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Today’s Session

� “Semi-join” and “anti-join” defined

� EXISTS and IN clauses
– How Oracle evaluates them

– Prerequisites and hints

– Examples

� NOT EXISTS and NOT IN clauses
– How Oracle evaluates them

– Prerequisites and hints

– Examples
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White Paper

� Fourteen pages of details I can't possibly cover 

in a one hour presentation.

� Lots of sample code, execution plans, and 

TKPROF reports that you will see are probably 

not readable when I put them up on PowerPoint 

slides—but they are readable in the white paper. 

� Download: www.dbspecialists.com/presentations
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Semi-Joins and Anti-Joins 

� Two special types of joins with efficient access 

paths.

� Can dramatically speed up certain classes of 

queries.

� Can only be used by Oracle when certain 

prerequisites are met. 
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“Semi-Join” Defined 
A semi-join between two tables returns rows from 

the first table where one or more matches are 

found in the second table.

The difference between a semi-join and a 

conventional join is that rows in the first table will 

be returned at most once. Even if the second table 

contains two matches for a row in the first table, 

only one copy of the row will be returned. 

Semi-joins are written using EXISTS or IN.
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A Simple Semi-Join Example 
“Give me a list of departments with at least one 

employee.”

Query written with a conventional join:        
SELECT   D.deptno, D.dname
FROM     dept D, emp E
WHERE    E.deptno = D.deptno
ORDER BY D.deptno;

– A department with N employees will appear in the 

list N times.

– You could use a DISTINCT keyword to get each 

department to appear only once.

– Oracle will do more work than necessary. 
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A Simple Semi-Join Example 
“Give me a list of departments with at least one 

employee.”

Query written with a semi-join:
SELECT   D.deptno, D.dname
FROM     dept D
WHERE    EXISTS

(SELECT 1
FROM   emp E
WHERE  E.deptno = D.deptno)

ORDER BY D.deptno;

– No department appears more than once.

– Oracle stops processing each department as soon 
as the first employee in that department is found.
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“Anti-Join” Defined 

An anti-join between two tables returns rows 

from the first table where no matches are 

found in the second table. An anti-join is 

essentially the opposite of a semi-join. 

Anti-joins are written using the NOT EXISTS 

or NOT IN constructs. These two constructs 

differ in how they handle nulls—a subtle but 

very important distinction which we will 

discuss later. 
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A Simple Anti-Join Example 

“Give me a list of empty departments.”

Query written without an anti-join:

SELECT   D1.deptno, D1.dname
FROM     dept D1
MINUS
SELECT   D2.deptno, D2.dname
FROM     dept D2, emp E2
WHERE    D2.deptno = E2.deptno
ORDER BY 1; 
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A Simple Anti-Join Example 

“Give me a list of empty departments.”

Query written with an anti-join:

SELECT   D.deptno, D.dname
FROM     dept D
WHERE    NOT EXISTS

(
SELECT 1
FROM   emp E
WHERE  E.deptno = D.deptno
)

ORDER BY D.deptno;
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Semi-Joins in Greater Detail

� How Oracle evaluates EXISTS and IN clauses.

� Semi-join access path prerequisites.

� Hints that affect semi-joins.

� Examples. 
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How Oracle Evaluates EXISTS and IN

� Oracle transforms the subquery into a join if at all 

possible (according to Metalink document 

144967.1). Oracle does not consider cost when 

deciding whether or not to do this transformation.

� Oracle can perform a semi-join in a few different 

ways:

– Semi-join access path.

– Conventional join access path followed by a sort 

to remove duplicate rows.

– Scan of first table with a filter operation against 

the second table. 
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How Oracle Evaluates EXISTS and IN

� Rule of thumb from the Oracle 8i/9i/10g 

Performance Tuning Guide (highly simplified):

– Use EXISTS when outer query is selective.

– Use IN when subquery is selective and outer 

query is not.

� My personal experience:

– Rule of thumb is valid for Oracle 8i.

