

Vít Bukač
CROCS, Faculty of Informatics, Masaryk University
Supervisor IT Security, CIRT, Honeywell Global Security

PV204 Security Technologies

Black-box analysis of malware – Outline

- Lecture
 - Malware
 - Black-box principle
 - Tools
 - Automatic sandbox analysis
 - Document analysis
- Hands-on lab
 - Analysis of provided malware samples

Malware

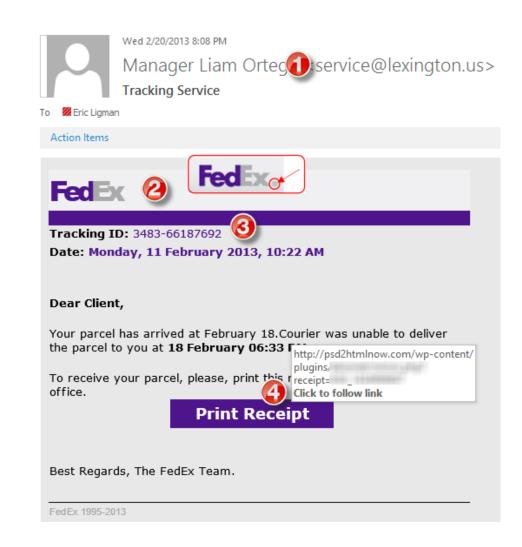
Malware types

- Trojan
- Fake AV
- Backdoor
- Remote Access Tool (RAT)
- Dropper
- Downloader
- Information stealer
- Keylogger

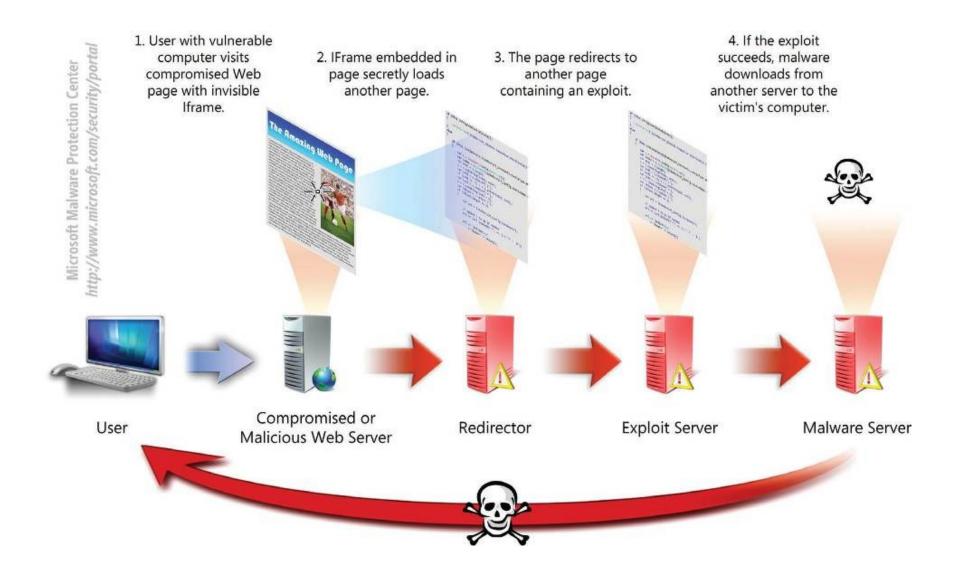
- Ransomware
- Sniffer
- Virus
- Worm
- Spyware
- Adware
- Botnet

Malware infection vectors

- Email
 - Link
 - Attachment
 - Link + document download
- Malicious website
 - Drive-by download
- USB
- Cracked software
- Worms


Infection vector – Phishing

Subject


- "Account blocked"
- "Package to be delivered"
- "Expiring subscription"
- "Invoice" / "Receipt" / "Parchment"

Signs

- Unexpected sender address (1)
- Graphic errors (2)
- Erroneous info (3)
- Links to unexpected URL (4)
- Links to same URL
- Generic salutation
- Use of threats, sense of urgency

Infection vector – Drive-by download

Infection vector – USB

Autoruns

• BadUSB (Q3 2014)

