flozoe— &

PA199
Advanced Game Design

Dr. Fotis Liarokapis

30 March 2017

[r—— \~4

Rough Approximations Example

HEl o *4
Collision Detection .

* A better solution
—Projectile and target move over time
—See if collides with object during trajectory

3/29/2017

HOISSe— v
= . . A4
Motivation

* Techniques for collision detection depend on
the type of game

* For many games rough approximations are fine
—i.e. Arcade-style games

* For more complex games need to be familiar
with a variety of techniques ranging from
simple to complex

—i.e. 3D games

IS — \74
Collision Detection

* Do objects collide/intersect?
— Static
— Dynamic

* Picking is simple special case of general collision
detection problem

— Check if ray cast from cursor position collides with
any object in scene

— Simple shooting

* Projectile arrives instantly, zero travel time

e A/
Collision Detection Applications

* Determining if player hit
wall/floor/obstacle and stop them walking
through it

—Terrain following (floor)
—Maze games (walls)
* Determining if projectile has hit target
* Determining if player has hit target
—Punch/kick (desired)
—Car crash (not desired)

([HESa \74
Collision Detection Applications .

* Detecting points at which behavior should
change
—Car in the air returning to the ground

* Cleaning up animation

—Making sure a motion-captured character’s
feet do not pass through the floor

* Simulating motion
—Physics, or cloth, or something else

[e *4
Why it is Hard?
¢ Complicated for two reasons
— Geometry is typically very complex
« Potentially requiring expensive testing
— Naive solution is O(n2) time complexity
* Since every object can potentially collide with every
other object
HEl e \4

Basic Concepts

3/29/2017

s
Simulating Motion
s
Why it is Hard - Example
Moo */

From Simple to Complex

* Boundary check
— Perimeter of world vs. viewpoint or objects
* 2D/3D absolute coordinates for bounds
* Simple point in space for viewpoint/objects
* Set of fixed barriers
—Walls in maze game

* 2D/3D absolute coordinate system

CHRISe—
From Simple to Complex .

* Set of moveable objects
—One object against set of items
* Missile vs. several tanks
—Multiple objects against each other

* Punching game: arms and legs of players
* Room of bouncing balls

[Ee— *4

Fundamental Design Principles

* Fast simple tests first, eliminate many
potential collisions

—Test bounding volumes before testing
individual triangles
* Exploit locality, eliminate many potential
collisions

—Use cell structures to avoid considering
distant objects

bl — *4

Example: Player-Wall Collisions

* ‘First person’ games must prevent the player
from walking through walls and other obstacles
* Most general case
— Player and walls are polygonal meshes
* Each frame, player moves along path not known
in advance
— Assume piecewise linear
* Straight steps on each frame
— Assume player’s motion could be fast

Naive General Collision Detection

3/29/2017

\"J

* For each object i containing polygons p
— Test for intersection with object j containing
polygons g
* For polyhedral objects, test if object i penetrates
surface of j

— Test if vertices of i straddle polygon q of j

« If straddle, then test intersection of polygon q with
polygon p of object i

* Very expensive! O(n2)

\"J

Fundamental Design Principles .

¢ Use as much information as possible about
geometry

—Spheres have special properties that speed
collision testing

* Exploit coherence between successive

—Things don’t typically change much between
two frames

Simple Approach

* On each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

* If they do, refuse to allow the player to move
* Problems with this approach? how can we

—Inresponse?

Collision Response

* Frustrating to just stop

— For player motions, often best thing to do is move
player tangentially to obstacle

¢ Do recursively to ensure all collisions caught
— Find time and place of collision
— Adjust velocity of player

— Repeat with new velocity, start time, start position
(reduced time interval)

* Handling multiple contacts at same time
— Find a direction that is tangential to all contacts

fiossce— 4

Collision Detection Approaches

* Two basic techniques:
—Overlap testing
* Detects whether a collision has already occurred
—Intersection testing

* Predicts whether a collision will occur in the
future

L A

Overlap Testing: Useful Results

* Useful results of detected collision
—Time collision took place

— Collision normal vector

3/29/2017

“fﬁﬂlpo&{ . LVJ
Typical Approaches
“fﬁﬂlpo&{ LVJ
Overlap Testing
* Facts

—Most common technique used in games
—Exhibits more error than intersection testing
* Concept