– Oracle 9i often does the right thing regardless of 

whether EXISTS or IN is used. 
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Semi-Join Access Path Prerequisites

� Oracle cannot use a semi-join access path in 

queries that:

– use the DISTINCT keyword.

– perform a UNION (involves an implicit DISTINCT).

– have the EXISTS or IN clause on an OR branch.

� Oracle 8i will only use a semi-join access path if 

the always_semi_join instance parameter is set to 

“hash” or “merge”, or if a hint is used.

� Oracle 9i and later evaluate the cost of a nested 

loops, merge, and hash semi-join and choose the 

least expensive. 
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Hints that Affect Semi-Joins

� Apply the HASH_SJ, MERGE_SJ, and NL_SJ 

hints to the subquery of an EXISTS or IN clause to 

tell Oracle which semi-join access path to use. 

� Oracle will disregard semi-join hints if you ask for 

the impossible. (eg: A HASH_SJ hint in a query 

with a DISTINCT keyword will be ignored.)

� In my experience Oracle is good about knowing 

when to use a semi-join access path. However, I 

have seen cases where Oracle chose a nested 

loops semi-join where a hash semi-join was much 

more efficient. 
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Semi-Join Example #1

“List the gold-status customers who have placed an 

order within the last three days.”

SELECT   DISTINCT C.short_name, C.customer_id
FROM     customers C, orders O
WHERE    C.customer_type = 'Gold'
AND      O.customer_id = C.customer_id
AND      O.order_date > SYSDATE - 3
ORDER BY C.short_name;

Rows     Row Source Operation
------- ---------------------------------------------------

2  SORT UNIQUE (cr=33608 r=30076 w=0 time=6704029 us)
20   HASH JOIN  (cr=33608 r=30076 w=0 time=6703101 us)
10    TABLE ACCESS FULL CUSTOMERS (cr=38 r=36 w=0 time=31718 us)

2990    TABLE ACCESS FULL ORDERS (cr=33570 r=30040 w=0 time=6646420 us) 
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Semi-Join Example #1

What we see on the previous slide:

– The query was written with a conventional join 

and DISTINCT instead of an EXISTS or IN 

clause.

– Oracle performed a conventional hash join 

followed by a sort for uniqueness in order to 

remove the duplicates. (18 of the 20 rows 

resulting from the hash join were apparently 

duplicates.)

– The query took 6.70 seconds to complete and 

performed 33,608 logical reads. 
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Semi-Join Example #1
Rewritten with a semi-join:

SELECT   C.short_name, C.customer_id
FROM     customers C
WHERE    C.customer_type = 'Gold'
AND      EXISTS

(
SELECT 1
FROM   orders O
WHERE  O.customer_id = C.customer_id
AND    O.order_date > SYSDATE - 3
)

ORDER BY C.short_name;

Rows     Row Source Operation
------- ---------------------------------------------------

2  SORT ORDER BY (cr=33608 r=29921 w=0 time=6422770 us)
2   HASH JOIN SEMI (cr=33608 r=29921 w=0 time=6422538 us)
10    TABLE ACCESS FULL CUSTOMERS (cr=38 r=0 w=0 time=61290 us)

2990    TABLE ACCESS FULL ORDERS (cr=33570 r=29921 w=0 time=6345754 us)
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Semi-Join Example #1
What we see on the previous slide:

– An EXISTS clause was used to specify a semi-

join.

– Oracle performed a hash semi-join instead of a 

conventional hash join. This offers two 

benefits:

• Oracle can move on to the next customer record 

as soon as the first matching order record is 

found.

• There is no need to sort out duplicate records.