Fixes are not yet in sight

- Phison, the mostly discussed vendor, notes that they are already offering better chips. Their customers don't seem to chose them often
- Other affected vendors have stayed quiet
- No affected vendor offers patches or a threat advisory

No OS vendor response

No response

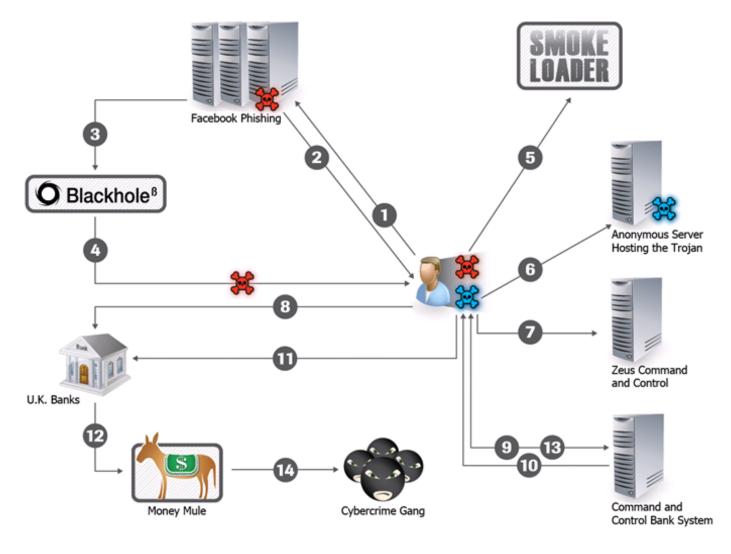
No response

peripheral

vendors

from chip

vendors


from

 OS implementers do not appear to work on solution; with one exception: FreeBSD adds an option to switch off USB enumeration

BadUSB malware becomes more realistic

- Sample exploit code for Phison USB 3 controllers was released by Adam Caudill and Brandon Wilson at Derbycon in September
- Only mitigation attempts right now are quick fixes such as GData's Keyboard Guard

Example – Zeus infection

Malware Kill Chain

Phase	Detect	Deny	Disrupt	Degrade	Deceive	Destroy
Reconnaissance	Web analytics	Firewall ACL				
Weaponization	NIDS	NIPS				
Delivery	Vigilant user	Proxy filter	In-line AV	Queuing		
Exploitation	HIDS	Patch	DEP			
Installation	HIDS	"chroot" jail	AV			
C2	NIDS	Firewall ACL	NIPS	Tarpit	DNS redirect	
Actions on Objectives	Audit log			Quality of Service	Honeypot	

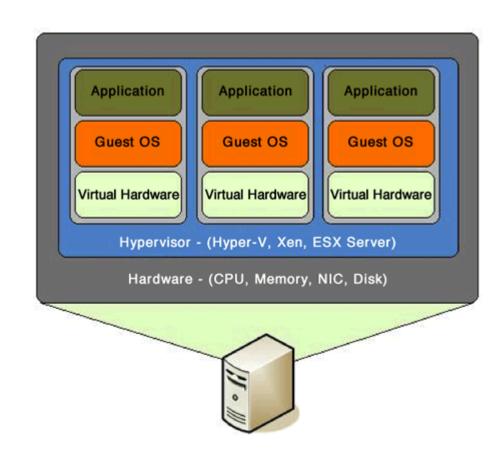
Black box malware analysis

Use cases

- What is the scope of compromise? What are 2nd stage callbacks?
- Communication between local file server and an unknown IP address in China has been observed. What process is responsible for the communication?
- Malware is creating temporary files. Where are these files located?
- Malware executable is created again after system reboot. How is it possible and what is causing it?
- A new type of malware has been spreading through internal network.
 How to quickly assess the malware capabilities? What is its purpose?
 Is it based on any well-known tool?

