
Implementing an Interpreter in C++

Petr Ročkai

Implementing an Interpreter in C++ 1/106 May 4, 2017

Organisation

• theory: ~50 minutes every two weeks

• coding: all the remaining time

Assignments

• 2 weeks→ 1 topic→ 1 assignment

• you should get most of the work done during the seminar

• assignments include writing tests!

• on my desk (in email, git,…) by 8am on even Wednesdays

Grading

• you pass if you implement a game of tic-tac-toe

running in the interpreter you implemented

Implementing an Interpreter in C++ 2/106 May 4, 2017

Your Own Programming Language (in 6 easy steps)

• Lexers and Parsers

• Symbol Tables

• Evaluating Expressions

• Type Checking (*)

• Memory Management (*)

• Talking to the Outside World

Organisation (cont’d)

• seminar attendance is optional

• you may skip starred topics if you have trouble keeping up

• but only if you attended 5 seminars per topic skipped

Implementing an Interpreter in C++ 3/106 May 4, 2017

What You Need To Know

• we will use C++ 11 (or better)

• version control of your choice

• UNIX strongly recommended

• write automated tests (eg. shell scripts)

Implementing an Interpreter in C++ 4/106 May 4, 2017

Part 1: Lexers and Parsers

Implementing an Interpreter in C++ 5/106 May 4, 2017

Lexical Structure

• the source code is ASCII (Unicode) text

• working one character at a time is not fun

• lexer converts text into a stream of tokens

Token Categories

• keywords

• identifiers

• literals: strings and numbers

• operators

• brackets

Implementing an Interpreter in C++ 6/106 May 4, 2017

Lexer is a Finite State Automaton

• the token structure is regular

• example: an identifier is [a-zA-Z][a-zA-Z0-9]*

• another one: a number is [0-9][0-9]*

• needs to deal with whitespace between tokens, too

Lexer

• reads characters from the input file

• outputs tokens for future processing

Implementing an Interpreter in C++ 7/106 May 4, 2017

Token

• represented by a data type

• remembers the text and category

• also where it came from

struct Token

{

std::string text;

int lineno;

enum Cat { If, Else, Endif,

Identifier, ParenOpen, ParenClose,

LitString, LitNumber } cat;

};

Implementing an Interpreter in C++ 8/106 May 4, 2017

struct Lexer

{

Lexer(const char *filename);

Token next(); /* main interface */

protected:

std::ifstream in;

std::string buf;

/* state machine */

Token identifier();

Token literal();

/* ... */

};

Implementing an Interpreter in C++ 9/106 May 4, 2017

The next function reads and returns the next token

Token Lexer::next()

{

whitespace();

buf += (c = in.get());

if (std::isalpha(c))

return identifier();

switch (c)

{

case '=': // ...

}

}

Implementing an Interpreter in C++ 10/106 May 4, 2017

The statemachine could be implemented by using one

method for each automaton state:

Token Lexer::identifer()

{

char c;

while (std::isalnum(c = in.get()))

buf += c;

in.unget();

if (is_keyword(buf)) return // ...

return Token(Token::Identifier, buf, ...);

}

next() from previous slide is the initial state

Implementing an Interpreter in C++ 11/106 May 4, 2017

Parsers

• typically a context-free language

• terminals (symbols) are the tokens

• a stack (or recursion) is required for parsing

• selection of algorithms (LL, LR, GLR, monadic, rec. descent)

• different trade-offs

Context

• parser reads tokens from the lexer

• creates an Abstract Syntax Tree (AST for short)

Implementing an Interpreter in C++ 12/106 May 4, 2017

Expressions: Prefix (eg. LISP)

• easy to parse, hard-ish to read, annoying to write

• variadic operators

• (+ 1 2 (* 3 4) 5)

Postfix (eg. PostScript)

• very easy to parse, hard to read, easy-ish to write

• unambiguous even without parens

• 3 4 * 1 + 2 + 5 +

Infix (eg. everybody else)

• hard to parse, easy to read, easy-ish to write

• 1 + 2 + 3 * 4 + 5

Implementing an Interpreter in C++ 13/106 May 4, 2017

Abstract Syntax Tree

• internal representation of the source code

• tree with different node types

if (x + 1 = 5) print "hello"

if

=

+ 5

𝑥

print "hello"