– The query took 6.42 seconds to complete and 

performed 33,608 logical reads. 
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Semi-Join Example #1

Adding a hint to specify a nested loops semi-join:

SELECT   C.short_name, C.customer_id
FROM     customers C
WHERE    C.customer_type = 'Gold'
AND      EXISTS

(
SELECT /*+ NL_SJ */ 1
FROM   orders O
WHERE  O.customer_id = C.customer_id
AND    O.order_date > SYSDATE - 3
)

ORDER BY C.short_name;

Rows     Row Source Operation
------- ---------------------------------------------------

2  SORT ORDER BY (cr=833 r=725 w=0 time=358431 us)
2   NESTED LOOPS SEMI (cr=833 r=725 w=0 time=358232 us)
10    TABLE ACCESS FULL CUSTOMERS (cr=38 r=0 w=0 time=2210 us)
2    TABLE ACCESS BY INDEX ROWID ORDERS (cr=795 r=725

780     INDEX RANGE SCAN ORDERS_N1 (cr=15 r=13 w=0 time=5601 us)
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Semi-Join Example #1

What we see on the previous slide:

– The NL_SJ hint in the subquery suggests a 

nested loops semi-join.

– Oracle performed a nested loops semi-join as 

requested.

– The same benefits as with the hash semi-join 

apply here, but are now more pronounced.

– The query took 0.36 seconds to complete and 

performed 833 logical reads. 
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Semi-Join Example #2

“List the assignments for projects owned by a 
specified person that involve up to five specified 
people.”

SELECT   DISTINCT A.name, A.code, A.description,
A.item_id, A.assignment_id, FI.string0, FI.string1

FROM     relationships R, assignments A, format_items FI,
relationships R1, relationships R2, relationships R3,
relationships R4, relationships R5

WHERE    R.user_id = 134546
AND      R.account_id = 134545
AND      R.type_code = 0
AND      A.item_id = R.item_id
AND      FI.item_id = A.item_id
AND      R1.item_id = A.item_id AND R1.status = 5 AND R1.user_id = 137279
AND      R2.item_id = A.item_id AND R2.status = 5 AND R2.user_id = 134555
AND      R3.item_id = A.item_id AND R3.status = 5 AND R3.user_id = 134546
AND      R4.item_id = A.item_id AND R4.status = 5 AND R4.user_id = 137355
AND      R5.item_id = A.item_id AND R5.status = 5 AND R5.user_id = 134556
ORDER BY A.name ASC; 
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Semi-Join Example #2

Rows     Row Source Operation
------- ---------------------------------------------------

642  SORT UNIQUE (cr=23520269 r=34 w=0 time=2759937104 us)
64339104  TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=23520269 r=34 w=0 time=
95184881   NESTED LOOPS  (cr=7842642 r=23 w=0 time=907238095 us)
2710288     NESTED LOOPS  (cr=2266544 r=23 w=0 time=103840003 us)
317688      NESTED LOOPS  (cr=484734 r=11 w=0 time=23494451 us)
50952       NESTED LOOPS  (cr=43280 r=10 w=0 time=2688237 us)
4146        NESTED LOOPS  (cr=19016 r=3 w=0 time=988374 us)
1831         NESTED LOOPS  (cr=13353 r=0 w=0 time=608296 us)
4121          HASH JOIN  (cr=7395 r=0 w=0 time=399488 us)
2046           TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=7211 r=0 w=0 ti
17788            INDEX RANGE SCAN RELATIONSHIPS_N3 (cr=71 r=0 w=0 time=81158 
3634           TABLE ACCESS FULL ASSIGNMENTS (cr=184 r=0 w=0 time=25536 us)
1831          TABLE ACCESS BY INDEX ROWID FORMAT_ITEMS (cr=5958 r=0 w=0 time
1831           INDEX RANGE SCAN FORMAT_ITEMS_N1 (cr=4127 r=0 w=0 time=115113
4146         TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=5663 r=3 w=0 time
4264          INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=3678 r=0 w=0 time=224390 
50952        TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=24264 r=7 w=0 time
70976         INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=8428 r=0 w=0 time=630831 

...        ...
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Semi-Join Example #2

What we see on the previous slides:

– The query was written with conventional joins 

and DISTINCT instead of semi-joins.

– Oracle performed a conventional nested loops 

joins to the relationships tables.

– A substantial Cartesian product situation 

developed, yielding 64,339,104 rows before 

duplicates were eliminated.