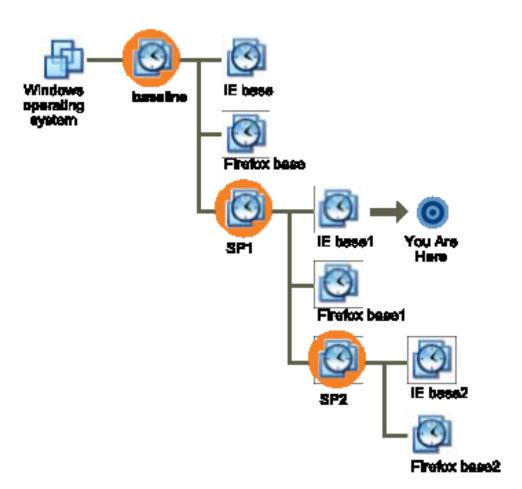
Black box malware analysis

- Dynamic analysis file is executed
- Analysis without internal knowledge
 - Observable inputs
 - Observable outputs
- Quick, simple
- Common monitoring tools
- Collected indicators about
 - Filenames, process names, process parent/child relationships, temporal relationships, domain names, IP addresses, registry keys, persistence methods, cleanup operations etc.
- Can be highly automated



Black box malware analysis – Basic

- 1. Prepare analysis environment
- 2. Create snapshot
- 3. Run monitoring tools
- 4. Run malware
- 5. Collect and observe interactions between malware and VM
- 6. Restore snapshot
- 7. Repeat 3-6 as needed

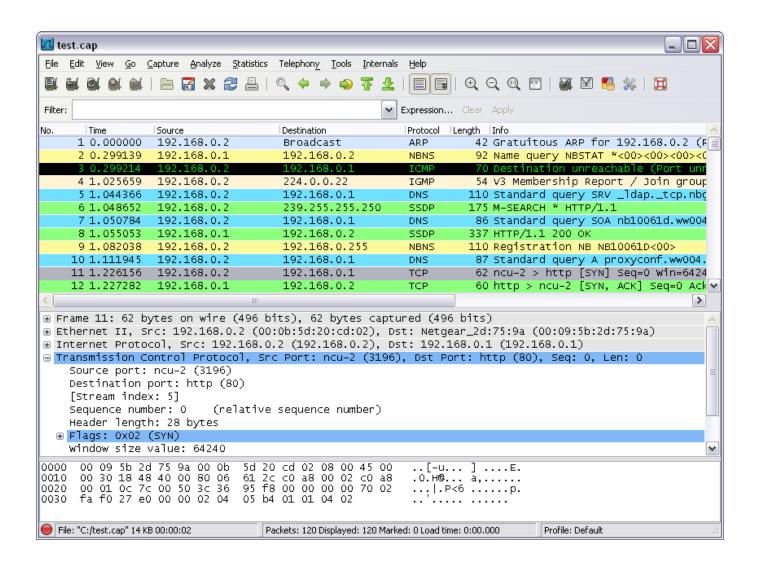

Analysis environment

- Virtual Machine
 - Limited/no connectivity
 - Virtualized services (DNS, HTTP,...)
 - Several VMs for various host types
- Software
 - Monitoring tools
 - Often exploited applications
- Risks
 - VM isolation breach
 - Malware inactivity in VM

Virtual machine snapshot

- Snapshots
 - Saved state of VM
 - Disk state, memory state
- Quick restoration of previous state