—For every simulation step, test every pair of
objects to see if they overlap

—Easy for simple volumes like spheres, harder
for polygonal models

“ﬁiﬂlpo&d— \74

Overlap Testing: Collision Time

* Collision time calculated by moving object
back in time until right before collision
— Bisection is an effective technique

\
%
" “‘ | fum ’mu
rus

Oy larsin w3
i P

s eeagiz

3/29/2017

'f‘H‘ﬂIp-cCc* "4 ".I.liﬂlp-cca\:* \74
Overlap Testing: Limitations Intersection Testing
* Fails with objects that move too fast ¢ Predict future collisions
— Unlikely to catch time slice during overlap « When predicted'
* Possible solutions —Move simulation to time of collision
— Design constraint on speed of objects _Resolve collision
— Reduce simulation step size
—Simulate remaining time step
Heeem— . Y “¥fatersection Testing: Sphere-Sphere 4
Intersection Testing: Swept Geometry L
Collision
* Extrude geometry in direction of movement (A JaB-FE -G A-P-Q
) , , t= L - : . B=(-P)-(Q-Q)
* Swept sphere turns into a ‘capsule’ shape B
(o)
) ;]\13'7
t /_\ —a
N
I \ I \"4
Intersection Testing: Limitations

Complexity Issues
* Issue with networked games

—Future predictions rely on exact state of world
at present time

—Due to packet latency, current state not
always coherent

* Assumes constant velocity and zero
acceleration over simulation step

—Has implications for physics model and choice
of integrator

CHRISe— *4

Dealing with Complexity

* Two common issues when dealing with
complexity:
—Complex geometry must be simplified
* Not so easy!

—Reduce number of object pair tests
* Varies depending on the types of objects

CHRISe— *4

Minkowski Sum

¢ By taking the Minkowski Sum of two complex
volumes and creating a new volume then
overlap can be found

— By testing if a single point is within the new volume

X@®Y={4+B: AEX and BEY}

@ @ Y = Xey = XeyY

L r——— v

Bounding Volumes

* Bounding volume is a simple geometric
shape
—Completely encapsulates object
—If no collision with bounding volume, no more
testing is required
* Most common bounding volumes is box
—More later on...

3/29/2017

".I.Iiﬂlp-cca\:* \74

Simplified Geometry

* Approximate complex objects with simpler
geometry

—i.e. Ellipsoid shown below

".I.Iiﬂlp-cCa:* \~4
Minkowski Sum Example

fbissc— v

Box Bounding Volumes

Axis-Aligned Bounding Box Oriented Bounding Box

3/29/2017

[Ee— *4 HeISSo— \~4

T
Achieving O(n) Time Complexity Partition Space Solution

* Possible solutions for O(n) time complexity

— Partition space .“m /. .\‘

—Plane sweep algorithm 4 » ‘I

f./’\ '\..\t
d’o\

oy ¢

» S J
” -)
CHRISe— LVJ "m:lpoc._—— *4
Plane Sweep Algorithm Solution Terrain Collision Detection
.
B
A'.
Ry
By
Ay
C'_ Top-Down View Top-Down View (heights added)
Ry
c | =N %%
q Sucspecive iew

Perspect Pesspective View (beighis added)

oo *4

Locate Triangle on Height Field

oSS \4
Collision Resolution: Examples

* Two billiard balls strike
— Calculate ball positions at time of impact

) — Impart new velocities on balls
) +0 — Play “clinking” sound effect
* Rocket slams into wall
Re — Rocket disappears
Re qu >Q, [E R.>1-R, — Explosion spawned and explosion sound effect
— Wall charred and area damage inflicted on nearby
]Z[Q<=0Q E R,<=1-R,

characters
* Character walks through wall
— Magical sound effect triggered
— No trajectories or velocities affected

3/29/2017

':IH.[:Ichc* E/J .I.“Elpocac* \74
Collision Resolution Components Prologue Stage
* Resolution has three parts: ¢ Collision known to have occurred
—Prologue * Check if collision should be ignored
—Collision