– The query took 2759.94 seconds to complete 

and performed 23,520,269 logical reads.
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Semi-Join Example #2

Rewritten with semi-joins:

SELECT   /*+ NO_MERGE (M) */
DISTINCT M.name, M.code, M.description,

M.item_id, M.assignment_id, M.string0, M.string1
FROM     (

SELECT A.name, A.code, A.description,
A.item_id, A.assignment_id, FI.string0, FI.string1

FROM   relationships R, assignments A, format_items FI
WHERE  R.user_id = 134546
AND    R.account_id = 134545
AND    R.type_code = 0
AND    A.item_id = R.item_id
AND    FI.item_id = A.item_id
AND    EXISTS

(SELECT 1 FROM relationships R1
WHERE R1.item_id = A.item_id AND R1.status = 5
AND   R1.user_id = 137279)

AND    EXISTS
(SELECT 1 FROM relationships R2 ...

) M
ORDER BY M.name ASC;
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Semi-Join Example #2
Rows     Row Source Operation
------- ---------------------------------------------------

642  SORT UNIQUE (cr=36315 r=89 w=0 time=1107054 us)
1300   VIEW  (cr=36315 r=89 w=0 time=1085116 us)
1300    NESTED LOOPS SEMI (cr=36315 r=89 w=0 time=1082232 us)
1314     NESTED LOOPS SEMI (cr=32385 r=89 w=0 time=1002330 us)
1314      NESTED LOOPS SEMI (cr=28261 r=89 w=0 time=904654 us)
1314       NESTED LOOPS SEMI (cr=22822 r=89 w=0 time=737705 us)
1322        NESTED LOOPS SEMI (cr=18730 r=89 w=0 time=651196 us)
1831         NESTED LOOPS  (cr=13353 r=89 w=0 time=530670 us)
4121          HASH JOIN  (cr=7395 r=89 w=0 time=347584 us)
2046           TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=7211 r=0 w=0 t
17788            INDEX RANGE SCAN RELATIONSHIPS_N3 (cr=71 r=0 w=0 time=43770
3634           TABLE ACCESS FULL ASSIGNMENTS (cr=184 r=89 w=0 time=91899 us
1831          TABLE ACCESS BY INDEX ROWID FORMAT_ITEMS (cr=5958 r=0 w=0 tim
1831           INDEX RANGE SCAN FORMAT_ITEMS_N1 (cr=4127 r=0 w=0 time=10020
1322         TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=5377 r=0 w=0 tim
2472          INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=3664 r=0 w=0 time=61077
1314        TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=4092 r=0 w=0 time
1582         INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=2647 r=0 w=0 time=40433 
1314       TABLE ACCESS BY INDEX ROWID RELATIONSHIPS (cr=5439 r=0 w=0 time=
11011        INDEX RANGE SCAN RELATIONSHIPS_N2 (cr=2639 r=0 w=0 time=65312 u
...      ...
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Semi-Join Example #2

What we see on the previous slides:

– Five joins to the relationships table were 

replaced with EXISTS clauses.

– An in-line view and NO_MERGE hint were used 

to isolate the DISTINCT keyword so the semi-

join access paths would not be defeated.

– Oracle chose nested loops semi-joins to access 

the relationships tables.

– There were only 1300 candidate rows going into 

the final sort instead of 64 million.

– The query took 1.11 seconds to complete and 

performed 36,315 logical reads.
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Anti-Joins in Greater Detail

� An important difference between NOT 

EXISTS and NOT IN.

� How Oracle evaluates NOT EXISTS and NOT 

IN clauses.

� Anti-join access path prerequisites.

� Hints that affect anti-joins.

� Examples. 
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How NOT EXISTS Treats Nulls

� Null values do not impact the output of a NOT 

EXISTS clause:

– The contents of the select list in a NOT 

EXISTS subquery do not impact the result.

