEX ROWID FORMAT_ITEMS (cr=5958 r=0 w=0 tim
1831 INDEX RANGE SCAN FORMAT_ITEMS_N1 (cr=4127 r=0 w=0 time=10020
1322 TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=5377 r=0 w=0 tim
2472 INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=3664 r=0 w=0 time=61077
1314 TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=4092 r=0 w=0 time
1582 INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=2647 r=0 w=0 time=40433
1314 TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=5439 r=0 w=0 time=
11011 INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=2639 r=0 w=0 time=65312 u
... ...

27

Semi-Join Example #2

What we see on the previous slides:

– Five joins to the relationships table were

replaced with EXISTS clauses.

– An in-line view and NO_MERGE hint were used

to isolate the DISTINCT keyword so the semi-

join access paths would not be defeated.

– Oracle chose nested loops semi-joins to access

the relationships tables.

– There were only 1300 candidate rows going into

the final sort instead of 64 million.

– The query took 1.11 seconds to complete and

performed 36,315 logical reads.

28

Anti-Joins in Greater Detail

� An important difference between NOT

EXISTS and NOT IN.

� How Oracle evaluates NOT EXISTS and NOT

IN clauses.

� Anti-join access path prerequisites.

� Hints that affect anti-joins.

� Examples.

29

How NOT EXISTS Treats Nulls

� Null values do not impact the output of a NOT

EXISTS clause:

– The contents of the select list in a NOT

EXISTS subquery do not impact the result.

– A row in the table referenced by the NOT

EXISTS subquery will never match a null

value because a null value is never equal to

another value in Oracle.

30

How NOT EXISTS Treats Nulls

� If we added a row to the emp table with a null

deptno, the output of the following query

would not change. This is because NOT

EXISTS effectively ignores null values.

SELECT D.deptno, D.dname
FROM dept D
WHERE NOT EXISTS

(SELECT 1
FROM emp E
WHERE E.deptno = D.deptno)

ORDER BY D.deptno

31

How NOT IN Treats Nulls
� If the subquery of a NOT IN clause returns at

least one row with a null value, the entire NOT

IN clause evaluates to false for all rows.
SELECT D.deptno, D.dname
FROM dept D
WHERE D.deptno NOT IN

(SELECT E.deptno
FROM emp E)

ORDER BY D.deptno;

� If we added a row to the emp table with a null

deptno, the above query would retrieve no rows.

This is not a bug. See Metalink document

28934.1.

32

Null Values and NOT EXISTS
and NOT IN

� Although you can write a query with NOT

EXISTS or NOT IN, the results may not be

the same.

� You can make NOT IN treat nulls like NOT

EXISTS by adding an extra predicate to the
subquery “AND column IS NOT NULL”.

33

Null Values and NOT EXISTS
and NOT IN

� If the subquery of a NOT IN clause is capable of

retrieving a null value, indexes may get defeated

by an implicit query rewrite:

SELECT D.deptno, D.dname
FROM dept D
WHERE NOT EXISTS

(
SELECT 1
FROM emp E
WHERE NVL (E.deptno, D.deptno) = D.deptno
)

ORDER BY D.deptno;

34

How Oracle Evaluates
NOT EXISTS and NOT IN

� If a NOT IN subquery is capable of retrieving a

null value, Oracle adds the implicit NVL().

� Qualifying NOT IN clauses will usually get an

anti-join access path.

� Qualifying NOT EXISTS clauses will

occasionally get an anti-join access path.

� In the absence of an anti-join access path

Oracle will usually scan the first table and

execute the subquery as a filter operation once

for each candidate row.

35

Anti-Join Access Path Prerequisites

� Oracle can use an anti-join access path in

NOT IN clauses that:

– select only columns with NOT NULL

constraints, or

– have predicates in the WHERE clause ensuring

each selected column is not null.

� Oracle can sometimes use an anti-join

access path in a NOT EXISTS clause, but

this behavior does not appear to be

documented.

36

Anti-Join Access Path Prerequisites

� Oracle 8i will only use an anti-join access

path if the always_anti_join instance

parameter is set to “hash” or “merge”, or if a

hint is used.

� Oracle 9i and later evaluate the cost of a

nested loops, merge, and hash anti-join and

choose the least expensive.

37

Hints that Affect Anti-Joins

� You can apply the HASH_AJ, MERGE_AJ,

and NL_AJ hints to the subquery of a NOT

EXISTS or NOT IN clause to tell Oracle which

anti-join access path to use. (NL_AJ is not

available in Oracle 8i.)