* Other events might be triggered

—Epilogue —Sound effects
—Send collision notification messages
[Ee— LVJ ."Hm;.ccac— \~4
Collision Stage Epilogue Stage
* Place objects at point of impact * Propagate post-collision effects
* Assign new velocities using either * Possible effects
—Physics —Destroy one or both objects
—Some other decision logic —Play sound effect
—Inflict damage
¢ Many effects can be done either in the
prologue or epilogue
e W oSS A/
Resolving Overlap Testing Extract Collision Normal
* Four common stages: * Find position of objects before impact
—Extract collision normal * Use two closest points to construct the
—Extract penetration depth collision normal vector

—Move the two objects apart
—Compute new velocities

3/29/2017

GHRISSe— *4 ".'.Iiﬂlg.cc=cf LVJ
Extract Collision Normal . Resolving Intersection Testing
* Sphere collision normal vector * Simpler than resolving overlap testing
— Difference between centers at point of —No need to find penetration depth or move
collision objects apart
* Simply just
— Extract collision normal
—Compute new velocities
'f‘H‘ﬂIp-cCc* E/J "...Iiﬂlp-ccac* \74
Accelerating Collision Detection

Acceleration Techniques
* Two kinds of approaches (many others also)
— Collision proxies / bounding volumes hierarchies
— Spatial data structures to localize
* Used for both 2D and 3D
* Accelerates many things, not just collision
detection

— Raytracing
— Culling geometry before using standard

rendering pipeline

HE==<5llision Proxies vs Spatial data A4 J4==5llision Proxies vs Spatial data A4
Structures .

Structures

Spatial data Structures:
- Space centric
- Object redundancy

Spatial data Structures:
- Space centric
- Object redundancy

Collision Proxies:
- Object centric
- Spatial redundancy

Collision Proxies:
- Object centric
- Spatial redundancy

—~ ~®

NSy . . \7/
“=Collision Proxies vs Spatial data =4
Structures ..
Collision Proxies: Spatial data Structures:
- Object centric - Space centric
- Spatial redundancy - Object redundancy
—® za)
o ‘e T
Mo — \7

Collision Proxies

* Proxy

— Something that takes place of real object

— Cheaper than general mesh-mesh intersections
* Collision proxy (bounding volume) is piece of

geometry used to represent complex object

for purposes of finding collision

— If proxy collides, object is said to collide

— Collision points mapped back onto original

object

e

Collision Proxies Example 1

3/29/2017

P U . . 7
*==<Tollision Proxies vs Spatial data w4
Structures ...

Spatial data Structures:

- Space centric
- Object redundancy

Collision Proxies:
- Object centric
- Spatial redundancy

@
F 7 # \.—F

AVAY

[«

[Ee—

Collision Proxies .

* Good proxy
—Cheap to compute collisions for, tight fit to
the real geometry
* Common proxies
—Sphere, cylinder, box, ellipsoid
* Consider
— Fat player, thin player, rocket, car ...

[[HPS= e

Collision Proxies Example 2

10

[r—— *4
Collision Proxies Example 3

HElSSe— *4
Trade-off in Choosing Proxies .

* AABB
—Axis aligned bounding box
* OBB
—Oriented bounding box, arbitrary alignment
* k-dops
—Shapes bounded by planes at fixed
orientations

* Discrete orientation

Holooe— \7/
Spatial Data Structures

* Can only hit something that is close
* Spatial data structures tell you what is
close to object
—Uniform grid, octrees, kd-trees, BSP trees
—Bounding volume hierarchies
* OBB trees
—For player-wall problem, typically use same
spatial data structure as for rendering
* BSP trees most common

3/29/2017

iooe— \~4
Trade-off in Choosing Proxies

7
Sphere AABB OBB 6-dop Convex Hull

increasing complexity & tightness of fit

decreasing cost of (overlap tests + proxy update)

IS — \74
Pair Reduction

* Want proxy for any moving object requiring
collision detection

» Before pair of objects tested in any detail,
quickly test if proxies intersect

* When lots of moving objects, even this quick
bounding sphere test can take too long:
— N2 times if there are N objects

* Reducing this N2 problem is called pair
reduction
— Pair testing isn’t a big issue until N>50 or so...