– A row in the table referenced by the NOT 

EXISTS subquery will never match a null 

value because a null value is never equal to 

another value in Oracle.
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How NOT EXISTS Treats Nulls

� If we added a row to the emp table with a null 

deptno, the output of the following query 

would not change. This is because NOT 

EXISTS effectively ignores null values.

SELECT   D.deptno, D.dname
FROM     dept D
WHERE    NOT EXISTS

(SELECT 1
FROM   emp E
WHERE  E.deptno = D.deptno)

ORDER BY D.deptno
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How NOT IN Treats Nulls
� If the subquery of a NOT IN clause returns at 

least one row with a null value, the entire NOT 

IN clause evaluates to false for all rows.
SELECT   D.deptno, D.dname
FROM     dept D
WHERE    D.deptno NOT IN

(SELECT E.deptno
FROM   emp E)

ORDER BY D.deptno;

� If we added a row to the emp table with a null 

deptno, the above query would retrieve no rows. 

This is not a bug. See Metalink document 

28934.1.
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Null Values and NOT EXISTS 
and NOT IN

� Although you can write a query with NOT 

EXISTS or NOT IN, the results may not be 

the same.

� You can make NOT IN treat nulls like NOT 

EXISTS by adding an extra predicate to the 
subquery “AND column IS NOT NULL”.
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Null Values and NOT EXISTS 
and NOT IN

� If the subquery of a NOT IN clause is capable of 

retrieving a null value, indexes may get defeated 

by an implicit query rewrite:

SELECT   D.deptno, D.dname
FROM     dept D
WHERE    NOT EXISTS

(
SELECT 1
FROM   emp E
WHERE  NVL (E.deptno, D.deptno) = D.deptno
)

ORDER BY D.deptno;
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How Oracle Evaluates 
NOT EXISTS and NOT IN

� If a NOT IN subquery is capable of retrieving a 

null value, Oracle adds the implicit NVL().

� Qualifying NOT IN clauses will usually get an 

anti-join access path.

� Qualifying NOT EXISTS clauses will 

occasionally get an anti-join access path.

� In the absence of an anti-join access path 

Oracle will usually scan the first table and 

execute the subquery as a filter operation once 

for each candidate row. 
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Anti-Join Access Path Prerequisites

� Oracle can use an anti-join access path in 

NOT IN clauses that:

– select only columns with NOT NULL 

constraints, or

– have predicates in the WHERE clause ensuring 

each selected column is not null.

� Oracle can sometimes use an anti-join 

access path in a NOT EXISTS clause, but 

this behavior does not appear to be 

documented.
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Anti-Join Access Path Prerequisites

� Oracle 8i will only use an anti-join access 

path if the always_anti_join instance 

parameter is set to “hash” or “merge”, or if a 

hint is used. 

� Oracle 9i and later evaluate the cost of a 

nested loops, merge, and hash anti-join and 

choose the least expensive. 
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Hints that Affect Anti-Joins

� You can apply the HASH_AJ, MERGE_AJ, 

and NL_AJ hints to the subquery of a NOT 

EXISTS or NOT IN clause to tell Oracle which 

anti-join access path to use. (NL_AJ is not 

available in Oracle 8i.)

� As with other hints, Oracle will disregard anti-

join hints if you ask for the impossible. 
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Anti-Join Example #1

“List the customers who have not placed an order 

within the last ten days.”
SELECT   C.short_name, C.customer_id
FROM     customers C
WHERE    NOT EXISTS

(SELECT 1
FROM   orders O
WHERE  O.customer_id = C.customer_id
AND    O.order_date > SYSDATE - 10)

ORDER BY C.short_name;

Rows     Row Source Operation
------- ---------------------------------------------------

11  SORT ORDER BY (cr=18707 r=301 w=0 time=22491917 us)
11   FILTER  (cr=18707 r=301 w=0 time=22491555 us)

1000    TABLE ACCESS FULL CUSTOMERS (cr=38 r=36 w=0 time=15277 us)
989    VIEW  (cr=18669 r=265 w=0 time=22365647 us)
989     HASH JOIN  (cr=18669 r=265 w=0 time=22347234 us)

100000      INDEX RANGE SCAN ORDERS_N1_CUST_ID (cr=2207 r=208 w=0 time=
5338680      INDEX RANGE SCAN ORDERS_N2_ORD_DATE (cr=16462 r=57 w=0 time
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Anti-Join Example #1

What we see on the previous slide:

– Oracle chose a filter approach instead of an 

anti-join access path. (Not surprising because 

NOT EXISTS was used instead of NOT IN.)