1

• reflects the structure of the (context-free) grammar

Implementing an Interpreter in C++ 14/106 May 4, 2017

AST in C++

• use std::shared_ptr for children

• don’t overdo it (many things can be kept as values)

template< typename T >

using Ptr = std::shared_ptr< T >;

struct Expression { /* ... */ };

struct Statement { /* ... */ };

struct If : Node {

Ptr< Expression > condition;

Ptr< Statement > body;

};

Implementing an Interpreter in C++ 15/106 May 4, 2017

AST: Representing Alternatives

• you can use std::variant (since C++17)

• or use Union from brick-types (see study materials in IS)

• or use enums and write out switches by hand (eww)

struct Expression;

using Atom = Union< Identifier, Literal >;

struct Binary { Ptr< Expression > left, right; };

using ExpBase = Union< Atom, Binary, Unary > {};

struct Expression : ExpBase { using ExpBase::Union; };

using Statement = Union< Expression, Block, If >;

Implementing an Interpreter in C++ 16/106 May 4, 2017

Parsing: Context-Free Languages

• grammars with one-to-some rules

• alternatively: stack machines

• the goal is reconstructing a grammar derivation

• grammars are often ambiguous

• subsets of CFLs: LL(1), LR(1), LALR(1),…

• can be parsed more efficiently

• eg. limited lookahead, no or limited backtracking

Implementing an Interpreter in C++ 17/106 May 4, 2017

Parsing: Recursive Descent

• parse LL(k) languages in linear time

• easy to write in direct C or C++

• no fancy generators needed (ie. no yacc nor bison)

Method

• look at one token and the grammar rules

• find which rules could have produced this token

• if there’s only one, you know which rule to pursue

• otherwise the grammar is not LL(1)

• you can try looking at two tokens instead: LL(2)

Implementing an Interpreter in C++ 18/106 May 4, 2017

Recursive Descent in C++

struct Parser

{

Lexer lexer;

Token tok;

Toplevel toplevel();

Call call();

Identifier identifier();

Ptr< Expression > expression();

};

• each non-terminal gets a function (more or less)

• each function returns the corresponding AST node

Implementing an Interpreter in C++ 19/106 May 4, 2017

Ptr< Expression > Parser::expression()

{

if (tok.cat == Token::Identifier)

return make_expr(identifier());

/* ... */

if (tok.cat != ParenOpen)

fail("opening paren");

shift();

if (tok.cat == Token::Identifier)

return make_expr(call());

}

• looks a bit like the lexer

• shift() grabs the next token into tok

Implementing an Interpreter in C++ 20/106 May 4, 2017

Parsing: Reporting Errors

• LL(1) parsers can easily give nice error messages

• what you found vs what you expected to find

• the Token remembers where it came from

Example:

• parse error at [LitString "bar" at line 3],

• expected an operator, identifier, if, while or let

Implementing an Interpreter in C++ 21/106 May 4, 2017

Assignment (weeks 1 & 2)

• come up with decent syntax (could be LISP-like)

• conditionals, loops, expressions, variables & functions

• create corresponding AST for your language

• write a lexer and a parser to generate the AST

• write a pretty-printer for the AST

• write a dozen or so small example programs

• add a script to check that parse+ prettyprint is idempotent

Due 8th of March, 8am!

Implementing an Interpreter in C++ 22/106 May 4, 2017

Assignment Hints

• use prefix expressions (saves a lot of time)

• straight LISP-like syntax is LL(1)

• think about the grammar before writing too much code

• think about what you need in a programming language

• don’t forget about local variables

• use C++ facilities (vectors, maps, sets) whenever useful

• don’t lose much sleep over parsing speed

• you can find inspiration in ex-parser.tar.gz in the IS

Implementing an Interpreter in C++ 23/106 May 4, 2017

Part 2: Symbol Tables

Implementing an Interpreter in C++ 24/106 May 4, 2017

Lexical Scoping

• this is the contemporary norm

• alternative: dynamic scope (shell, elisp)

• alternative: no local variables

Symbol Tables

• keep track of what is in scope

• offer efficient lookup of definitions

• possibly also keep track of values

Implementing an Interpreter in C++ 25/106 May 4, 2017

From Identifiers to Integers

• string comparison is slow

• the set of identifiers in a program is static

• we can assign a unique number to each identifier

For example:

• put all identifiers in a hashset or a search tree

• assign numbers in iteration order

• build a number→ identifier (string) map

Implementing an Interpreter in C++ 26/106 May 4, 2017

Lexical Scopes

• the global scope is shared by everything

• scopes can be nested

int global;

void foo()

{

int local;

if (int z = local + global)

printf("z is not zero: %d\n", z);

/* z no longer defined here */

}

/* 'local' is no longer defined here */

• scope nesting is rigid and does not change at runtime

Implementing an Interpreter in C++ 27/106 May 4, 2017

Lexical Scoping: Implementation

• every lexical scope gets a (static) symbol table

• symbol tables get references to their parents

• if a symbol is not found, the table asks its parent scope

int Scope::lookup(int id)

{

if (idmap.find(id) == idmap.end())

return parent.lookup(id);

/* ... */

}

Implementing an Interpreter in C++ 28/106 May 4, 2017

Static Checks

• correct syntax does not mean the program is well-formed

• variables must be defined before they are used

• functions must be defined before they are called

• (we will deal with type checking later)

• symbol tables are how these checks are done

Implementing an Interpreter in C++ 29/106 May 4, 2017

Execution Stack

• functions call other functions (or themselves)

• the interpreter needs to keep track of this

• may consist of pointers to AST nodes

• if variables are mutable, keeps track of their values

void g(int x)

{

g(x + 1);

}

void f() { int y; g(3); }

int main() { f(); }

f(), y = 5

g(), x = 3

g(), x = 4

main()

Implementing an Interpreter in C++ 30/106 May 4, 2017

Mutable Variables

• each activation record needs a copy of the value

− activation record = stack frame

• option one: index stack frames by identifiers

− less efficient, easier to implement

• option two: pre-compute a fixed layout for frames

− store variable offsets in the static symbol table

− more efficient but more work to implement

Implementing an Interpreter in C++ 31/106 May 4, 2017

Dynamic Scope

• in lexical scoping, the parent is the enclosing block

• if the scope parent is the caller, you get dynamic scoping

• the scope lookup proceeds along the execution stack

• sometimes quite powerful, usually very confusing

Examples

• shell variables

• perl optionally (only some variables)

• old LISPs (including emacs lisp)

• Common Lisp optionally

Implementing an Interpreter in C++ 32/106 May 4, 2017

Lexical Closures

• you may want to allow local function definitions

• a bit like C++ lambda expressions

• capture the lexical scope at the point of definition

• carry the scope (symbol table) around

void f(std::vector< int > &vec)

{

std::for_each(vec.begin(), vec.end(), [&](int x)

{ std::cout << vec.front() - x << std::endl; });

}

Implementing an Interpreter in C++ 33/106 May 4, 2017

Lexical Closures: Lifetime

• C++ lambdas capture by name or by reference

• if a reference-captured value goes out of scope, SIGSEGV

• in “dynamic” languages, this is usually different

− reference-captured values live as long as needed

− even if their original scope is gone

− you need a garbage collector to do this

• capture by reference is usually more useful

− in imperative languages, that is

Implementing an Interpreter in C++ 34/106 May 4, 2017

Walking the AST

• use recursion to visit children of a node

• use type-based matching from Unionwhere appropriate

expr.match(

[&](IfLike &stmt) { recurse(stmt.condition); },

[&](DefLike &stmt) { recurse(stmt.body); },

/* ... */);

• first pass builds the symbol tables

• second pass checks that all identifier uses are correct

Implementing an Interpreter in C++ 35/106 May 4, 2017

Symbol Tables: Summary

• static table for each lexical unit (function, block)

− ensure functions and variables are in scope when used

− possibly store auxiliary data (frame offsets)

• values are stored somewhere else (execution stack)

− can use std::map from identifiers to values

Implementing an Interpreter in C++ 36/106 May 4, 2017

Assignment (weeks 3 & 4)

• design and implement a symbol table data structure

• implement string→ integer key mapping for identifiers

• write code to build all symbol tables from the AST

• check that all variables are in scope when used

− print an error message otherwise

• figure out how to store values (at least integers and strings)

• write tests for everything above

Implementing an Interpreter in C++ 37/106 May 4, 2017

Assignment Hints

• don’t forget to use std::map and/or std::unordered_map

• take advantage of pattern matching in Union

• you can print symbol tables and use text comparison again

• try attaching local symbol tables to AST nodes

• ideally, a symbol table applies to one node + all its children

• sorry, no code hints this time, you did too well on parsers :-)

