
PV204 Security Technologies

Multilevel security: isolation, confinement, security kernels, …

Zdeněk Říha & Petr Švenda

I PV204 – Confinement, isolation, … 1

Confinement

• Confinement problem

• Isolation: virtual machines, sandboxes

• Covert channels

– Detection

– Mitigation

2

Confinement problem

Problem of preventing a server from leaking

information that the user of the service

considers confidential

Total isolation

• Processes cannot communicate.

• Processes cannot be observed.

• Then the process cannot leak information.

• In practice not practical or not possible

• Processes use observable resources as CPU,

filesystems, networks, …

Covert channels

A path of communication not designed

to be used for communication

Covert channel examples

• Filesystems

• CPU usage

• Disk usage

Example of a covert channel

• CPU usage

• During each second

– Process A either cycles (uses 100% of CPU) or leaves the

CPU idle

– Process B monitors the CPU usage

• High CPU usage => transmission of bit 1

• Low CPU usage => transmission of bit 0

– Noise from other processes

Covert channel types

• Covert channels use shared resources.

• Covert storage channel

– Based on an attribute of the shared resource

• Covert timing channel

– Based on temporal or ordering relationship among multiple

accesses to a shared resource

Key properties of covert channels

• Existence
– Whether the channel exists…

• Bandwidth
– How much information can be sent over the channel

• Noise
– Noiseless covert channels

• Available to sender and receiver only

– Noisy covert channels

• Also available to others

• Need to minimize interference

Rule of transitive confinement

If a confined process invokes a second

process, the second process must be as

confined as the first one.

Covert channel detection

• Covert channels require sharing of resources

– Sharing: which subjects can send, which subjects can

receive information using that resource

• Covert flow tree

– Porras, Kemmerer

• Model of the flow of the information through shared

resources

Illustration on the 12 following slides: Matt Bishop: Introduction to Computer Security, 2004

Example: Opening and locking files

• 3 attributes

– locked: file is locked?

– isopen: file is open?

– inuse: set of process ID having the file open

• Functions:

– read_acces(process, file): can process read file?

– empty(s): Is s an empty set?

– random(): return one of the arguments at random

Example: File routines

Example: Overview of attributes and operations

Function/

attributes

Lockfile Unlockfile Filelocked Openfile Fileopened

References locked,

inuse

locked locked locked,

inuse

inuse

Modifies locked inuse

Returns locked Inuse

Covert tree flow: Constructing the tree

• The tree will contain information about possible

attribute

– Modification

– Recognition

• Direct

• Inferred (via)

• Let’s construct the tree for the attribute locked

• The goal is to establish a covert storage channel via

the attribute locked

Covert tree flow: first step

Covert tree flow: second step

Covert tree flow: third step

Covert tree flow: fourth step

Covert tree flow: fifth step

Covert tree flow

• The final tree

– For the attribute

locked

How to recognize covert channels

• File locking example

– Find sequences of operations that modify attributes

• Example: (Lockfile), (Inlockfile)

– Find sequences of operations that recognize modifications

of attributes

• Example: (Filelocked), (Openfile, Fileopened)

Covert channel commands

• Sequences with first element from first list and

second element from second list

• File locking example

– Lockfile, then Filelocked

– Unlockfile, then Filelocked

– Lockfile, then Openfile, then Fileopened

– Unlockfile, then Openfile, then Fileopened

Covert channel mitigations

• Uniform/fixed amount of resources to each process.

– CPU

– Disk space

– Disk access (speed)

• Injecting randomness into using resources

• The aim is to reduce the bandwidth

– The drawback is often suboptimal performance

Isolation

• Resource sharing between users is the key cause

of security and privacy issues [James Anderson].

• Execution of programs must be controlled to build a

secure resource sharing system.

