
PV204 Security technologies

Rootkits, reverse engineering of binary applications, whitebox model

Petr Švenda svenda@fi.muni.cz

Faculty of Informatics, Masaryk University

mailto:svenda@fi.muni.cz
mailto:svenda@fi.muni.cz

What is planned for this lecture?

• Rootkits (and defences)

• Reverse engineering (of binary applications)

• Whitebox attacker model

| PV204: Rootkits, RE

K. Thompson – Reflections on Trusting Trust

• Subverted C compiler (Turing Award Lecture, 1983)

– Adds additional functionality for selected compiled programs

– E.g., login cmd: log password or allow user with specific name

• Inspection of login’s source code will not reveal any issues

• Adds malicious functionality of compiler into binary of

compiler compiled with already subverted compiler

– Inspection of source code of compiler will not reveal any problem

• How can we detect modified login binary?

– Expected hash, digital signatures

– What if signature verification tool is also modified?

| PV204: Rootkits, RE

ROOTKITS

| PV204: Rootkits, RE

Rootkit definition

• Root-kit

– root user *nix systems

– kit set of tools to operate/execute commands

• Rootkit is piece or collection of software

– Designed to enable access where it would be otherwise denied

– Tries to hide(“cloak”) its presence in system

• Installed after obtaining privileged access

– Privileged escalation, credentials compromise, physical access…

• Rootkit != exploit (rootkit usually installed after exploit)

• Rootkit is usually accompanied with additional payload

– Payload does the actual (potentially malicious) work

| PV204: Rootkits, RE

Protection rings

• Idea: introduce separate runtime levels

– Crash in level X causes issue only in levels >=X

– Direct support provided by CPU architectures (0/3)

• Instructions which can be executed only in given ring

• Ring 3: unprivileged user programs

• Ring 2/1: device drivers (currently sparsely used)

• Ring 0: kernel programs

• Performance penalty associated with ring switching

– In practice, only 3 and 0 are commonly used

• Captures only rings/levels starting with OS

– Levels -1/-2/-3 introduced for layers below OS

| PV204: Rootkits, RE

S
v
e
n
,

L
ic

e
n
s
e
d
 u

n
d
e
r

C
C

 B
Y

-S
A

 3
.0

 v
ia

 C
o
m

m
o
n
s

Rootkit

| PV204: Rootkits, RE

Ring -3

Ring -2 System Management Mode, BIOS

Firmware, hardware

Ring -1 Hypervisory-level (VT-x, AMD-V)

Ring 0 OS kernel, device drivers

Ring 1,2 Device drivers

Ring 3 User-mode

Ring “3+” Managed code (runtime, JVM)

SMM abuse, bootkits

FW/HW rootkits

Hypervisory-level rootkits

Kernel rootkits

User-mode rootkits

Managed code rootkits

Ring level

Principal ways of detection of rootkits

1. Detection running on system, same or higher level

– Flaws in rootkit cloaking, side-channel

2. Detection running on system, lower level

– Not controlled by rootkit, cannot cloak itself

3. Detection via (offline) image of system / memory

– Rootkit is not running => cannot cloak itself

| PV204: Rootkits, RE

User-mode rootkits (Ring 3)

• Injects payload into other user applications

– Injection of modified dlls (user app will use different CreateFile)

– Modification of applications (modification of CreateFile)

• Interception of messages

– RegisterWindowMessage()

• Function hooking

– More generic hooks (SetWindowsHookEx()) – window manager

– User application-specific hooks (plugins, example browser hook)

• File-system filters

– Detect access to files by user application

| PV204: Rootkits, RE

Managed code rootkits (MCR) (Ring 3)

• Ring 3 (level for runtime / VM)

• Targets runtime environments for interpreted code

– .NET VM, Java VM and Dalvik runtime…

• Large attack surface for MCR

– Attacking runtime class libraries

– Attacking JIT compiler

– Abusing runtime instrumentation features

– Extending language with malware API

– Object-oriented malware (inside OO runtime)