Implementing an Interpreter in C++ 38/106 May 4, 2017

Part 3: Evaluating Expressions

Implementing an Interpreter in C++ 39/106 May 4, 2017

Overview

• values and variables

• evaluation order

• recursive evaluators

• RPN evaluators

Implementing an Interpreter in C++ 40/106 May 4, 2017

Evaluator

• an expression evaluator is the heart of an interpreter

Roles

• arithmetic and other elementary operations

• variable lookup

• function calls and argument passing

• control flow

Implementing an Interpreter in C++ 41/106 May 4, 2017

Representing Values

• easy if all you have is integers

• otherwise, disjoint unions could work

• also useful for run-time type checking

Alternative (advanced)

• raw data (C unions) with type erasure

• needs a solid static type system

Alternative

• objects (as in OOP)

Implementing an Interpreter in C++ 42/106 May 4, 2017

From Symbols to Values

• expressions without variables are boring

• symbol tables to the rescue

L-values and R-values

• ordinary variable use is R-value use

• a variable reference is replaced by its current value

• does not work for assignment (mutable variables)

• L-value stands for the address of a variable

Implementing an Interpreter in C++ 43/106 May 4, 2017

Evaluation Order

• relevant for function application (calls)

• also for built-ins (control flow)

Normal

• expand the body first

• substitute un-evaluated arguments

• also known/implemented as: call by name, lazy

Strict

• compute argument values first

• also known/implemented as: call by value, eager

Implementing an Interpreter in C++ 44/106 May 4, 2017

(Mostly) Imperative Programming

• call by value

• call by name (thunks)

• call by reference (pointers)

• call by object reference (call by sharing)

• call by value result (by value return)

• call by need (lazy)

• call by macro expansion (text-based)

• call by future (concurrent)

Implementing an Interpreter in C++ 45/106 May 4, 2017

Thunks

int f() { std::cerr << "!"; return 3; }

int strict(int value) { return value + value; }

int normal(std::function< int() > value)

{

return value() + value();

}

int main()

{

std::cerr << strict(3 + f());

std::cerr << normal([]{ return 3 + f(); });

}

Implementing an Interpreter in C++ 46/106 May 4, 2017

Evaluation Order in C++

• almost all expressions are eager

• logical operators are lazy / “short circuiting”

• statements (if) are “lazy”

• promise/futures for lazy evaluation

• std::future / std::asyncwith std::launch::deferred

• basically an explicit, type-safe thunk

Implementing an Interpreter in C++ 47/106 May 4, 2017

Flexibility in Evaluation Order

• lazy values in a strict language→ usually easy

• very easy with first-class functions

• including infinite data structures (co-data)

On the Other Hand

• strict values in a lazy language→ usually hard

• typically needs language support

• often very far from intuitive

• compare normal forms: beta, beta-eta, head, weak head

• Haskell: seq, deepseq, NFData, $!, BangPatterns

Implementing an Interpreter in C++ 48/106 May 4, 2017

Implementation: Recursive Evaluation

• the simplest method

• works directly on the AST

• may not need an explicit execution stack

• also the slowest

Value eval(If &e_if)

{

if (eval(e_if.condition))

return eval(e_if._then);

else

return eval(e_if._else);

}

Implementing an Interpreter in C++ 49/106 May 4, 2017

Reverse Polish Notation (RPN)

• faster than recursive

• only useful with eagerly evaluated constructs

• good for arithmetic-heavy programs

• recall postfix syntax from part 1

• (5 + 3) * xwritten as 5 3 + x *

• trivial evaluation on an explicit stack

Implementing an Interpreter in C++ 50/106 May 4, 2017

RPN: Implementation

void eval()

{

if (size() == 1)

return;

Value a = pop(), b = pop();

Op op = pop();

if (op == Add)

push(a + b);

// ...

}

• the result is the only value left on the stack

Implementing an Interpreter in C++ 51/106 May 4, 2017

RPN: Control Flow

• control flow in an RPN evaluator is a bit tricky

• normally every “operator” is strict

However

• lazy semantics in a strict language? thunks

• push thunks for then/else branches onto the RPN stack

• profit

Function calls?