Tools

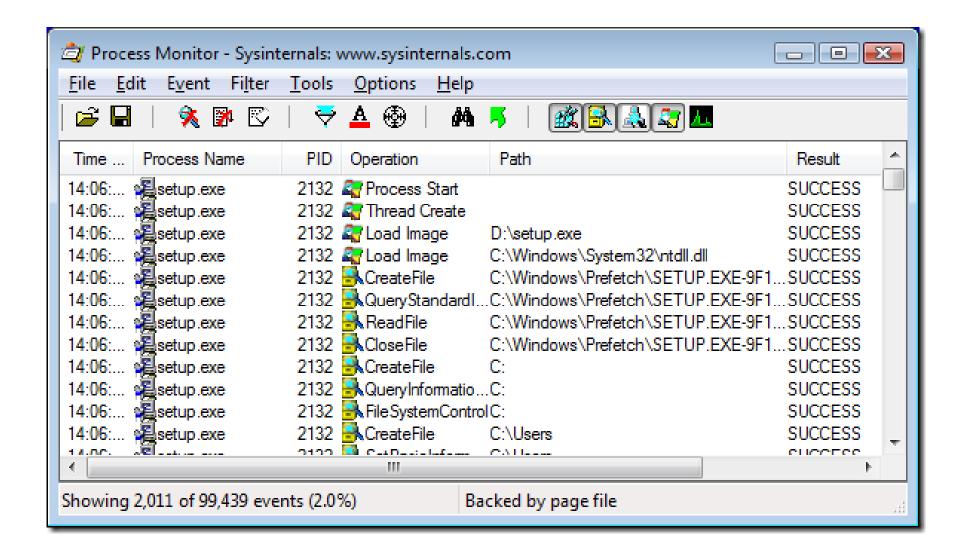

Network analysis

- Capturing sent/received packets
- Protocol dissection
- Promiscuous mode
- Tools
 - Tcpdump, Wireshark, NetworkMiner
- Indicators
 - Domain names, IP addresses, protocols, ports, HTTP parameters
- Q&A
 - Who is this program communicating with? What reputation does the partner have? What data is exchanged? Is it encrypted or obfuscated?

Network analysis – What to look for

- New established connections HTTP 80/8080
 - Direct calls for domains without DNS lookup
 - Random domain names (e.g., rpxiodffd.biz)
 - Suspicious domain names (e.g., gooogle.org)
 - Similarly looking domain names (e.g., osinstall.biz, swinstall.biz, swinstall.com)
- Outgoing portscans
- Ping/DNS request for well known services
 - Connection availability test
- Be aware of background OS/processes activities!

Example – Wireshark


File system

- Observing file accesses and modifications
- Background file manipulation
- Tools
 - Procmon, Handle
- Indicators
 - File names, folder names, order of actions, compromise spread through local system
- Q&A
 - Where is malware copied after the initial infection? What filenames are used?
 Where is the collected data stored?

File system – What to look for

- New file names & folders
 - New created files and folders
 - Batch files (.cmd, .bat, .vbs, .ps1)
 - Known favorite malware file names (e.g., 1.exe, test.exe, new.exe)
 - Known file names in uncommon folders (e.g., C:\Temp\svchost.exe)
 - Recycler
- Modifications of system files
- Temporary storage files, encrypted archives

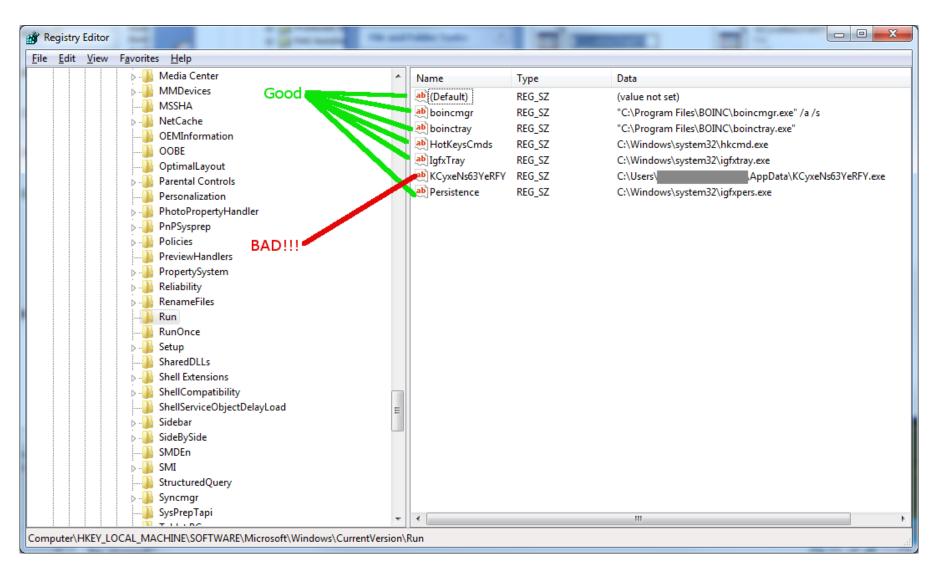
Example – Procmon

Registry

- Regedit
- RegRipper
- Autoruns

Registry – What to look for

- Well-known locations
 - Autorun locations
 - Task scheduler
- Changes tracking
- Keywords fulltext search
 - Filenames
 - Processes
 - Domain names



Submission Summary:

- The newly created Registry Values are:
 - ▶ [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Security Center]
 - UacDisableNotify = 0x00000001
 - ▶ [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Security Center\Svc]
 - AntiVirusOverride = 0x00000001
 - AntiVirusDisableNotify = 0x00000001
 - FirewallDisableNotify = 0x00000001
 - FirewallOverride = 0x00000001
 - UpdatesDisableNotify = 0x00000001
 - UacDisableNotify = 0x00000001

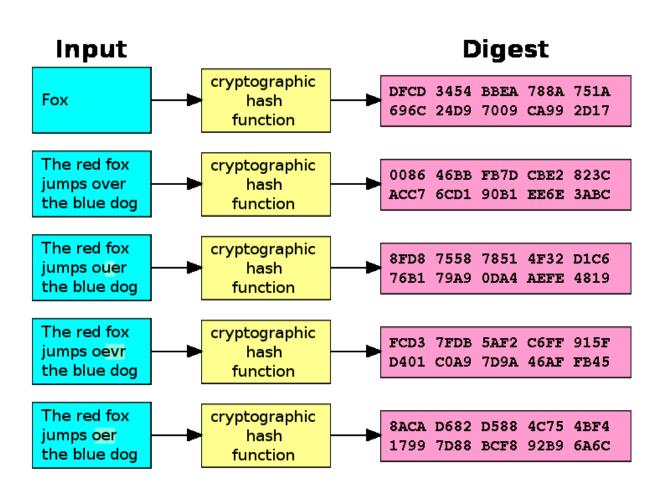
to disable notification of firewall, antivirus and/or update status through the Windows Security Center

Registry – Regedit

Processes

- Observing initial system compromise
- Processes parent/child relationships
- Tools
 - Process Explorer, Procmon
- Indicators
 - Process names, order of execution, dropper activity
- Q&A
 - What processes are run after malware binary is executed? Are batch files involved? Are there watcher processes?

Processes – What to look for


- Order of executables
 - Initial malware
 - Dropper/downloader
 - Persistence executable
 - Final malware
- Command line interpreters
 - cmd.exe
 - Powershell
 - Cscript, wscript

Example – Process Explorer

Process Explorer - Sysinternals: www.sysinternals.com						
File Options View Process Find Users Help						
Process	CPU	Working Set	Private Bytes	PID Description Company Name	Virus Total	
System Idle Process	97.65	24 K	0 K	0		
☐ 🔃 System	0.12	1 904 K	48 K	4		
Interrupts	0.48	0 K	0 K	n/a Hardware Interrupts and DPCs		
smss.exe		876 K	316 K	328	The system canno	
csrss.exe	< 0.01	3 980 K	1 680 K	540	The system canno	
csrss.exe	0.02	15 620 K	2 248 K	608	The system canno	
☐ ■ wininit.exe ☐ ■ wininit.exe		3 672 K	1 172 K	616	The system canno	
■ services.exe		8 816 K	5 716 K	664	The system canno	
svchost.exe svchost.exe		8 448 K	3 940 K	836 Host Process for Windows S Microsoft Corporation	<u>0/55</u>	
WmiPrvSE.exe		6 020 K	2 472 K	3792	The system canno	
WmiPrvSE.exe		5 204 K	2 124 K	2456	The system canno	
□ ■□ nvvsvc.exe		6 340 K	2 436 K	900 NVIDIA Driver Helper Servic NVIDIA Corporation	<u>0/53</u>	
NvXDSync.exe		15 328 K	6 028 K	1632	The system canno	
nvvsvc.exe	< 0.01	10 628 K	4 344 K	1660	The system canno	
svchost.exe		7 228 K	4 012 K	940 Host Process for Windows S Microsoft Corporation	<u>0/55</u>	
svchost.exe svchost.exe		21 848 K	22 828 K	1036 Host Process for Windows S Microsoft Corporation	<u>0/55</u>	
audiodg.exe		14 836 K	15 696 K	4832	The system canno	
svchost.exe svchost.exe	< 0.01	13 940 K	7 048 K	1072 Host Process for Windows S Microsoft Corporation	<u>0/55</u>	
■ dwm.exe	0.18	34 232 K	31 748 K	2352 Desktop Window Manager Microsoft Corporation	<u>0/55</u>	
svchost.exe		11 328 K	6 320 K	1100 Host Process for Windows S Microsoft Corporation	<u>0/55</u>	
svchost.exe	< 0.01	35 972 K	22 256 K	1144 Host Process for Windows S Microsoft Corporation	0/55	