• E. Metula: Managed Code Rootkits (Syngress)

 | PV204: Rootkits, RE

Kernel-mode rootkits (Ring 0)

• Runs with highest system privileges

– Usually device drivers and loadable modules

– Device drivers in MS Windows

– Loadable kernel modules in Linux

• Direct kernel object manipulation

– Data structures like list of processes…

– System Service Descriptor Table (SSDT) hook

– System call table hook

• Operating system may require mandatory drivers signing

– More difficult to insert malicious driver

– Still possible (compromised private keys: Stuxnet & Realtek’s keys)

| PV204: Rootkits, RE

ROOTKITS BELOW OS LEVEL

| PV204: Rootkits, RE

Hypervisory-level rootkits (Ring -1)

• Virtual-machine based rootkit (VMBR)

– Type II hypervisors (VM on ordinary OS host)

• Based on CPU hardware virtualization features

– Intel VT or AMD-V

• Rootkit hosts original target as virtual machine

– And intercepts all relevant hardware calls

• Examples: SubVirt, BluePill (AMD-V, Intel VT-x)

| PV204: Rootkits, RE

| PV204: Rootkits, RE

King et al: SubVirt: Implementing malware with virtual machines

Hypervisory-level rootkits (Ring -1)

Defense against hypervisory-level rootkits

• Run detection/prevention on lower level

• Detect by timing differences of operations

– System is emulated => side-channel info (timings…)

• Read and analyze HDD physical memory

– After physical removal from (infected) computer

• Boot from safe medium (CD, USB, network boot)

– inspect before VMBR loads

– But VMBR can emulate shutdown / reboot

• Physical power unplug recommended

• Trusted boot (based on TPM, lecture 10)

| PV204: Rootkits, RE

System Management Mode abuse (R.-2)

• System Management Mode (SMM)

– x86 feature since Intel 386, all normal execution is suspended

– Used for power management, memory errors, hardware-assisted

debugger…

– High-privilege mode (Ring -2)

• SMM entered via system management interrupt (SMI)

– System cannot override or disable the SMI

• Target for rootkits

– Modify memory, loaders, MBR…

| PV204: Rootkits, RE

SMM Example: SOUFFLETROUGH implant

• https://en.wikipedia.org/wiki/NSA_ANT_catalog

• http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-

nearly-every-major-software-hardware-firmware/

| PV204: Rootkits, RE

https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/

Bootkit rootkits (Ring -2)

• Bootkit = Rootkit + Boot capability

• Infect startup code

– Master Boot Record (MBR)

– Volume Boot Record (VBR)

– Boot sector, BIOS routines…

• “Evil maid” attack

– Can be used to attack full disk encryption

– Assumption: user will left device physically unattended

– Legitimate bootloader replaced (+ key capture)

| PV204: Rootkits, RE

Full-disk encryption compromise

1. Full-disk encryption used to encrypt all data

2. Laptop powered down to prevent Coldboot or FireWire-

based attacks (read key from memory)

3. Laptop left unattended (“Evil maid” enters)

– USB used to read part of first sector of disk

– If TrueCrypt/Bitlocker loader, then insert malicious bootloader

4. User is prompted with forged bootloader

– Password is stored

• How to transfer saved password / data to attacker?

– Second visit of Evil maid

| PV204: Rootkits, RE

http://theinvisiblethings.blogspot.co.uk/2009/10/evil-maid-goes-after-truecrypt.html

Bootkit defenses

• Prevention of physical access

– Problematic for portable devices

• Trusted boot (static vs. dynamic root of trust)

– More in Lecture 10 (Trusted boot)

– But bootloader must authenticate itself to user

• E.g., present image encrypted by key stored in TPM

• Before user enters its password

• Defense by external verification of bootloader integrity

– verify relevant unencrypted parts of disk (external USB)

| PV204: Rootkits, RE

| PV204: Rootkits, RE
http://technet.microsoft.com/en-US/windows/dn168167.aspx

Firmware / hardware rootkits (Ring -3)

• Persistent malware image in hardware

– Network card, router, hard drive…

• Can run even after removal of device from target

computer

– Once device is powered again

| PV204: Rootkits, RE

LEGITIMATE USES

| PV204: Rootkits, RE

Legitimate uses of rootkits

• To whom is legitimacy measured?