Implementing an Interpreter in C++ 52/106 May 4, 2017

Three-Address Code

• might be faster than RPN

• control flow is straightforward

• ~halfway to a compiler

• data stored in arrays (not stacks)

• a lot more complicated than RPN

• quite some room for optimisation

Implementing an Interpreter in C++ 53/106 May 4, 2017

Trampolines

• execute continuation-passing-style programs

• converts CPS into standard call/return semantics

• more of a compiler technique

Implementing an Interpreter in C++ 54/106 May 4, 2017

Keeping Track of Calls

void g(int x)

{

g(x + 1);

}

void f() { int y; g(3); }

int main() { f(); }

f(), y = 5

g(), x = 3

g(), x = 4

main()

Implementation Strategies

• meta-circular (in a recursive evaluator)

• re-use the explicit RPN evaluation stack

• explicit “evaluation context” stack

Implementing an Interpreter in C++ 55/106 May 4, 2017

Assignment (weeks 5 & 6)

• write an evaluator for your language

• arithmetic, conditionals, loops, variables and function calls

• mutable variables and an assignment operator

• write arithmetic- and recursion-based tests

• lexical closures are optional

Due 5th of April, 8am!

Implementing an Interpreter in C++ 56/106 May 4, 2017

Assignment Hints

• a recursive evaluator is the simplest to implement

• strict evaluation order is the simplest

• you can keep variable values in an std::unordered_map

• RPN evaluation is also nice (don’t forget about thunks)

• hybrids are viable (recursion only for calls & control flow)

Implementing an Interpreter in C++ 57/106 May 4, 2017

Part 4: Type Checking

Implementing an Interpreter in C++ 58/106 May 4, 2017

Overview

• what is a type

• sub-typing

• dynamic types (run-time checking)

• static types (ahead of time)

• classes and objects

Implementing an Interpreter in C++ 59/106 May 4, 2017

Why Types?

• same reason as syntax checkers

• programmers (= people) make mistakes

• type mismatch is, usually, a mistake

• types = high-powered version of dimension analysis

• you don’t want to add seconds to meters by mistake

• hence, type discipline and enforcement

Implementing an Interpreter in C++ 60/106 May 4, 2017

What is a Type?

• first approximation: a set of values

• set of integers, set of strings, etc.

• every value belongs to a (single) type

• both values and variables have types

Function Types?

• eg. a set of maps from integers to integers

• maps are still sets, so this (almost) works out

Implementing an Interpreter in C++ 61/106 May 4, 2017

Well-Typed Programs

• all type constraints are satisfied

• in particular, on function (operator) applications

• let 𝑓 :: 𝑇 → 𝑇 , 𝑥 :: 𝑇 and 𝑦 :: 𝑈

• f x is well-typed, f y is not

• also: assignment and initialisers, pattern matching

std::string x = 0.5; /* not well typed */

Implementing an Interpreter in C++ 62/106 May 4, 2017

Products and Sums

• cartesian product of two types is again a type

• so is a sum (union, or maybe a disjoint union)

• unions + products form the basis of algebraic data types

• function type is a special subset of the product type

Multi-parameter functions

• (𝑇 × 𝑇) → 𝑇 is what C/C++ use

• 𝑇 → (𝑇 → 𝑇) is what Haskell uses

• the two are isomorphic (think curry/uncurry)

Implementing an Interpreter in C++ 63/106 May 4, 2017

Product Types: Aggregates

• C struct is a typical product type

• a more “obvious” example: std::pair and std::tuple

• products with named fields are usually very important

• (also known as records)

• they form the backbone of user-defined types

• (classes are based on product types)

Implementing an Interpreter in C++ 64/106 May 4, 2017

Subtyping

• maybe there’s a user type shape

• every circle is clearly also a shape

• subtypes correspond to subsets

• induces a (pre)order relation on types

Contravariance

• let 𝑇 be a type and 𝑆 its subtype

• whenever a 𝑇 is expected, 𝑆 can be provided

• this usual behaviour is called covariant

• however! 𝑇 → 𝑆 is a subtype of 𝑆 → 𝑆

• function arguments are contravariant wrt. subtyping

Implementing an Interpreter in C++ 65/106 May 4, 2017

Polymorphism

• monomorphic function types are quite constraining

• eg: plain C functions

• think int min(int a, int b)… how about float?

