(\forall)

PA199 Advanced Game Design

Lecture 8 Brain Computer Interfaces and Games

> Bojan Kerous Fotis Liarokapis 13th April 2017

Introduction

Brain–Computer Interface (BCI) or Brain– Machine Interface (BMI), is a direct way of communication between the brain and a computer system.

cipital lobe

Temporal lobe Memory, understanding

languag

 $\overline{\mathbf{A}}$

 \overline{a}

Туре	Frequency	Location	Use
Delta (δ)	<4 Hz	Everywhere	Occur during sleep, coma
Theta (θ)	4-7 Hz	Temporal and parietal	Emotional stress (frustration & disappointment)
Alpha (α)	8-12 Hz	Occipital and parietal	Sensory stimulation or mental imagery
Beta (β)	12-36 Hz	Parietal and frontal	Intense mental activity
Mu (µ)	9-11 Hz	Frontal (motor cortex)	Intention of movement

Event-related (P300)

Sensorimotor rhythms

Steady State Visually Evoked Potentials (SSVEP)

 (\mathbf{A})

 (\mathbf{A})

First prototype - Neurosky

• Attention and Meditation levels are used

 (\mathbf{A})

 (\mathbf{A})

- Values from the headset are passed to the robot
 - Through the dedicated computer
- The robot is instructed to accelerate based on the attention levels of the user

Neurosky Drawbacks

- Since there is only one sensor in place, separating brainwaves becomes a challenge
- Because the headset is not fastened to the head, pronounced muscle movements, such as yawning, facial expressions may result in a momentary decrease in signal quality

Initial User Evaluation .

Recorded Feedback

Positive	Negative			
 Interesting concept Could be very useful Lots of potential Can help increase peoples concentration level Can help improve disabled peoples lives Can help for brain rehabilitation by triggering the motor cortex of the brain The feel of controlling it with my mind was awesome. 	 Not being able to move left/right Need some indication on the PC as to the level of thought Needed less distractions Difficult to keep the robot stationary Too many outside stimuli Hard to remain calm 			

- The system relies on a combination of Cognitive and Facial/Muscular functions
- The Emotiv Development Kit was used to create and train a new user profile

• The Emotiv EmoEngine refers to the logical abstraction of the functionality that Emotiv provides in edk.dll

 (\mathbf{A})

 (\mathbf{A})

 (\mathbf{A})

Methodology

- Profile training using Control Panel for 60s (push/pull actions plus blink calibration)
 - Navigating the 3D robot inside the maze to a predefined waypoint (increasing users cognitive workload)
- A second training session of 60s

 Interacting with RomaNova
- Evaluation form completion and feedback interview

(a)

 (\mathbf{A})

3D Maze Game

 The 3D environment has been designed using the 'Unity 3D' game engine with a 3D reconstruction of the robot and a simple 3D maze

Game Elements

- 3D Robot
 - The LEGO NXT Mindstorms Robot 3D model has been used with a simple wheel animation, interacting with basic physics

- Maze walls
 - The maze is made by a set of heterosized blocks

 (\mathbf{A})

Roma Nova Project

- Seeking to advance information transfer through immersive 'living background'
- Partners:
 - Serious Games Institute
 - University of Toulouse

Brain Computer Interactions

- The Cognitive functions (brainwaves) are used to move the robot forwards/backwards
- The Expressive functions are used to steer the robot left/right when the user blinks accordingly

Initial Evaluation

- An evaluation session has been conducted with five participants in a laboratory environment
- Feedback was received in direct reply to the questions, as well as by raising additional issues
- All participants had no previous experience with BCIs so some time was given to familiarise with the technology

Initial Evaluation .

- Since all users interacted with a virtual object using their brain activity for the first time, it was necessary to perform repeatable profile training
 - So players managed to familiarise with the prototype system
- At this stage, the system extracts and classifies the player's intentions more accurately

HCIDOOC

 (\mathbf{A})

 (\mathbf{A})

 (\mathbf{A})

(a)

 (\mathbf{A})

 (\mathbf{A})

Initial Evaluation ..