e v
- . . T
Uniform Grids

* Axis-aligned

* Divide space uniformly

3/29/2017

RIS *4 ."Hmpcc(\~4
hd A d
Quadtrees/Octrees KD Trees

* Axis-aligned * Axis-aligned

* Subdivide until no * Sub-divide in
points in cell alternating
dimensions

AN

1
y
it PN

CHRISe— LVJ itisse— *4
BSP Trees Bounding Volume Hierarchies
* Binary Space
Partitioning (BSP)
* Planes at arbitrary
orientation
s — W oSS A/
OBB Trees BSP Trees Main Idea
* Oriented bounding box (OBB) * Binary Space Partition (BSP) Tree:
* Applicable to a wide range of problems —Partition space with binary tree of
planes

—Fuchs, Kedem and Naylor "80
* Main idea:

—Divide space recursively into half-spaces
by choosing splitting planes that
separate objects in scene

12

3/29/2017

Boisoe— Y Siesse— ¥
BSP Trees Methods BSP Trees Methods .

* More general, can deal with inseparable * First step
objects —Preprocessing

* Automatic, uses as partitions planes * Create binary tree of planes
defined by the scene polygons * Second step

* Method has two steps: —Runtime
—Building of the tree independently of * Correctly traversing this tree enumerates

viewpoint objects from back to front

—Traversing the tree from a given viewpoint to
get visibility ordering

Boisoe— v Siesse— \74

A
Creating BSP Trees: Objects Creating BSP Trees: Objects .

T v S v

A
Creating BSP Trees: Objects .. Creating BSP Trees: Objects ...

13

3/29/2017

- \74 Sitsse— \=4

T
Creating BSP Trees: Objects Splitting Objects

* No bunnies were harmed in previous
example

* But what if a splitting plane passes
through an object?

—Split the object; give half to each node

’ Ouch./,\.
Bt a

flesse— =/ fisoe— v
Traversing BSP Trees Traversing BSP Trees Pseudo Code
* Tree creation independent of viewpoint * Query: given a viewpoint, produce an ordered
— Preprocessing step list of (possibly split) objects from back to
* Tree traversal uses viewpoint front
— Runtime, happens for many different viewpoints
* Each plane divides world into near and far renderBSP (BSPtree *T)
— For given viewpoint, decide which side is near and which BSPtree *near, *far;
is far if (eye on left side of T->plane)
« Check which side of plane viewpoint is on independently for near = T->left; far = T->right;
each tree vertex else
« Tree traversal differs depending on viewpoint! . "::;(: T)'>‘i‘3h‘=" far = T->left;
. . render] ar) ;
— Recursive algontlhm if (T is 2 leaf node)
* Recurse on far side renderobject (T)

* Draw object

renderBSP (near) ;
* Recurse on near side

T
BSP Trees: Viewpoint A BSP Trees: Viewpoint A .

14

3/29/2017

[«

;ﬁl:lpoc._r sillllpoc(\74

BSP Trees: Viewpoint A .. BSP Trees: Viewpoint A ...

each tree vertex
= Not just left or right child!

I | !

1 ! 1 ! |

AT AY

= Decide independently at n H i m
1 1

Yooy ! I

;ﬁl:lpoc._r ji““poC(\74

BSP Trees: Viewpoint A ... BSP Trees: Viewpoint A

[«

;ﬁclgoac— V] jill}lpgcsﬁ— \74

BSP Trees: Viewpoint A BSP Trees: Viewpoint A

15

3/29/2017

Glosse—

)

BSP Trees: Viewpoint A

BSP Trees: Viewpoint A

Glosse—

)

BSP Trees: Viewpoint A

Y

BSP Trees: Viewpoint A

L

w4

BSP Trees: Viewpoint B

flssc—

BSP Trees: Viewpoint A

16

ipisoc—

BSP Trees: Viewpoint B .