• Hide true nature of network “honeypots”

• Protection of AV software against termination

• Anti-theft protections

• Digital rights management

| PV204: Rootkits, RE

Sony BMG Extended copy protection

• Rootkit developed for (and approved) by Sony

– Intended to limit possibility for disk copy

– Users were not notified (silently installed after CD insert)

– Digital rights management for Sony

– To hide itself, any file starting with sys was hidden

• Detected by M. Russinovich’s RootkitRevealer

– After public disclose, other malware started to hide itself by naming

its files as sys (user was already “infected”)

• Sony released patch for removal (web-based uninstaller)

– Even more serious flaw introduced (any visited page can install and

run program)

– Resulted in class-action lawsuit against Sony BMG

| PV204: Rootkits, RE

REVERSE ENGINEERING

| PV204: Rootkits, RE

Reverse engineering

• A process of knowledge or design extraction from

final product (usually man-made)

• Engineering:

– Mental model blueprints/source-code product/binary

• Reverse engineering (back engineering):

– From product back to knowledge or design

– Blueprints/source-code might be also recreated

• Not necessary/possible to perfectly recreate design

– Engineering might be loose transformation

– Back engineering might not be perfect/complete

| PV204: Rootkits, RE

Reverse engineering is general process

We will focus on software binaries only

| PV204: Rootkits, RE

Reverse engineering - legal issues

• Reverse engineering is legal when

– Own binary without documentation

– Anti-virus research, Forensics…

– Interoperability, Fair use, education

• Problem with some copyright laws

– not only selling circumvented content, but also attempt to

circumvent is illegal

• EFF Coders’ Rights Project Reverse Engineering FAQ

– Legal doctrines, Risky aspects, Selected decisions

– https://www.eff.org/issues/coders/reverse-engineering-faq

| PV204: Rootkits, RE

https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq

How to start reverse engineering

1. Learn basic concepts (compilers, memory, OS…)

2. See how source-code translates into binary

3. Try tools on simple examples (own code, tuts)

4. Utilize other knowledge (communication logs…)

5. Have fun!

| PV204: Rootkits, RE

Basics

• Debugger vs. debugger with binary modification

capabilities

– E.g., Visual Studio vs. OllyDbg

• Disassembler vs. debugger

– Static vs. dynamic code analysis

• Disassembler vs. decompiler

– Native code assembler source code

• Native code vs. bytecode

– Different instruction set, different execution model

• Registry-based vs. stack-based execution

| PV204: Rootkits, RE

Mixed source code/assembler in IDE

• Most current IDE supports mixed source code/assembler

instructions mode (Visual Studio, QT Creator...)

– Mode is usually available only during a debugging

– Write simple code (e.g., if then else condition), insert breakpoint

and start debugging

• Switch to mixed mode

– Visual Studio RClick Go to disassembly

– QTCreator Debug Operate by Instruction

• Easy way to learn how particular source code is translated

into assembler code

| PV204: Rootkits, RE

| PV204: Rootkits, RE

#include <stdio.h>

int main() {

 FILE* file = NULL;

 file = fopen("values.txt", "r");

 if (file) {

 int value1 = 0;

 int value2 = 0;

 fscanf(file, "%d", &value1);

 fscanf(file, "%d", &value2);

 value1 = value1 + value2;

 printf("Result: %d", value1);

 }

 fclose(file);

}

Original C source code

 Dump of assembler code for function main:

 2 int main() {

0x00401344 <+0>: push %ebp

0x00401345 <+1>: mov %esp,%ebp

0x00401347 <+3>: and $0xfffffff0,%esp

0x0040134a <+6>: sub $0x20,%esp

0x0040134d <+9>: call 0x401a20 <__main>

 3 FILE* file = NULL;

0x00401352 <+14>: movl $0x0,0x1c(%esp)

 4 file = fopen("values.txt", "r");

0x0040135a <+22>: movl $0x402030,0x4(%esp)

0x00401362 <+30>: movl $0x402032,(%esp)

0x00401369 <+37>: call 0x401c90 <fopen>

0x0040136e <+42>: mov %eax,0x1c(%esp)

 ...

 17 }

0x004013f5 <+177>: leave

0x004013f6 <+178>: ret

 End of assembler dump.

Most common instructions/structures

• Most common ASM instructions

– Load/Store from to registers: MOV, LEA

– Arithmetic: ADD, INC…

– Relational: CMP, TEST

– Jumps: JMP, J*

– Functions: CALL, RET

• Example of typical structures (C ASM)

– Conditional jump, for loop, function call…

– Familiarize via mixed source code/assembler in IDE

– Be aware of debug/release differences

| PV204: Rootkits, RE

Compilation to bytecode (Java, C#)

• Source code compiled into intermediate bytecode

– Java bytecode,.NET CLI ...

• Intermediate code interpreted by virtual machine

• Just-in-time compilation

– Intermediate code is compiled by VM into native code

– Improve performance significantly

– Relevant for dynamic analysis, not for static analysis

• Usually easier to understand then assembler code

| PV204: Rootkits, RE

REGISTRY VS. STACK-BASED

EXECUTION

| PV204: Rootkits, RE

Registry-based execution

1. Values loaded (mov) from RAM to CPU registers

2. CPU operation (add, inc, test…) is executed

3. Resulting value is stored back (mov) to RAM

• Name of the registers

– EAX 32bit, AX 16bit, AH/AL 8bit

– EIP ... next address to execute (instruction pointer)

– EBX ... usually loop counter

• Registers

– Z – zero flag, C – carry flag, S – sign flag…

| PV204: Rootkits, RE

Add two numbers from file (HDD)

1. Read values from HDD into RAM memory
 fscanf(file, "%d", &value);

2. Move value from RAM memory to CPU registry
 MOV 0x48(%esp),%eax

 MOV 0x44(%esp),%edx

3. Execute CPU instruction (e.g., ADD)
 ADD %edx,%eax

4. Transfer result from CPU register to RAM memory
 MOV %eax, 0x48(%esp)

5. Save result from RAM memory to file
 fprintf(file, "%d", value);

| PV204: Rootkits, RE

out.txt

"30"

10

20

30

30

20

in.txt

"10 20"

10

v
a
l
u
e

=

v
a
l
u
e

+

v
a
l
u
e
2
;

Stack-based execution

• Bytecode contains sequence of operations

• Bytecode contains constants

• All intermediate values stored on stack

• Interpret:

1. Reads next operation from bytecode

2. Pop operand(s) for next operation from top of stack

3. Executes operation

4. Push result of operation on top of stack

• No registers are used

– all operands for current operation at the top of the stack

| PV204: Rootkits, RE

Example: JavaCard bytecode

| PV204: Rootkits, RE

// ENCRYPT INCOMING BUFFER

 void Encrypt(APDU apdu) {

 byte[] apdubuf = apdu.getBuffer();

 short dataLen = apdu.setIncomingAndReceive();

 short i;

 // CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)

 if ((dataLen % 8) != 0)

 ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD);

 // ENCRYPT INCOMING BUFFER

 m_encryptCipher.doFinal(apdubuf, ISO7816.OFFSET_CDATA, dataLen,

 m_ramArray, (short) 0);

 // COPY ENCRYPTED DATA INTO OUTGOING BUFFER

 Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf,

 ISO7816.OFFSET_CDATA, dataLen);