• counter-eg.: C++ function templates

• “types = sets” is no longer good enough

Approaches

• parametric: eg. Hindley-Milner

• ad-hoc: like parametric but dirtier (think C++ templates)

• subtyping + optionally late binding

Implementing an Interpreter in C++ 66/106 May 4, 2017

Parametric Polymorphism

• one implementation, multiple (parametric) types

• ML, Haskell, etc. (based on Hindley-Milner)

• adds type variables

• id :: a -> a is good for any type a

• type checking is only a little harder than monomorphic

• C++ templates (w/o specialisation) are an approximation

• can be extended with type classes (Haskell)

• min :: (Ord a) => a -> a -> a

Implementing an Interpreter in C++ 67/106 May 4, 2017

Algebraic Data Types (revisited)

• products and sums are nice but relatively weak

• how about recursive (infinite) data types?

• allows encoding lists, trees and other inductive types

• may also allow encoding co-data types

• data List = Nil | Cons Int List

• values must contain pointers

Parametric ADTs

• also: much more powerful with type variables

• data List a = Nil | Cons a List

Implementing an Interpreter in C++ 68/106 May 4, 2017

Static Type Checking

• all type enforcement is done at compile/load time

• type information can be erased (more efficient execution)

• may require explicit type annotation (as in C, C++98)

• or be partially inferred (modern Haskell, C++11 and later)

• or be completely inferred (“classical” Haskell)

• type errors show up early

• may allow static (fast) type-based dispatch

Implementing an Interpreter in C++ 69/106 May 4, 2017

Dynamic Type Checking

• type enforcement is (mostly) done at runtime

• values carry along their types encoded as data

• function application also runs the type checker

• RTTI could be as little as a couple of bits (LISP)

• or as much as a full machine pointer (OOP)

Implementing an Interpreter in C++ 70/106 May 4, 2017

Classes and Objects

• subtyping naturally leads to OOP

• extends types with methods and encapsulation

• optionally with late binding

• one signature, multiple types, multiple implementations

• primarily a problem decomposition tool

• also neatly solves namespace problems

• workswith static (C++) and dynamic (Python) type checkers

Implementing an Interpreter in C++ 71/106 May 4, 2017

Late Binding

• supertype methods can be overridden in subtypes

• different implementations for different types

• form of run-time, type-based dispatch

• incompatible with (completely) static types

• in C++ realised through vtable pointers

Implementing an Interpreter in C++ 72/106 May 4, 2017

Type Casting and Coercion

• sometimes you know you are right

• even though the types don’t match

• casts convert from one type to another

• coercion simply re-interprets the value

• both more-or-less break type safety

• C has some arcane implicit casting rules

Implementing an Interpreter in C++ 73/106 May 4, 2017

Assignment (weeks 7 & 8): Static Variant

• allow user-defined product types with named fields

• implement monomorphic function types

• add type annotations to the parser & AST

• type-check each function application at load time

Assignment: Dynamic/OOP Variant

• allow user-defined classes (with attributes and methods)

• pass values in the evaluator as references to objects

• implement late binding (type-based dispatch)

• detect failing method lookups at runtime

Due 19th of April, 8am! (optional)

Implementing an Interpreter in C++ 74/106 May 4, 2017

Assignment Hints

• both variants need parser extensions

• dynamic types are easier to work with (from user POV)

• static types are safer and get you faster code

• static type checker builds on the semantic checker

• dynamic type checker builds on the evaluator

• you can mix & match aspects of both (like C++)

• it’s OK to put types and variables in a single namespace

Implementing an Interpreter in C++ 75/106 May 4, 2017

Part 5: Memory Management

Implementing an Interpreter in C++ 76/106 May 4, 2017

Overview

• what lives in memory

• reference counting

• mark and sweep

• copying collectors (compacting)

• Cheney on the M.T.A.

• generational collection

• latency and concurrency

Implementing an Interpreter in C++ 77/106 May 4, 2017

What is in program’s memory?

• scalar data and arrays of scalars

• data structures with pointers in them

Pointers: Good and Bad

• pointer dereferences are expensive

• allows encoding all sorts of structure

• lists, trees, graphs

• very useful for building abstractions

Implementing an Interpreter in C++ 78/106 May 4, 2017

From Flat Memory to Objects

• imagine a node in a linked list

• it lives somewhere

• how do you decide where to put one?