Gloisse—
BSP Tree Traversal: Polygons

Split along the plane defined by any

polygon from scene

Classify all polygons into positive or
negative half-space of the plane

—If a polygon intersects plane, split polygon

into two and classify them both

Recurse down the negative half-space

Recurse down the positive half-space

fltsse—
Representation of Polyhedra

R
out in {occluded)

ey =

3/29/2017

-"."linlpoc(\~4

BSP as a Hierarchy of Spaces

* Each node corresponds to N
a region of space /f-’ N\

k- \I

—The root is the whole of R"

—The leaves are
homogeneous regions

-"."linlpoc(\~4

Representation of Polygons

bisse— v

BSP Trees for Dynamic Scenes

* When an object moves the planes that
represent it must be removed and re-
inserted

* Some systems only insert static geometry
into the BSP tree

* Otherwise must deal with merging and
fixing the BSP cells

17

GHRISSe— *4

A
BSP Trees Pos
* Simple, elegant scheme
* Correct version of painter’s algorithm
back-to-front rendering approach
* Popular for video games
GHRISSe— LVJ

BSP Demo

* http://www.symbolcraft.com/graphics/bsp/

fltsse— "4
Collision Detection Approach

3/29/2017

HE I \74

BSP Trees Cons

* Slow to construct tree
—0(n log n) to split, sort

* Splitting increases polygon count
—0(n2) worst-case

* Computationally intense preprocessing
stage restricts algorithm to static scenes

HE I \74

BSP Videos

* https://www.youtube.com/watch?v=WAd7vzw
knFO

* https://www.youtube.com/watch?v=jF2a4imSu
vl

* http://www.youtube.com/watch?v=JJjyXRvokE4

bisse— v

Introduction to 3D Breakout

* Most important thing is ball-wall collision
detection
* Can be used in:
—Ball-wall collisions
—Ball-bat collisions
* Apart from some cases
—Ball-Well collisions

* Apart from some cases (similarly to ball-bat)

18

http://www.symbolcraft.com/graphics/bsp/
https://www.youtube.com/watch?v=WAd7vzwknF0
https://www.youtube.com/watch?v=WAd7vzwknF0
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4

3/29/2017

'f‘H‘ﬂIp-cCc* E/J "...Iiﬂlp-ccac* \74
Calculate Collision With Wall
A * We are interested in finding the
& : — Distance travelled (PZ)
— Collision time (t.oyision)
— Final velocity (Ugp,)
o
From the previous diagram:
PI=AZ-AP eq. 1
'f‘H‘ﬂIp-cCc* E/J "...Iiﬂlp-ccac* \74
Pythagoras Theorem Calculate Distance Travelled
* From Pythagoras: * Also:
032=0A2+A32> AP = OPcos¢ eq.3
AS2= 032 - ON2 >
AZ =sqrt(022 - ON?) eq. 2 * Sofromeq. 1, eq.2and eq. 3:
P2 = sqrt(032 - OA2?) - OPcosd eq. 4
';-H‘lﬂlpc:-c-c— & 3 iiﬂlp-oc{— \~J
Calculate Distance Travelled . Calculate Distance Travelled ..
* But: * Fromeg.4andeq. 5
sing = OA/OP > P3 = sqrt(022 - OP2sing?) - OPcosd eq. 6
OA = OPsind
* Also from:
* And:
Fah2 2 = P21 L 2
OA? = OPZsindy? €q.5 sing?+ cosdp? =1 - sindp?=1-cosdp? eq.7

19

GHRISSe— *4

Calculate Distance Travelled ...
* Fromeq. 6 and eq. 7
PZ = sqrt(032 - OP2 + OP2cos@?) - OPcos¢

* Since OPeu = (OP)u/|u|cosd, so the above
equation will become:

PZ = sqrt(032 - OP2 + (OPu/|u|cosd)?) -
(OP)u/|u|cosd

GHRISSe— *4
Calculate Collision Time

* From motion equation:

S= Uollision t(:ollisicm

* ButS =Pz, so:

PX=vu t ->

collision “collision

collision = I:)z/ucollisicm €q. 10

fltsse— "4
Calculate Final Velocity

Viniiat ViniiaisinG |

6

/

/

V

0 [UpmacOsB] 8 /
/

/

/

/

Uinal u,m,sin9||,

3/29/2017

"...Iiﬂlp-cchc* LVJ
Calculate Distance Travelled

* From the dot product the previous equation will
become

P2 = sqrt(O32 - OP2 + (OPeu/|u|)3) - OPeu/|u|
eq. 8

* Must take absolute value in case ¢ > 90

P3 = |(sqrt(O22 - OP% + (OPeu/|u|)?) - OPeu /|u] |
eq.9

"...Iiﬂlp-ccac* \74

T \4
Calculate Final Velocity .