 // SEND OUTGOING BUFFER

 apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, dataLen);

 }

.method Encrypt(Ljavacard/framework/APDU;)V 129 {
 .stack 6;
 .locals 3;
 .descriptor Ljavacard/framework/APDU; 0.10;
L0: aload_1;
 invokevirtual 30;
 astore_2;
 aload_1;
 invokevirtual 42;
 sstore_3;
 sload_3;
 bspush 8;
 srem;
 ifeq L2;
L1: sspush 26384;
 invokestatic 41;
 goto L2;
L2: getfield_a_this 1;
 aload_2;
 sconst_5;
 sload_3;
 getfield_a_this 10;
 sconst_0;
 invokevirtual 43;
 pop;
 getfield_a_this 10;
 sconst_0;
 aload_2;
 sconst_5;
 sload_3;
 invokestatic 44;
 pop;
 aload_1;
 sconst_5;
 sload_3;
 invokevirtual 45;
 return;
}

Resulting JavaCard bytecode

Original JavaCard source code

DISASSEMBLING

Recovering information from binary executables

| PV204: Rootkits, RE

Disassembling of native binaries

• Reversing process of compilation

– Back from native code to ASM

• Compilation/assembly is loose process:

– Variable/function names

– Unused structures

– Performance optimization applied during compilation

• Wide range of native platforms

– Differences in support and performance of disassemblers

• Bytecode is already on the level of “disassembled”

binaries (usually easier to understand)

| PV204: Rootkits, RE

Structured code vs. sequence of executed ops

1. Structured code contains code for all branches

– runnable binary/bytecode

• Information loss in compiled binary

– Stripped metadata and debugging symbols

– Compiler optimizations

2. Sequence of executed instructions only from

branches taken

– E.g., power analysis of smart card

| PV204: Rootkits, RE

Structured code vs. sequence of executed ops

| PV204 Trusted element 25.2.2016

(source code)

m_ram1[0] = (byte) (m_ram1[0] % 1);

(bytecode)

getfield_a_this 0;

sconst_0;

baload;

sconst_1;

srem;

bastore;

(power trace)

compiler oscilloscope

55

Bytecode reconstruction (partial bytecode)

…; sconst_???; baload; sconst_???; srem; bastore;…

Tool: OllyDbg

| PV204: Rootkits, RE

• Free disassembler and binary debugger

– Works with Windows 32b binaries only

– OllyDbg 64b version in development

• Easy to start with, many tutorials

• Designed to make changes in binary easy

– Change of jumps/data (valid PE is recreated)

• http://www.ollydbg.de/

http://www.ollydbg.de/

Tool: IDA Pro

• Interactive Disassembler is legendary full-fledged

disassembler with ability to disassemble many

different platforms

• Free version available for non-commercial uses

– http://www.hex-rays.com/idapro/idadownfreeware.htm

• Free version disassemble only Windows binaries

• Very nice visualization and debugger feature

(similar as OllyDbg)

| PV204: Rootkits, RE

http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.hex-rays.com/idapro/idadownfreeware.htm

Tool: Online disassembler (ODA)

• https://www.onlinedisassembler.com/odaweb/

| PV204: Rootkits, RE

https://www.onlinedisassembler.com/odaweb/

Tool: Hopper diassembler and debugger

• Linux and OS X reverse engineering tool

– Older version supported Windows, but not anymore

• http://www.hopperapp.com

• Additional support for on Objective-C

| PV204: Rootkits, RE

http://www.hopperapp.com/

• Graph representation of control flow

• Separated functions/blocks

– connection by jump instructions

Control flow graph

| PV204: Rootkits, RE

Decompilation

• Native code decompilation

– Decompiler produces source code from binary/ASM/bytecode code

– Decompiler needs to do disassembling first and then try to create

code that will in turn produce binary code you have at the beginning

– Resulting code will NOT contain information removed during

compilation (comments, function names, formatting...)