Executable file analysis

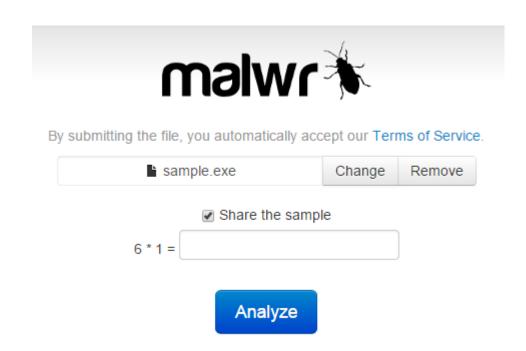
- Cryptographic hash
 - Hash function which is considered practically impossible to invert
 - Unique identification of file
 - Counter: Polymorphism
 - MD5, SHA1
- Fuzzy hash
 - Context triggered piecewise hash
 - Families of files
 - ssdeep
- Strings

Example – Strings

```
server.exe
AppData
4bcce4de98bcdb4d29f66c0fe1ffe002
hackerhani.no-ip.biz Domain name
Software\Microsoft\Windows\CurrentVersion\Run Persistence registry key
Software\
yy-MM-dd
33-33-33
Microsoft.
Windows
SystemDrive
                                        Commands to be executed
netsh firewall delete allowedprogram "
Software
cmd.exe /c ping 0 -n 2 & del "
SEE MASK NOZONECHECKS
netsh firewall add allowedprogram "
```

MD5: 5d347384ea978a96bc842ad9f29e95f2

Analysis

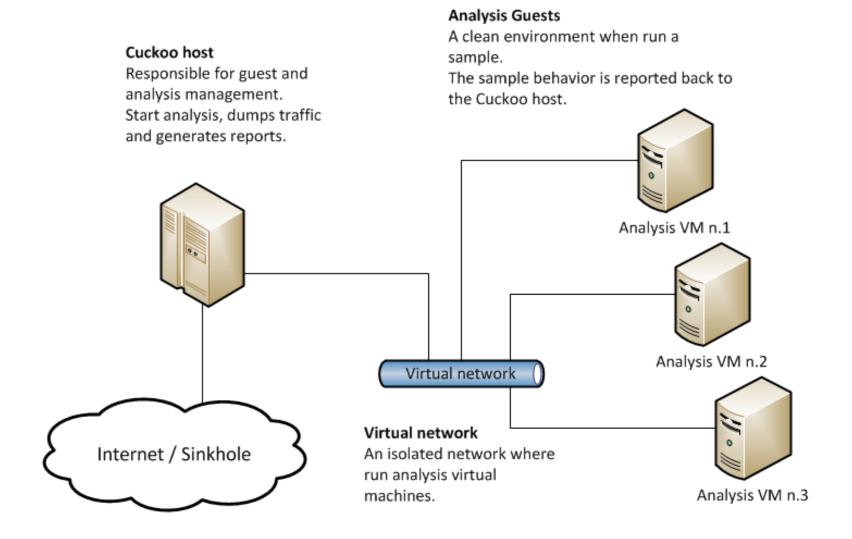

Black box analysis – indicator interpretation

- Practical examples of indicator linkage & black box analysis mindset
- Best practices
- Network analysis domain & IP verification, processes communicating
- Hash comparison
 - Collisions, same-hash files
- Behavior analysis
 - System processes, created processes, persistence
- File manipulation

Automated sandbox analysis

Automated sandboxing

- Automated
 - 1. Execute malware in sandbox
 - 2. Wait a few seconds
 - 3. Receive summary report
 - 4. Investigate report
- Non-interactive
- Known tools
 - Cuckoo, Norman, Anubis etc.