* The change in ball velocity from the collision:

|AUcoIIision| = |Ufina| - Uinitiall €q. 11
* From the above figure:
[DU tision| = 2| VinitiaiCOSB | oF eq. 12

|AUcoIIision| = 2Uinitial.(oz/| Ozl) €q. 13

3/29/2017

GHRISSe— *4 ".'.Iiﬂlg.cc=cf \=4
Calculate Final Velocity .. Assignment Tips
e But Au is anti-parallel to OZ and we want to
make AU gision @ VECtor

* From eq. 12 we do:

Au -2 | U;iiaiCOSO | (02)/| OZ | =

collision ~

* From eq. 13 we do:

- 2
AUcollision - -Z(OZ) (Uinitial.oz)/l 0z I
'f‘H‘l’:Ip-cC-c* "4 ".‘“‘ﬂlp-ccac* \74
Some Tips Class TBall.h
f class TBall
* Important 3D objects for collision detection in
. public:
3D Breakout ASSlgnment double _radius; % defines the radius of the ball
. . TVector _position; defines the position of the ball
— Invisible ground (optional) TVector _velocity; // defines the velocity vO of the ball
— Ball // Constructors
— Bat TBall();
TBall(const double& Radjus, fonst TVector& Position, const
— Well) ~ TVector& Ve ocity)) '
{_radius=Radius; _position=Position; _velocity=Velocity;};
';-H.'Glpc:-c-c— \"J E iﬂlp-oc{— \~J
Class TBall.h . Default Constructor for the Ball
// Selectors ..
double GetBallRadius() const {return _radius;}; TBall::TBall ()
TVector GetBallPosition() const {return _position;};
TVector GetBallVelocity() const {return _velocity;}; {
void DrawBall(); // Draws the ball // Assign default values for the attributes
void CalculateVe|ocity(const TVector& velocity, const double& // of the ball
seconds); Assigns the ball'a velocity radius = 4.0:
- -~
TVector CalcDistanceTravelled(const double& seconds) const; i — .
// Calculates the distance traveled _position = TVector(0.0, 0.0, O'O)'
void MoveBall(const double& seconds); // Moves the ball —VelOCIty = TVector(l.O, 0.0, 0'0);
k }

21

3/29/2017

CHRISe— *4 -‘."lim,.cc{ LVJ
Function to Draw the Ball More Functions
void TBall::DrawBall() * Functions for the TBall Class:
{) —CalculateVelocity
gIPUthamT(); f ition.X() —CalcDistanceTravelled
gllirans ate _pOSItIOI’]. ,
_position.Y(), _position.Z()); —MoveBall
glutSolidSphere(_radius, 20, 20); * Function for TDisplaylmp
glPopMatrix(); —Idle
} » TBat Class
'f‘H‘ﬂIp-cCc* E/J ".I.Iiﬂlp-cca\:* \74

CalculateVelocity Function CalcDistanceTravelled Function

; . ; TVector TBall::CalcDistanceTravelled(const double&
void TB'aII..CalculateVeIouty(const TVector& seconds) const
velocity, const double& seconds) {
{ TVector new_velocity, new_position;
_velocity = velocity; new_velocity = _velocity;
} new_position = _position +
new_velocity*seconds;

return new_position;

L r——— \74

W e \74
MoveBall Function Idle Function

void TBall::MoveBall(const double& seconds)

{

_position = CalcDistanceTravelled(seconds);

}

void TDisplaylmp::idle(void)
{
// Set the time for the simulation

_scene->CalculateSimulations();

glutPostRedisplay();

22

3/29/2017

b= \7/ [——— \~4
hd hd
Class TBat Class TBat .
class TBat void DrawBat(); // Draws the bats
{ X void MoveBatRight(); // Moves bat on the right
public:
TVector _points[16]; // points for the void MoveBatLeft(); // Moves the bat on the right
first bat int BatCollisions(const TBall &ball, const double&
TVector _normal[15]; // normal of the ground seconds);
. int BatCollisionsSides(const TBall &ball, const double&
public: secondsc);
// Default constructor int BatCollisionsEdges(const TBall &ball, const double&
TBat(){}; secondsg;

TBat(double rotation_angle);