• enter malloc and free

Semi-Automatic Memory Management

• malloc finds a good place to put data

• freemarks a bit of memory for re-use

Implementing an Interpreter in C++ 79/106 May 4, 2017

Building the Abstraction Tower

• malloc/free give us abstract-ish objects

• but we still need to track lifetime manually

• and worse, place free calls statically

• this is tedious and not always possible

Automatic Garbage Collection

• figure out which objects are alive (and which dead)

• we no longer need to call free

• free is dynamically performed by the GC

Implementing an Interpreter in C++ 80/106 May 4, 2017

Basic Idea: Reachability along Pointers

• pick a root set of live objects

• could be the C stack + registers

• or the active (executing) frame

• live = reachable from the root set

• dead = everything else

Implementing an Interpreter in C++ 81/106 May 4, 2017

First Approximation: Reference Counting

• along with each object, keep a counter

• when a pointer is created/copied, increase the counter

• when a pointer is lost, decrease the counter

• when the counter hits zero, free the object

Problems

• expensive to take/copy pointers (memory write)

• fails to free object cycles

Advantages

• low/predictable latency

• reasonable memory overhead

Implementing an Interpreter in C++ 82/106 May 4, 2017

Garbage Collectors

• add a collector procedure

• the rest of the program is called the mutator

• run the collector at convenient times (not too often)

Dealing with Loops: Mark & Sweep

• the collector executes reachability along pointers

• marking every reachable object

• then iterating over all objects

• calling free on the unmarked ones (sweeping)

Implementing an Interpreter in C++ 83/106 May 4, 2017

Challenges

• the collector procedure may need to allocate memory

• allmutator threadsmayneed to stopwhile the collector runs

• the collector needs to know which words are pointers

• → problems with foreign function interfaces (C calls)

• performance under memory pressure

Implementing an Interpreter in C++ 84/106 May 4, 2017

Mark & Sweep: Advantages

• comparatively easy to implement

• low memory overhead

• can re-use existing malloc/free

• approximate (conservative) collection is possible

Disadvantages

• high/messy latency (bad for interactive programs)

• more memory used = slower collection

• interacts badly with concurrency

Implementing an Interpreter in C++ 85/106 May 4, 2017

A Copying Collector

• split memory into 2 halfspaces

• one is the working set, other is dormant

• bump allocation of new memory

• collect when the live halfspace fills up

Collection

• copy live objects to the other halfspace

• updating all pointers along the way

Implementing an Interpreter in C++ 86/106 May 4, 2017

Cheney’s Algorithm

• look at a from-space object

• copy it over to the to-space

• replace the from-space copy with a forwarding pointer

• recurse/update pointers in the to-space copy

• (not actually implemented recursively)

Implementing an Interpreter in C++ 87/106 May 4, 2017

Copying Collectors: Advantages

• fast memory allocation

• no time spent dealing with garbage

• keeps data physically close together

• possibly improving cache utilisation

Disadvantages

• needs exact information about pointers

• poor memory utilisation (always 1 empty halfspace)

Implementing an Interpreter in C++ 88/106 May 4, 2017

Cheney on the M.T.A.

• all allocation is done on the C stack

• when the stack is about to fill up:

• make a new stack and “Cheney” data from the old one

• the program is compiled into C

• the compiled functions never return

• easy integration with C calls

Disadvantage: same as “normal” copying collector

Implementing an Interpreter in C++ 89/106 May 4, 2017

Compromises: Generational Collectors

• observation: many objects only live for a short while

• split memory into a hatchery and a mature space

• use a different collector for each

• typical: mark & copy for the hatchery (minor collection)

• mark & sweep for the mature space (major collection)

• the hatchery is traced much more often

Implementing an Interpreter in C++ 90/106 May 4, 2017

Generational Collectors: Advantages

• short-lived objects are quickly eliminated

• hot data is kept together (good for CPU caches)

• minor collection is fast & predictable (wrt. latency)

• foreign objects can live in the (non-moving) mature space

Disadvantages

• more complicated

• does not fix all the problems

Implementing an Interpreter in C++ 91/106 May 4, 2017

A Note on Latency: Incremental Collection

• latency in interactive applications is bad

• even more so in real-time systems

• also in distributed computations

• interleave the mutator and the collector

• incremental collector can be made real-time

• (by imposing a deadline on the increment)

• tricky, but easier than concurrent collection

Implementing an Interpreter in C++ 92/106 May 4, 2017

Concurrent Collectors

• concurrent data structures are hard

• not freeing dead objects is not a big problem

• (they will be picked up by a later cycle)