� As with other hints, Oracle will disregard anti-

join hints if you ask for the impossible.

38

Anti-Join Example #1

“List the customers who have not placed an order

within the last ten days.”
SELECT C.short_name, C.customer_id
FROM customers C
WHERE NOT EXISTS

(SELECT 1
FROM orders O
WHERE O.customer_id = C.customer_id
AND O.order_date > SYSDATE - 10)

ORDER BY C.short_name;

Rows Row Source Operation
------- ---

11 SORT ORDER BY (cr=18707 r=301 w=0 time=22491917 us)
11 FILTER (cr=18707 r=301 w=0 time=22491555 us)

1000 TABLE ACCESS FULL CUSTOMERS (cr=38 r=36 w=0 time=15277 us)
989 VIEW (cr=18669 r=265 w=0 time=22365647 us)
989 HASH JOIN (cr=18669 r=265 w=0 time=22347234 us)

100000 INDEX RANGE SCAN ORDERS_N1_CUST_ID (cr=2207 r=208 w=0 time=
5338680 INDEX RANGE SCAN ORDERS_N2_ORD_DATE (cr=16462 r=57 w=0 time

39

Anti-Join Example #1

What we see on the previous slide:

– Oracle chose a filter approach instead of an

anti-join access path. (Not surprising because

NOT EXISTS was used instead of NOT IN.)

– For each of the 1000 customers, Oracle

retrieved all of the customer’s orders placed in

the last 10 days. (Oracle cleverly hash joined

two indexes together to do this.)

– The query took 22.49 seconds to complete and

performed 18,707 logical reads.

40

Anti-Join Example #1

Rewritten with a NOT IN clause:

SELECT C.short_name, C.customer_id
FROM customers C
WHERE C.customer_id NOT IN

(SELECT O.customer_id
FROM orders O
WHERE O.order_date > SYSDATE - 10)

ORDER BY C.short_name;

Rows Row Source Operation
------- ---

11 SORT ORDER BY (cr=5360749 r=4870724 w=0 time=695232973 us)
11 FILTER (cr=5360749 r=4870724 w=0 time=695232475 us)

1000 TABLE ACCESS FULL CUSTOMERS (cr=38 r=129 w=0 time=61614 us)
989 TABLE ACCESS BY INDEX ROWID ORDERS (cr=5360711 r=4870595 w=0 tim

5359590 INDEX RANGE SCAN ORDERS_N2_ORD_DATE (cr=16520 r=0 w=0 time=2229

41

Anti-Join Example #1

What we see on the previous slide:

– Oracle still chose a filter approach instead of

an anti-join access path. (The customer_id

column in the orders table is nullable.)

– For each of the 1000 customers, Oracle

retrieved all orders placed in the last 10 days

and searched for a customer match.

– The query took 695.23 seconds to complete

and performed 5,360,749 logical reads.

42

Anti-Join Example #1

Added exclusion of null values:

SELECT C.short_name, C.customer_id
FROM customers C
WHERE C.customer_id NOT IN

(SELECT O.customer_id
FROM orders O
WHERE O.order_date > SYSDATE - 10
AND O.customer_id IS NOT NULL)

ORDER BY C.short_name;

Rows Row Source Operation
------- ---

11 SORT ORDER BY (cr=311 r=132 w=98 time=1464035 us)
11 HASH JOIN ANTI (cr=311 r=132 w=98 time=1463770 us)

1000 TABLE ACCESS FULL CUSTOMERS (cr=38 r=34 w=0 time=37976 us)
20910 VIEW (cr=273 r=98 w=98 time=1318222 us)
20910 HASH JOIN (cr=273 r=98 w=98 time=1172207 us)
20910 INDEX RANGE SCAN ORDERS_N2_ORD_DATE (cr=58 r=0 w=0
100000 INDEX FAST FULL SCAN ORDERS_N1_CUST_ID (cr=215 r=0 w=0

43

Anti-Join Example #1

What we see on the previous slide:

– The query contains a NOT IN clause with a

subquery that cannot return a null value.

– Oracle chose to perform a hash anti-join.

– Oracle builds a list just one time of customers

who placed orders within the last 10 days and

then anti-joins this against all customers.

– The query took 1.46 seconds to complete and

performed 311 logical reads.

44

Anti-Join Example #2

“How many calls to the customer service center

were placed by users who did not belong to

corporate customers?”