'f‘H‘l’:Ip-cC-c* "4 ".:Iiﬂlp-ccac* \74
hd hd
Class TBat .. Class TBat ...
TVector Bat_Faces_Reflection(TBall TVector Bat_Edge12_Reflections(TBall &ball,
&ball, const - double& sec(qnds, ector bat_tdge c‘orfst%co{?bnlse(& sgcondas);
const double& distance);
TVector Bat_Edgel5_Reflecti TBall &ball,
TVector Bat_Left_Side_Reflections(TBall ector bat_tdge Eorfst%co{?br}se(& s‘écondi);
&ball, constdouble& seconds,
const double& parameter);

TVector Bat_Edge13_Reflections(TBall &ball,
const double& seconds);

. TVector .
Bat_Right_Side_Reflections(TBall &bal

|
constdouble& seconds, const double& TVector Bat_Edgel1_Reflections(TBall &ball,
parameter); const double& seconds);
k
';-H‘lﬂlpc:-c-c— \"J E iiﬂlp-oc{— \~J
hd hd
TBat Constructor TBat Constructor.
TBat::TBat(double rotation_angle) // Define the rotation axis

TVector rotation_axis(0.0,1.0,0.0);

TVector initial_vector, upper_vector,

construction_vector; // Define the three rotation matrices for the bats

TMatrix33 bat_construction = TMatrix33(rotation_axis,
rotation_anglej;

// Define a vector for the construction of the
ground points of the bats // Define the vector used for the construction of the bats
initial_vector = TVector(1.0, 0.0, 0.0); construction_vector = bat_construction*initial_vector;

X . // Define the rotation matrix for the constuction of the bats
{j/plggpggﬁéegﬁ%goéatge construction of the TMatrix33 bat_rotation = TMatrix33(rotation_axis, angle);
upper_vector = TVector(0.0, 10.0, 0.0);

23

GHRISSe— Wy

TBat Constructor ..

// Construct the 16 points of the bats
_points[0] = construction_vector*bat_radius1;
_points[1] = bat_rotation*_points[0];
_points[2] = bat_rotation*_points[1];
_points[3] = bat_rotation*_points[2];
_points[7] = construction_vector*bat_radius2;
_points[6] = bat_rotation*_points[7];
_points[5] = bat_rotation*_points[6];
_points[4] = bat_rotation*_points[5];
_points[8] =_points[0] + upper_vector;
_points[9] = _points[1] + upper_vector;
_points[10] = _points[2] + upper_vector;
_points[11] = _points[3] + upper_vector;
_points[15] = _points[7] + upper_vector;
_points[14] = _points[6] + upper_vector;
_points[13] = _points[5] + upper_vector;
_points[12] = _points[4] + upper_vector;

GHRISSe— *4

Drawing Front Side of Bats .

// Construct second quad
glVertex3f(_points[1].X(), _points[1].Y(), _points[1].Z());
glVertex3f(_points[9].X(), _points[9].Y(), _points[9].Z());

// Front face, third surface
_normal[2] = ((_points[10] - _points[2])*(_points[3] - _points[2])).unit();

gINormal3f(_normal[2].X(), _normal[2].Y(), _normal[2].Z());

// Construct third quad

glVertex3f(_points[2].X(), _points[2].Y(), _points[2].Z());
glVertex3f(_points[10].X(), _points[10].Y(), _points[10].Z());
gINormal3f(_normal[2].X(), _normal[2].Y(), _normal[2].Z());

// Construct fourth quad
glVertex3f(_points[3].X(), _points[3].Y(), _points[3].Z());
glVertex3f(_points[11].X(), _points[11].Y(), _points[11].Z());

glEnd();

:;-H.'ﬂlp-oc-c— \"J

Bat Collisions

* At least three checks:

—Check for collisions between the ball and the
three bats like ball-wall

—Check for collisions between the ball and the
side of the bats

—Check for collisions between the ball and the
edges of the bats
* Repeat the same procedure for reflections
of the ball after collisions

3/29/2017

HE I \74

Drawing Front Side of Bats

glBegin(GL_QUAD_STRIP);

// Front face, normal of first surface
_normal[0] = ((_points[8] - _points[0])*(_points[1] - _points[0])).unit();
gINormal3f(_normal[0].X(), _normal[0].Y(), _normal[0].Z());