• The term “Reference Monitor” introduced many

years ago…

• Isolation closely related to the reference monitor

notion…

Taxonomy of isolation techniques

[Viswanathan]

• Language based techniques
– Type systems

• E.g. Java, Modula-3

– Certifying compilers/components

• E.g. Proof Carrying Code (PCC)

• Sandboxing techniques
– Instruction Set Architecture based

• E.g. Software Fault Isolation (SFI)

– Application Binary Interface based

• E.g. Janus, MAPBox

– Access Control based

• E.g. chroot, BSD jail
 http://www.arunviswanathan.com/survey_isolation_techniques.pdf

Taxonomy of isolation techniques

• Virtual Machines based isolation

– Process virtual machines

• E.g. Java VM

– Hypervisor virtual machines

• E.g. XEN, VMWare GSX Server

– Hosted virtual machines

• E.g. VMWare Workstation, MS Virtual PC

– HW virtual machines

• E.g. Intel VT-x, AMD-V, KVM

Taxonomy of isolation techniques

• OS-kernel based isolation

– The most traditional way of isolation

– E.g. common monolithic kernels, Mach microkernel

• Hardware based isolation

– Strongest form of isolation

– E.g. MMU (virtual address space)

Multilevel systems (MLS)

• Classification of data

• Security clearance of users & need to know

• Mandatory access control

• Mandatory security policy enforced.

• E.g. Bell-LaPadula model for data confidentiality

• E.g. Biba model for data integrity

MLS Systems

• MLS covered in PV157

• Self study:

– Anderson: Security engineering, chapter 8 (MLS):

– http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c08.pdf

– Mandatory reading: pages 239 – 250

– Additional reading: complete chapter 8 (+ pages 251-273)

– Additional reading: some of the classified Snowden docs

MLS systems

• Noninterference

– Goguen & Meseguer, 1982

– Actions on higher levels have no effect on what can be

seen on lower levels

• Nondeductibility

– Sutherland, 1986

– On lower levels nothing can be deduced with 100 percent

probability about the input on higher levels.

• Users on lower level can see actions of higher level

users, just not to understand them.

• But isn’t 99% probability sufficient anyway…

MLS: Bell-LaPadula

• Designed in 1973

• Aimed at data confidentiality

• Classification

– Of subjects (users) – based on their trustworthiness

– Of objects (data, files, clipboard) – based on their confidentiality

– Labels: Hierarchical level + set of categories

• Unclassified

• Confidential

• Secret

• Top Secret

– E.g. [Secret, {Crypto}]

MLS: Bell-LaPadula

• The Bell-LaPadula model enforces 2 properties:

– “Simple security property” - No Read Up (NRU)

• Processes cannot read data at higher levels (users are

not allowed to access more secret data than they are

cleared for)

– “* -property” – No Write Down (NWD)

• Processes cannot write data to lower levels (not to leak

confidential data to unclassified files, e.g. by malware)

• Bell-LaPadule is build on top of a discretionary

access control system (access rights matrix)

MLS: Weak points

• System Z
– Asking admin to declassify all files

• Overclassification
– High watermark principle

• Lowering classification
– Over time documents get less confidential

– “Trusted editor”, “Trusted subject”

• To be able to edit a secret document from a top secret
document

– Implementation of MLS systems

• And applications (adjustments for MLS needed)

– Using MLS systems – users

• Classified clipboard, …

Securing Linux Kernel

• SELinux (policy based) developed by NSA

• In 2001 inclusion in standard kernel rejected by

Linus Torvalds as SElinux is not the only and

ultimate security model.

• Then the Linux Security Modules (LSM) framework

was created.

• LSM inserts hooks at points in the kernel where a

user-level system call is about to result in access to

an important internal kernel object.

LSM framework

• Standard part of Linux kernel since 2.6

• Solving the problem of fine-tuning access control

and avoiding complex changes of the mainstream

Linux kernel.

• Modular approach.

• Currently accepted modules in the official Linux

kernel:

– AppArmour, SElinux, Smack, TOMOYO Linux

AppArmour

• Application Armour

• Implements Mandatory Access Control (MAC)

• Path name access control scheme to confine

applications

• Seen as a simpler alterative to SELinux

– Overhead estimated to 1-2% as opposed to 7%

SELinux

• Mandatory Access Control system supporting:

– least privilege, confidentiality, integrity, isolation,

information flow control; exploit containment

• Allows the composition of multiple security models

under a single analyzable policy

• Currently ships with: Type Enforcement, RBAC and

MLS/MCS

• Very flexible, meets very wide range of usage

scenarios

SMACK

• Simplified Mandatory Access Control Kernel

• Labeling of subjects and objects

– System labels define hierarchical limits

– Admin-defined labels can be any short string

– Policy is written as triples:

• Subject Object [–rwxa]

TOMOYO

• Path-based MAC system

• Supports automatic real-time policy generation

• Enforces previously observed behavior (in learning

mode)

• Domains are trees of process invocation

• Rules apply to domains