SELECT COUNT(*)
FROM calls C
WHERE C.requestor_user_id NOT IN

(
SELECT CM.member_user_id
FROM corp_members CM
);

Rows Row Source Operation
------- ---

1 SORT AGGREGATE (cr=12784272 r=1864678 w=0 time=1978321835 us)
0 FILTER (cr=12784272 r=1864678 w=0 time=1978321817 us)

184965 TABLE ACCESS FULL CALLS (cr=3588 r=1370 w=0 time=979769 us)
61032 TABLE ACCESS FULL CORP_MEMBERS (cr=12780684 r=1863308 w=0 time=

45

Anti-Join Example #2

What we see on the previous slide:

– Oracle chose a filter approach instead of an

anti-join access path. (The member_user_id

column in the corp_members table is nullable.)

– For each of the 184,965 calls, Oracle had to

scan the corp_members table to see if the

caller belonged to a corporate customer.

– The query took 1978.32 seconds to complete

and performed 12,784,272 logical reads.

46

Anti-Join Example #2

Added exclusion of null values:

SELECT COUNT(*)
FROM calls C
WHERE C.requestor_user_id NOT IN

(
SELECT CM.member_user_id
FROM corp_members CM
WHERE CM.member_user_id IS NOT NULL
);

Rows Row Source Operation
------- ---

1 SORT AGGREGATE (cr=3790 r=3906 w=420 time=5450615 us)
0 HASH JOIN ANTI (cr=3790 r=3906 w=420 time=5450591 us)

184965 TABLE ACCESS FULL CALLS (cr=3588 r=3480 w=0 time=646554 us)
81945 INDEX FAST FULL SCAN CORP_MEMBERS_USER_ID (cr=202 r=6 w=0 time=

47

Anti-Join Example #2

What we see on the previous slide:

– Oracle can now use an anti-join access path

because the NOT IN subquery can no longer

return a null value. Oracle chose a hash anti-

join.

– Oracle scans the calls table and an index on

the corp_members table once each, instead of

thousands of times.

– The query took 5.45 seconds to complete and

performed 3,790 logical reads.

48

Anti-Join Example #2

Let’s try a few other query changes for the sake

of learning:

– Add a MERGE_AJ hint. Results: Same number of

logical reads as a hash join, but a little more

CPU time used for sorting.

– Use NOT EXISTS instead of NOT IN. Results on

the next slide.

49

Anti-Join Example #2

Rewritten with a NOT EXISTS clause:

SELECT COUNT(*)
FROM calls C
WHERE NOT EXISTS

(
SELECT 1
FROM corp_members CM
WHERE CM.member_user_id = C.requestor_user_id
);

Rows Row Source Operation
------- ---

1 SORT AGGREGATE (cr=125652 r=3489 w=0 time=3895569 us)
0 FILTER (cr=125652 r=3489 w=0 time=3895547 us)

184965 TABLE ACCESS FULL CALLS (cr=3588 r=3489 w=0 time=906699 us)
61032 INDEX RANGE SCAN CORP_MEMBERS_USER_ID (cr=122064 r=0 w=0

50

Anti-Join Example #2

What we see on the previous slide:

– Oracle performs a filter operation instead of

using an anti-join access path.

– The possibility of null values in the

corp_members table does not defeat the index.

– Oracle scans an index on the corp_members

table once for each row in the calls table. This

makes for lots of logical reads, but in this case

was actually faster because the sort required

for a hash join has been eliminated.

– The query took 3.89 seconds to complete and

performed 125,652 logical reads.

51

Wrapping Up

� The semi-join and anti-join are two special ways

of joining data from multiple tables in a query.

� We use EXISTS, IN, NOT EXISTS, and NOT IN

clauses to denote these special types of joins.

� Oracle has special access paths that can make

semi-joins and anti-joins extremely efficient.

� Understanding how semi-joins and anti-joins

work—and how Oracle implements the relevant

data access paths—will enable you to write very

efficient SQL and dramatically speed up an entire

class of queries.

52

White Paper

� All of the code samples and TKPROF reports you

couldn’t read in these slides.

� More explanation that we didn’t have time to

discuss today.

� Additional examples and points of interest.

� Download: www.dbspecialists.com/presentations

53

Contact Information

Roger Schrag
Database Specialists, Inc.

388 Market Street, Suite 400

San Francisco, CA 94111

Tel: 415/344-0500

Email: rschrag@dbspecialists.com

Web: www.dbspecialists.com