- All participants had to complete a small task
 - 5 to 10 minutes
- The task was to
 - Move an avatar inside the Roma Nova
 - Interact with the agents using just brainwaves and facial expressions

Positive Feedback

- All participants mentioned that it was a unique experience to interact with the game through brainwaves
- Even if it was 'slower' to interact with the game they reported that this way of interaction is far more enjoyable
 - Compared to standard input devices such as the mouse and the keyboard

Positive Feedback.

- All users enjoyed the graphics quality of the game
 - As well as the 'clever' dialogues with the intelligent agents
- The majority of the players mentioned that the brain computer technologies can be very useful for interaction in games and it can be combined with other techniques

Negative Feedback

- Some users found it hard to adapt in taking control of the agent straight away
 - They got distracted by external stimuli
- Some mentioned that it was not easy to concentrate in the game and they would prefer a more immersive environment
 - Even if through time they started to get control and adapt to the prototype system

Negative Feedback .

- Finally, some participants found the BCI technology not as accurate as standard input devices
 - Even if in this particular game there were no significant requirements on accuracy in navigation, in other computer games that could be problematic

HCI5

HCIS

End User Evaluation

- 31 users have been evaluated the hybrid BCI architecture providing feedback by interacting with the two games
- Each user had to complete a set of tasks to evaluate efficiently the system and the overall interaction
- EEG data from two mental tasks of the user (push, pull) had been recorded and stored in order to be analysed and processed

HCISOO

 (∇)

 (\mathbf{A})

ed Activity (Hz) increased Beta Rythms(Y/N)

Cerebral Palsy User Case

- Cerebral palsy (CP) is a motor condition that causes physical disability in human development in various areas of body movement
- A user with Cerebral Palsy had been interacted successfully with the system, being able to move the virtual objects despite being affected by spastic hemiplegia

Results	Results .			
16/31 (51%) users have reported through their answers that they were engaged to the game	 Delta and Theta rhythms (0.1-4-8Hz) are low-frequency EEG patterns that increase during sleep in the normal adult 			
Results	Results			
Beta rhythms (12-30Hz) occur in individuals who are alert and attentive to external stimuli or exert specific mental effort	 9 out 31 users found with increased Beta activity That's 29% of the users that scored high on the engagement related questions 15th 252bit Y 			

(a)

General Finding

 (\mathbf{A})

 (\mathbf{A})

 (\mathbf{A})

- This proves that user's experience may is different from what actually was recorded through the EEG
 - Taking in good faith that the headset measured accurately

BCI illiteracy

Around 20 % of BCI users do not obtain reliable BCI control (Tan and Nijholt, 2010).

- · Investigation of BCI illiteracy can lead to:
- Avoid unnecessary training sessions
- Develop co-adaptive learning strategies to 'cure' BCI illiteracy
- Understand neurophysiological-basis of BCI illiteracy
- ... and ultimately build better BCI systems!

Physical factors make classification difficult.

- Differences in brain anatomy may yield very variable signal quality
- · Large muscle artefacts

BCI illiteracy has been shown in different paradigms.

 (\mathbf{A})

 (\mathbf{A})

- Steady-State VEP (SSVEP)
- Evoked Related Potentials (ERP)
- Sensory Motor Rhythms (SMR)

Tin

(a)**SSVEP-BCI illiteracy**

Mostly demographic data:

- · Age and gender may be important but not significant
- handedness •
- vision correction .
- tiredness •
- time slept
- alcohol ٠
- and caffeine
- computer work •
- computer games.... had no effect. ٠

(Allison et al., 2010; Volosyak et al., 2011).

Literate subject

mplitude (uv)

 (\mathbf{A})

(Tan and Niiholt, 2010)

Time (ms)

Gender, level of education, working duration and cigarette and coffee consumption did not show significant differences. Participants who slept less than 8 hours showed to perform better (Guger et al., 2009).