Cuckoo sandbox

- Open source malware analysis system
- Can analyze
 - Windows executables, DLLs, PDF documents, URLs, HTML files, PHP scripts, Visual Basic scripts, ZIP archives, Python files, etc.
- Modular, scriptable
- Full memory dump (for Volatility Framework)
- Django web interface
- Mongo (NoSQL) database

Cuckoo – Architecture

Cuckoo – GUI

Info File	Signatures Screenshots	Static Drop	ped Network	Behavior		
Category	Started On		Completed On		Duration	Cuckoo Version
FILE	2013-05-09 20:47:13		2013-05-09 20:49:56		163 seconds	0.5

File Details file indicators

File name	7351eaee39eb672c00c1dbe1e525a9e0
File size	303104 bytes
File type	PE32 executable (GUI) Intel 80386 Mono/.Net assembly, for MS Windows
CRC32	D45DD4BC
MD5	7351eaee39eb672c00c1dbe1e525a9e0
SHA1	f5f08f53f270f1fd044da1da9eea5b59794bc346
SHA256	078ae46df0b431c7d423568495ee01caaf9d024aaf880061c739cfeb4dbf4490
SHA512	950a5e85b4f161578660179eb2afe95798edaebf1b2998702c1250fea613c3b95b9143e643994ebad67e08702ddab47a6accb4b25c9f2d7a3d19fa3ca1b8cbf7
Ssdeep	None
PEID Signatures	None matched
Yara Signatures	
Antivirus Results	25/46 (collapse)

Internet sandbox services

- Public service
 - OpSEC issues
- Huge comparison database
- Exact match by hash
- Similarity search by keywords
- Malwr.com (public Cuckoo sandbox)
- VirusTotal.com
- ThreatExpert.com

Operational security (OpSec)

- Advanced attackers monitor victim's actions
 - Unique indicators visible on Google?
 - Attacker host monitoring for incoming traffic
 - Keywords search in mails, PDFs...
- Basics of OpSec
 - "Think before you act" mentality
 - Limited information sharing
 - Trace removal
- PassiveTotal.org

OpSec – Basic rules

- No ping
- No DNS lookup
- No accessing to suspicious domains
- No premature remediation steps (reboot, antivirus scan, OS reinstall)
- No upload of samples
- No indicator validation on external sources

NOT EVEN through 3rd parties

Anti-sandbox techniques

- Continuous development sandbox vs. anti-sandbox
- Malware inactive in analysis environment
- Tools presence detection (Wireshark, etc.)
- Virtualization detection
 - Registry (key existence, key value)
 - File system (file existence, drivers)
 - Processes (syscall response)
- Human presence detection
 - Mouse movement
 - Keyboard activity
 - File artefacts

```
Administrator: Command Prompt
                                                                                 _ | D | X
C:\Users\Administrator>systeminfo
Host Name:
                             Microsoft Windows Server 2008 R2 Enterprise
                             6.1.7601 Service Pack 1 Build 7601
   Manufacturer:
                             Microsoft Corporation
                             Primary Domain Controller
                             Multiprocessor Free
Registered Owner:
  gistered Organization:
                            55041-507-3862504-84593
5/28/2813 4-54-54 AM
Priginal Install Date:
                             11/6/2013, 9:01:24 Am
  stem Boot Time:
                             UMware, Inc.
System Manufacturer:
System Model:
                             UMware Virtual Platform
                             x64-based PC
System Type:
 rocessor(s):
                             [01]: Intel64 Family 6 Model 23 Stepping 10 GenuineIn
tel ~2925 Mhz
BIOS Version:
                             Phoenix Technologies LTD 6.00, 6/22/2012
                             C:\Windows
Windows Directory:
                             C:\Windows\system32
System Directory:
Boot Device:
                             \Device\HarddiskVolume1
                             en-us; English (United States)
```

Document analysis

Document analysis – Quick insight

- EXIF information
- File metadata
- Document sandboxing
- Document interpretation ambiguity
- Practical examples
 - Double extensions, different content in different viewers, code block obfuscation & hiding

Lab

Lab – Overview

- Hands-on experience of manual black-box analysis
- Guided analysis of selected malware samples
- Tools
 - Wireshark Network activity
 - Process Monitor File system activity, process creation
 - Autoruns Persistence
 - Regshot Registry changes
 - Process explorer Process map

Lab – Samples

- 2-3 samples from different malware families
 - Commodity malware Zeus, ZeroAccess, Generic Trojans,...
- Students will execute samples in virtual environment
 - Provided simple analysis virtual machine (Windows)
 - Indicators collected network, files, persistence
 - Discussion about interpretation of facts
- Homework
 - 2 samples for analysis independently
 - Write a cohesive report and present key information to the reader