– For each of the 1000 customers, Oracle 

retrieved all of the customer’s orders placed in 

the last 10 days. (Oracle cleverly hash joined 

two indexes together to do this.)

– The query took 22.49 seconds to complete and 

performed 18,707 logical reads.
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Anti-Join Example #1

Rewritten with a NOT IN clause:

SELECT   C.short_name, C.customer_id
FROM     customers C
WHERE    C.customer_id NOT IN

(SELECT O.customer_id
FROM   orders O
WHERE  O.order_date > SYSDATE - 10)

ORDER BY C.short_name;

Rows     Row Source Operation
------- ---------------------------------------------------

11  SORT ORDER BY (cr=5360749 r=4870724 w=0 time=695232973 us)
11   FILTER  (cr=5360749 r=4870724 w=0 time=695232475 us)

1000    TABLE ACCESS FULL CUSTOMERS (cr=38 r=129 w=0 time=61614 us)
989    TABLE ACCESS BY INDEX ROWID ORDERS (cr=5360711 r=4870595 w=0 tim

5359590     INDEX RANGE SCAN ORDERS_N2_ORD_DATE (cr=16520 r=0 w=0 time=2229
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Anti-Join Example #1

What we see on the previous slide:

– Oracle still chose a filter approach instead of 

an anti-join access path. (The customer_id

column in the orders table is nullable.)

– For each of the 1000 customers, Oracle 

retrieved all orders placed in the last 10 days 

and searched for a customer match.

– The query took 695.23 seconds to complete 

and performed 5,360,749 logical reads.
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Anti-Join Example #1

Added exclusion of null values:

SELECT   C.short_name, C.customer_id
FROM     customers C
WHERE    C.customer_id NOT IN

(SELECT O.customer_id
FROM   orders O
WHERE  O.order_date > SYSDATE - 10
AND    O.customer_id IS NOT NULL)

ORDER BY C.short_name;

Rows     Row Source Operation
------- ---------------------------------------------------

11  SORT ORDER BY (cr=311 r=132 w=98 time=1464035 us)
11   HASH JOIN ANTI (cr=311 r=132 w=98 time=1463770 us)

1000    TABLE ACCESS FULL CUSTOMERS (cr=38 r=34 w=0 time=37976 us)
20910    VIEW  (cr=273 r=98 w=98 time=1318222 us)
20910     HASH JOIN  (cr=273 r=98 w=98 time=1172207 us)
20910      INDEX RANGE SCAN ORDERS_N2_ORD_DATE (cr=58 r=0 w=0
100000      INDEX FAST FULL SCAN ORDERS_N1_CUST_ID (cr=215 r=0 w=0
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Anti-Join Example #1

What we see on the previous slide:

– The query contains a NOT IN clause with a 

subquery that cannot return a null value.

– Oracle chose to perform a hash anti-join.

– Oracle builds a list just one time of customers 

who placed orders within the last 10 days and 

then anti-joins this against all customers. 

– The query took 1.46 seconds to complete and 

performed 311 logical reads.
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Anti-Join Example #2

“How many calls to the customer service center 

were placed by users who did not belong to 

corporate customers?”