• Bytecode decompilation

– usually much easier (more information preserved)

– Mapping between source code and bytecode is less ambiguous

– Compilation of decompiled bytecode produces similar bytecode

| PV204: Rootkits, RE

Decompiler tools

• C/C++

– IDA

– REC Studio 4.0, http://www.backerstreet.com/rec/rec.htm

– Retargetable Decompiler, https://retdec.com/

• Java bytecode

– DJ Java Decompiler, http://neshkov.com/dj.html

– Java Decompiler, http://jd.benow.ca/

• .Net bytecode

– dotPeek, https://www.jetbrains.com/decompiler/

– ILSpy, http://ilspy.net/

| PV204: Rootkits, RE

http://www.backerstreet.com/rec/rec.htm
https://retdec.com/
http://neshkov.com/dj.html
http://jd.benow.ca/
https://www.jetbrains.com/decompiler/
http://ilspy.net/

Resources

• Reverse Engineering for Beginners

– http://beginners.re/Reverse_Engineering_for_Beginners-en.pdf

– Great resource, many examples, tutorials

• Tutorials for You: http://www.tuts4you.com

• The Reverse Code Engineering Community:

http://www.reverse-engineering.net/

• Disassembling tutorial

http://www.codeproject.com/KB/cpp/reversedisasm.aspx

| PV204: Rootkits, RE

http://beginners.re/Reverse_Engineering_for_Beginners-en.pdf
http://beginners.re/Reverse_Engineering_for_Beginners-en.pdf
http://beginners.re/Reverse_Engineering_for_Beginners-en.pdf
http://www.tuts4you.com/
http://www.reverse-engineering.net/
http://www.reverse-engineering.net/
http://www.reverse-engineering.net/
http://www.codeproject.com/KB/cpp/reversedisasm.aspx

HOW TO PROTECT

Protections Against Reverse Engineering

| PV204: Rootkits, RE

Standard vs. whitebox attacker model

(symmetric crypto example)

| PV204: Rootkits, RE

Classical obfuscation and its limits

• Time-limited protection

• Obfuscation is mostly based on obscurity

– add bogus jumps

– reorder related memory blocks

– transform code into equivalent one, but less readable

– pack binary into randomized virtual machine...

• Barak’s (im)possibility result (2001)

– family of functions that will always leak some information

– but practical implementation may exists for others

• Cannetti et. al. positive results for point functions

• Goldwasser et. al. negative result auxiliary result

| PV204: Rootkits, RE

CEF&CED

Computation with Encrypted Data and Encrypted Function

| PV204: Rootkits, RE

CEF

• Computation with Encrypted Function (CEF)

– A provides function F in form of P(F)

– P can be executed on B’s machine with B’s data D as P(D)

– B will not learn function F during computation

| PV204: Rootkits, RE

A B

CED

• Computation with Encrypted Data (CED)

– B provides encrypted data D as E(D) to A

– A is able to compute its F as F(E(D)) to produce E(F(D))

– A will not learn D

| PV204: Rootkits, RE

A B

CED via homomorphism

1. Convert your function into circuit with additions
(xor) and multiplications (and) only

2. Compute addition and/or multiplication “securely”

– an attacker can compute E(D1+D2) = E(D1)+E(D2)

– but cannot learn neither D1 nor D2

3. Execute whole circuit over encrypted data

• Partial homomorphic scheme

– either addition or multiplication is possible, but not both

• Fully homomorphic scheme

– both addition and multiplication (unlimited)

| PV204: Rootkits, RE

Partial homomorphic schemes

• Example with RSA (multiplication)

– E(d1).E(d2) = d1
e . d2

e mod m = (d1d2)
e mod m = E(d1d2)

• Example Goldwasser-Micali (addition)

– E(d1).E(d2) = xd1r1
2 . Xd2r2

2 = xd1+d2(r1r2)
2 = E(d1 d2)