• freeing live objects is a big problem

• needs cooperation frommutator threads

• easy-ish with reference counting

Eg. http://www.aicas.com/papers/ismm02f-siebert.pdf

Implementing an Interpreter in C++ 93/106 May 4, 2017

Assignment (weeks 9 & 10):

• implement a garbage collector

• (optional, deadline May the 3rd, 8am)

Implementing an Interpreter in C++ 94/106 May 4, 2017

Part 6: Talking to The Outside World

Implementing an Interpreter in C++ 95/106 May 4, 2017

Overview

• foreign function interface (FFI)

• constructing calls

• dealing with memory & outputs

• aggregate arguments and return values

• a simple runtime-only solution

Implementing an Interpreter in C++ 96/106 May 4, 2017

Foreign Function Interface

• a mechanism for calling procedures

• defined in a language different from our own

• a typical target language is C

• crucial for re-use of existing code

Implementing an Interpreter in C++ 97/106 May 4, 2017

Constructing Calls

• problem: we need to call a function

• but we don’t know what its arguments are

Some options:

• ad-hoc: hard-code some argument combinations

• template metaprogramming

• automatic code generation

• re-implement the C calling convention

Implementing an Interpreter in C++ 98/106 May 4, 2017

An Ad-Hoc Approach

• good enough to cover most syscalls

• not good to talk to libraries

void ccall(void (*f)(), ArgT argt, ArgV v)

{

if (argt == ArgT{ Int })

return f(v[0].asInt());

if (argt == ArgT{ Int, Int })

return f(v[0].asInt(), v[1].asInt());

/* ... */

}

Implementing an Interpreter in C++ 99/106 May 4, 2017

Template Metaprogramming

• use variadic/recursive function templates

• automates data conversion (the asInt() bit)

• required instances need to be known at compile time

• does not really fix the problem

int f(int a, int b, const char *c);

auto tup = std::make_tuple(3, 7, "foo");

brick::tuple::pass(f, tup); // call f(3, 7, "foo")

Implementing an Interpreter in C++ 100/106 May 4, 2017

Automatic Code Generation

• uses specific, per-function wrappers

• the wrappers are generated as C (C++) code

• may use the template approach to simplify generated code

Value wrap_write(std::vector< Value > args)

{

int rv = write(args[0].asInt(),

args[1].asString(),

args[2].asInt());

return Value(rv);

}

Implementing an Interpreter in C++ 101/106 May 4, 2017

The C Calling Convention

• architecture-specific (x86 is simple, amd64 is complex)

• the generic ccall needs to be written in assembly

• most compact but least portable

x86/cdecl

• arguments go onto the stack (right-to-left)

• scalar return values either in eax or st0

amd64: a 10 page spec on what goes where

Implementing an Interpreter in C++ 102/106 May 4, 2017

Dealing with Outputs

• some functions return variable-sized data

• like the read function

• using output arguments (represented by pointers)

• such arguments must be treated differently

• the output of read should give us an in-language string

char buffer[32];

read(0, buffer, 32);

// buffer contains the data we want

Implementing an Interpreter in C++ 103/106 May 4, 2017

Aggregate Values

• C supports passing structures as arguments

• and returning them as values

• will not work with the ad-hoc approach

• too many different sizes

struct foo { int x, y, z; double bar; };

foo update_foo(foo x) { ... }

Implementing an Interpreter in C++ 104/106 May 4, 2017

A Simple Approach

• usable with ad-hoc call construction

• does not need to invoke a compiler

• looks up functions by using dlsym

int main()

{

int (*w)() = dlsym(NULL, "write");

w(1, "hello world\n", 12);

}

Implementing an Interpreter in C++ 105/106 May 4, 2017

How to Construct Wrappers

• option 1: reconstruct from calls

• will not work for variadic functions (printf)

• option 2: special syntax for declaring C functions

• you rely on the user to translate the prototypes

• option 3: parse C headers (hard)

(define fun

(foreign-lambda c-string "fun" c-string int))

Implementing an Interpreter in C++ 106/106 May 4, 2017

Assignment

• implement a simple C-based FFI for your interpreter

• must be able to call integer-argument functions w/ up to 4

args

• it must be able to deal with read or similar

• use the FFI to get I/O capabilities

• implement an interactive game of tic-tac-toe

There is no deadline.