SELECT COUNT(*)
FROM   calls C
WHERE  C.requestor_user_id NOT IN

(
SELECT CM.member_user_id
FROM   corp_members CM
);

Rows     Row Source Operation
------- ---------------------------------------------------

1  SORT AGGREGATE (cr=12784272 r=1864678 w=0 time=1978321835 us)
0   FILTER  (cr=12784272 r=1864678 w=0 time=1978321817 us)

184965    TABLE ACCESS FULL CALLS (cr=3588 r=1370 w=0 time=979769 us)
61032    TABLE ACCESS FULL CORP_MEMBERS (cr=12780684 r=1863308 w=0 time=
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Anti-Join Example #2

What we see on the previous slide:

– Oracle chose a filter approach instead of an 

anti-join access path. (The member_user_id

column in the corp_members table is nullable.)

– For each of the 184,965 calls, Oracle had to 

scan the corp_members table to see if the 

caller belonged to a corporate customer.

– The query took 1978.32 seconds to complete 

and performed 12,784,272 logical reads.
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Anti-Join Example #2

Added exclusion of null values:

SELECT COUNT(*)
FROM   calls C
WHERE  C.requestor_user_id NOT IN

(
SELECT CM.member_user_id
FROM   corp_members CM
WHERE  CM.member_user_id IS NOT NULL
);

Rows     Row Source Operation
------- ---------------------------------------------------

1  SORT AGGREGATE (cr=3790 r=3906 w=420 time=5450615 us)
0   HASH JOIN ANTI (cr=3790 r=3906 w=420 time=5450591 us)

184965    TABLE ACCESS FULL CALLS (cr=3588 r=3480 w=0 time=646554 us)
81945    INDEX FAST FULL SCAN CORP_MEMBERS_USER_ID (cr=202 r=6 w=0 time=
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Anti-Join Example #2

What we see on the previous slide:

– Oracle can now use an anti-join access path 

because the NOT IN subquery can no longer 

return a null value. Oracle chose a hash anti-

join.

– Oracle scans the calls table and an index on 

the corp_members table once each, instead of 

thousands of times.

– The query took 5.45 seconds to complete and 

performed 3,790 logical reads.
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Anti-Join Example #2

Let’s try a few other query changes for the sake 

of learning:

– Add a MERGE_AJ hint. Results: Same number of 

logical reads as a hash join, but a little more 

CPU time used for sorting.

– Use NOT EXISTS instead of NOT IN. Results on 

the next slide. 
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Anti-Join Example #2

Rewritten with a NOT EXISTS clause:

SELECT COUNT(*)
FROM   calls C
WHERE  NOT EXISTS

(
SELECT 1
FROM   corp_members CM
WHERE  CM.member_user_id = C.requestor_user_id
);

Rows     Row Source Operation
------- ---------------------------------------------------

1  SORT AGGREGATE (cr=125652 r=3489 w=0 time=3895569 us)
0   FILTER  (cr=125652 r=3489 w=0 time=3895547 us)

184965    TABLE ACCESS FULL CALLS (cr=3588 r=3489 w=0 time=906699 us)
61032    INDEX RANGE SCAN CORP_MEMBERS_USER_ID (cr=122064 r=0 w=0
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Anti-Join Example #2

What we see on the previous slide:

– Oracle performs a filter operation instead of 

using an anti-join access path.

– The possibility of null values in the 

corp_members table does not defeat the index.

– Oracle scans an index on the corp_members

table once for each row in the calls table. This 

makes for lots of logical reads, but in this case 

was actually faster because the sort required 

for a hash join has been eliminated.

– The query took 3.89 seconds to complete and 

performed 125,652 logical reads.
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Wrapping Up

� The semi-join and anti-join are two special ways 

of joining data from multiple tables in a query.

� We use EXISTS, IN, NOT EXISTS, and NOT IN 

clauses to denote these special types of joins.

� Oracle has special access paths that can make 

semi-joins and anti-joins extremely efficient.

� Understanding how semi-joins and anti-joins 

work—and how Oracle implements the relevant 

data access paths—will enable you to write very 

efficient SQL and dramatically speed up an entire 

class of queries. 
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White Paper

� All of the code samples and TKPROF reports you 

couldn’t read in these slides.

� More explanation that we didn’t have time to 

discuss today.

� Additional examples and points of interest.

� Download: www.dbspecialists.com/presentations
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