Table 1. Amp of P300 on Cz	bble 1. Amplitudes, latencies and correlations thereof with BCI performance shown for N200 (minimal amplitude before lat P300 on C2), P300 (maximum between 250 and 700 ms on C2) and late ERP component (maximum after P300 latency on F								
	Amplitude (J/V)	R auditory	R visual	Latency (ms)	R auditory	R visual			
N200 (Cz)	-3.25 (SD 2.25)	0.37 (p = 0.02)	0.47 (p<0.01)	229.05 (SD 42.57)	-0.22 (p = 0.18)	0.04 (p = 0.81)			
P300 (Cz)	4.99 (SD 2.66)	0.04 (p = 0.81)	-0.05 (p=0.75)	378.00 (SD 89.00)	-0.32 (p<0.05)	0.07 (p = 0.65)			
Late ERP (POz)	3.61 (SD 2.10)	-0.26 (p=0.12)	-0.46 (p<0.01)	548.65 (SD 168.55)	0.07 (p = 0.66)	0.19 (p = 0.25)			

(Halder et al., 2013)

 (\forall)

 (\forall)

Predicting BCI performance in SMR

power spectrum density in alpha band in the (Blankertz et al., 2009) •

•

• motor imagery (vuckovic, 2010) locus of control of reinforcement with (LOC) regard to dealing with technology (Burde and Blankertz, 2006)

(a)

 (\mathbf{A})

 (\mathbf{A})

Predicting BCI performance in SMR

- performance level (measured by Attitudes Towards Work test)
- two-hand coordination (Hammer et al., 2012)
- age and daily average amount of hand and arm movement (Randolph et al., 2006)
- mood and motivation (Nijboer et al., 2008)

Predicting BCI performance in SMR

(a)

 (\mathbf{A})

 (\mathbf{A})

Participants with better SMR-BCI performance employ larger cortical area during motor imagery. The number of activated voxels during motor observation was significantly correlated with accuracy in the EEG-BCI task (r=0.53).(Halder et al., 2011)

Two types of attention

- Dorsal, top-down, network (light blue)
- Ventral, bottom-up, network (dark blue)

(Desimone & Duncan, 1995)

Does attention have an effect on BCI performance?

- Good SMR performers activated prefrontal cortex and supplementary motor area significantly more than bad performers which is involved in top-down attention (Halder et al., 2011).
- Attention (measured by block tapping task and digit span) correlated with ability to control slow cortical potentials (SCP)(Daum et al., 1993). Control of SCP relies on cortico-basal ganglia-circuits (Hinterberger et al., 2005).
- Meditation influences BCI performance:
- I. Zen meditation improves control of EEG signal (Lo et al., 2004) and classification accuracy (Eskandari and Erfanian, 2008) .
- Vipassana and Himalayan meditation resulted in higher peaks frequency in SSVEP (Karalis et al., 2011; Karalis et al., in press).
- III. Mindfulness meditation training improves P300-based BCI performance (Lakey et al., 2011).

How to combat BCI illiteracy?

- improve classification accuracy
- change paradigm
- change neuroimaging technique
- combine neuroimaging techniques
- combine paradigms

Three measures:

- Attentional blink
- Posner cueing task
- P300-bic task

 (\mathbf{A})

Attentional blink

HCISOCO

NCI 2000

(a)

 (\mathbf{A})

 (\mathbf{A})

 (\mathbf{A})

 (\mathbf{A})

Thank you for your attention!

- [Allson et al., 2010] Allson, B., Luth, T., Vabuena, D., Teymourian, A., Volosyak, I., and Graser, A. (2010). Bci demographics: How many (and what kinds of) people can use an save bci? Neural Systems and Rehabilitation Engineering. IEEE Transactions on, 18(2):107-116.
 [Blankertz et al., 2000] Blankertz, B. Samil, C., Halder, S., Hammer, E.-M., Kubler, A., Muller, K.-R., Curio, G., and Dickhau, T. (2000). Predicting bci performance to study bci literacy.
 Blankertz et al., 2000] Blankertz, B. Samil, C., Halder, S., Hammer, E.-M., Kubler, A., Muller, K.-R., Curio, G., and Dickhau, T. (2006). Breading and Samil, C., Halder, S., Hammer, E.-M., Kubler, A., Muller, K.-R., Ourio, G., and Dickhau, T. (2006). Barkertz, B. (2006). Ste biol constant, Steadard and Constant, Andreas H ubler, et al. 2007. Starker, 2008 Barker, B. (2006). Is the loca of control of raintoreament a predictor of brain-computer interface proformance? In Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course, volume 2006. Spees 108-109.
 [Daum et al., 1993] Daum, L. Rockströh, B., Birbaumer, N., Elbert, T., Carawan, A. and Lutranberger, W. (1993). Behavioural trainemic of outcome. Journal of Neurology, Neurosurgery & Psychiatry, 56(1):44-97
 [Exkandari and Testima. 2008] Exides, J. & Betz, Barker, A. (2008). Improving the performance of orlario-computer interface through meditation practicing, In: Engineering in Medicine and Biology Society. 2008. EMBS 2003. 30th Annual International Conference of the IEEE, pages 68(26). EEE.
 [Guaret et al., 2009] Guare, C., Daban, S., Sallen, E., Holtmer, C., Karaaz, G., Carabiana, R., Gramakca, F., and Edinger, G. (2009). How many people as able to control and Biology Society. 2008. EMBS 2003. 30th Annual International Conference of the IEEE, pages 68(26). EEE.
 [Guaret et al., 2009] Guaret, C., Daban, S., Sallens, E., Holtmer, C., Karaaz, G., Carabiana, R., Gramakca, F., and Edinger, G. (2009). How many people as able to control and pi