• Limited to polynomial and rational functions

• Limited to only one type of operation (mult or add)

– or one type and very limited number of other type

• Slow – based on modular mult or exponentiation

– every operation equivalent to whole RSA operation

| PV204: Rootkits, RE

Fully homomorphic scheme - usages

• Outsourced cloud computing and storage

– FHE search, Private Database Queries

– protection of the query content

• Secure voting protocols

– yes/no vote, resulting decision

• Protection of proprietary info - MRI machines

– expensive algorithm analyzing MR data, HW protected

– central processing restricted due to private patient’s data

• …

 | PV204: Rootkits, RE

Fully homomorphic scheme (FHE)

• Holy grail - idea proposed in 1978 (Rivest et al.)

– both addition and multiplication securely

• But no scheme until 2009 (Gentry)!

– based on lattices over integers

– noisy FHE usable only for few operations

– combined with repair operation (enable to use it for more again)

| PV204: Rootkits, RE

Fully homomorphic scheme - practicality

• Not very practical (yet) (Gentry, 2009)

– 2.7GB key & 2h computation for every repair operation

– repair needed every ~10 multiplication

• FHE-AES implementation (Gentry, 2012)

– standard PC 37 minutes/block (but 256GB RAM)

• Gentry-Halevi FHE accelerated in HW (2014)

– GPU / ASICS, many blocks in parallel => 5 minutes/block

• Replacing AES with other cipher (Simon) (2014)

– 2 seconds/block

• Very active research area!

| PV204: Rootkits, RE

White-box attack resistant cryptography

• Problem limited from every cipher to symmetric

cryptography cipher only

– protects used cryptographic key (and data)

• Special implementation fully compatible with

standard AES/DES… 2002 (Chow et al.)

– series of lookups into pre-computed tables

• Implementation of AES which takes only data

– key is already embedded inside

– hard for an attacker to extract embedded key

– Distinction between key and implementation of algorithm

(AES) is removed

| PV204: Rootkits, RE

| PV204: Rootkits, RE

Whitebox transform

| PV204: Rootkits, RE

makeTable()

precompTable

data encrypted data

encrypt(data)

AES key

Environment under control

of an attacker

Environment outside control

of an attacker

WBACR Ciphers - pros

• Practically usable (size/speed)

– implementation size ~800KB (WBACR AES tables)

– speed ~MBs/sec (WBACRAES ~6.5MB/s vs. 220MB/s)

• Hard to extract embedded key

– Complexity semi-formally guaranteed (if scheme is secure)

– AES shown unsuitable (all WBARC AESes are broken)

• One can simulate asymmetric cryptography!

– implementation contains only encryption part of cipher

– until attacker extracts key, decryption is not possible

| PV204: Rootkits, RE

WBACR Ciphers - cons

• Implementation can be used as oracle (black box)

– attacker can supply inputs and obtain outputs

– even if she cannot extract the key

– (can be partially solved by I/O encodings)

• Problem of secure input/output

– protected is only cipher (e.g., AES), not code around

• Key is fixed and cannot be easily changed

• Successful cryptanalysis for several schemes

– several former schemes broken

– new techniques proposed

| PV204: Rootkits, RE

Space-Hard Ciphers

• Space-hard notion of WBACR ciphers

– How much can be fnc compressed after key extraction?

• WBACR AES=>16B key=>extreme compression (bad)

– Amount of code to extract to maintain functionality

• SPACE suite of space-hard ciphers

– Combination of l-line target heavy Feistel network and

precomputed lookup tables (e.g., by AES)

– Variable code size to exec time tradeoffs

Whitebox transform IS used in the wild

• Proprietary DRM systems

– details are usually not published

– AES-based functions, keyed hash functions, RSA, ECC...

– interconnection with surrounding code

• Chow at al. (2002) proposal made at Cloakware

– firmware protection solution

• Apple’s FairPlay & Brahms attack

• http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

• ...

| PV204: Rootkits, RE

http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