// Construct first quad
glVertex3f(_points[0].X(), _points[0].Y(), _points[0].Z());
glVertex3f(_points[8].X(), _points[8].Y(), _points[8].Z());

// Front face, second surface
_normal[1] = ((_points[9] - _points[1])*(_points[2] - _points[1])).unit();
gINormal3f(_normal[1].X(), _normal[1].Y(), _normal[1].Z());

HE I \74

Drawing the Rest of the Bats

* In the same way you will have to draw the:
—Left side of the bat
—Back side of the bat
—Right side of the bat
—Up side of the bat

“¥=<3lculate the reflection of the ball v\Zd

after collision
double TBounds::Ball_Reflection(TBall &ball, const
double& seconds)
{

TVector ball_velocity_after_collision,
previous_ball_position, collision_vector, final_velocity;

// Perform calculations for the previous time step

previous_ball_position = ball.GetBallPosition() -
ball.GetBallVelocity()*seconds;

double absBallVelocity =
sqrt(ball.GetBallVelocity().dot(ball.GetBallVelocity()));

24

3/29/2017

HE! - . \7 it — . \"/
““Calculate the reflection of the ball 24 ““Calculate the reflection of the ball »24
after collision . after collision ..
// Calculate the Ri*V to calculate the collision /{ Caleulate the determinant
time double Determinant = ((RV*RV) -
previous_ball position. dot(prewous ball_position) +
double RV = initial_distance*initial_distance);
revious_ball_position.dot(ball.GetBallVelocity()
// Calculate the collision time
? absBaIIT/eIouty, double collision

s,
sqrt(D eterm|nathS§nabsBaIIVeIocﬁy,

// Absolute RV
double abs_RV = abs(RV);

/4§Zalculate the collision vector (normal vector) from: R=r +
v

collision vector = preyio s_ball_position +
ball. GetB‘aIIVeIouty() co | sion_time;
// Define the initial distance = 100 - 4 = 96 // Make the collision vector (normal vector) unit vector

double initial_distance = 100.0 - TVector unit_collision_vector = TVector::unit(collision_vector);
ball.GetBallRadius();

"“><3lculate the reflection of the ball L4 WS- References w4
after collision ...

Define velocity by: Vreflected = . 5
/(/.nﬁ.'“%‘l’gr‘ﬁ%ﬁ’un".t)*ﬁofﬁqﬁ unit * http://www.cs.wisc.edu/~schenney/courses/c

ball_velocity_aft i - -
ug|t_\::%Icl)lglloerave%Ecow(kI)%ﬁnGetBa|IVeIOC|ty() dot(unit_col $679-f2003/lectures/cs679-22.ppt

lision_vector)J;

* http://graphics.ucsd.edu/courses/cse169 w05
/ﬁ CaIcuIate the veIOC|ty of the ball after collision with /CSE169 17.ppt
e invisible wall

final_velocity = ball.GetBallVelocity() -
ball_velocity_after_collision*2.0;

ball.CalculateVelocity(final_velocity, collision_time);

return collision_time;

Links Questions

¢ http://en.wikipedia.org/wiki/Bounding_volume

* http://nehe.gamedev.net/data/lessons/lesson.asp?
lesson=30

* http://web.cs.wpi.edu/~matt/courses/cs563/talks/
bsp/bsp.html

* http://www.devmaster.net/articles/bsp-trees/

* http://maven.smith.edu/~mcharley/bsp/createbspt
ree.html

* http://www.cs.unc.edu/~geom/

* http://www.cs.ox.ac.uk/stephen.cameron/distances/

25

http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt
http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt
http://en.wikipedia.org/wiki/Bounding_volume
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=30
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=30
http://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/bsp.html
http://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/bsp.html
http://www.devmaster.net/articles/bsp-trees/
http://www.devmaster.net/articles/bsp-trees/
http://www.devmaster.net/articles/bsp-trees/
http://maven.smith.edu/~mcharley/bsp/createbsptree.html
http://maven.smith.edu/~mcharley/bsp/createbsptree.html
http://www.cs.unc.edu/~geom/
http://web.comlab.ox.ac.uk/oucl/work/stephen.cameron/
http://web.comlab.ox.ac.uk/oucl/work/stephen.cameron/