- Helder et al. (2011) Halder, S., Agorastos, D., Veit, R., Hammer, E. M., Lee, S., Varkuti, B., Bogdan, M., Rosenstiel, W., Birbaumer, N., and K ubler, A. (2011). Neural mechanisms of brain-computer interface control. Neuroimage, 55(4):1779-1780.
- [Hammer et al., 2012] Hammer, E. M., Halder, S., Blankertz, B., Sannelli, C., Dickhaus, T., Kleih, S., M uller, K.-R., and k ubler. A. (2012). Psychological predictors of smr-bci performance. Biological psychology. 89(1):80-86.

- [Hinterberger et al., 2005] Hinterberger, T., Veit, R., Wilhelm, B., Weiskopf, N., Valine, J.-J., and Birbaumer, N. (2005). Neuronal mechanisms underlying control of a brain[computer interface. European Journal of Neuroscience, 21(11):3169-3181. [Kranis et al., Karalis, N., Karanasiou, L, and Uzunoglu, N. Short term effects of vipassana meditation in a single subject savep study.

- subject sivep study. [Karalis et al., 2011] Karalis, N., Karanasiou, I., Uzunoglu, N., and Braboszcz, C. (2011). Effects of himalayan tradition mediation during a sivep study. Neuroscience Letters, 500.439. [Lakey et al., 2011] Lakey, C. E., Berry, D. R., and Sellers, F. W. (2011). Menipulating attention via mindifuess induction improves 9300-based brain-computer interface performance. Journal of neural engineering, 8(2):025011. [Lo et al., 2004] Lo, P-C., Wu, S.-O., and Wu, Y-C. (2004). Meditation training enhances the efficacy of bici system cettol. In Networking, Sensing and Control, 2004 IEEE International Conference on, volume 2, pages 825–828. . .
- [Luck, 2005] Luck, S. J. (2005). An introduction to the event-related potential technique .
- .
- .
- Luck. 2005 Luck. S. J. (2005). An introduction to the event-related potential technique. Niboer et al., 2006 Niboer, F., Turden, A., Curat, I., Hellinger, J., McFarlad, D. J., Birbaumer, N., and Yeubler, A. (2008). An auditory brain-computer interface (Ico). Journal of neuroscience methods, 16(71):43-60. [Randoh) et al., 2006] Randoh, A., Kamakar, S., and Lackson, M. (2006). Towards predicting control of a brain-computer interface. ICIS 2006 Proceedings, page 53. [Tan ant Nihot, 2010] Tan, D. S. and Niholt, A. (2010). Brain-Computer Interfaces: applying our minds to human-computer interaction. Springer. [Volcswick at 2, 2011] Volcswick. J., Valbuena, D., Luin, T., Malechka, T., and Graser, A. (2011). Bci demographics E: how many (and what kinds of) people can use a high-frequency savep bci? Neural Systems and Rehabilitation Empineering. IEEE transactions on, 19(3):222239. [Vulckoic, 2010] Vulckoic, A. (2010). Motor imagenz questionnaire as a method to detect boi illiteracy. h Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on, pages 1-5. IEEE.

12