PV204 Project: KeePassXC with Java Card

Adam Janovsky, Marie William Gabriel Konan, Matéj Plch

Introduction

This document describes design of all the parts of this project. Our work is also published on
GitHub in our applet/documentation repository https://github.com/Afforix/pv204_
project and our KeePassXC fork https://github.com/Afforix/keepassxc.

Java Card applet

The JavaCard applet is designed as follows. The password is stored in encrypted array
in EEPROM. The encryption key is generated randomly and stored inside Key object.
IV is also generated randomly. No-one (except the card itself) has the access to the key.
The password is encrypted by 128-bit AES in CBC mode. The reason for encryption is
that on the lecture it was noted that sensitive data should not be stored in arrays, but
rather in special objects. Yet, there is no safe object for 128-byte long password. The
unencrypted password is copied straight from/into incoming/outcoming APDU buffer.
The length of the password is stored unencrypted, again, on EEPROM. The applet has
only several practical methods, i.e. verifyPin, setPin, setPassword, sendPassword.
The last three are allowed to run only when the user is authenticated. The methods are
called based on the APDU commands, just as done in previous home assignments. We
allow selection of applet only if the PIN is not blocked, moreover we reset authentication
state on selection. No admin PIN is involved, therefore blocking the PIN (3 tries) results
in blocking the applet permanently. Initially, the PIN is set to 0000. The rest of the
documentation is contained straight in the Java Card applet.

KeePassXC

In the KeePassXC we have added a button for requesting the password from Java Card.
After successful selection of the applet user is asked for a PIN. The PIN dialog does not
allow user to insert other characters than digits and the input length is limited to 4. If
the PIN is correct, stored password is requested from the Java Card applet and filled in
KeePassXC to a password field. The Java Card button is available when unlocking a
database and when setting master password of a database.

https://github.com/Afforix/pv204_project
https://github.com/Afforix/pv204_project
https://github.com/Afforix/keepassxc

Secure channel design

We have decided to use the Secure remote password protocol in version 6, slightly modified
for use on Java Card, as precisely described in [1]. This protocol is based on [2] which
provides mutually authenticated secure channel with possible encryption, with use of
short password - PIN in our case. After the authentication, the Java Card version of
the protocol provides both integrity and confidentiality as well as encapsulation of whole
APDUs (to provide integrity of the APDU header). Further on, we shortly describe how
the protocol works in our enviroment. The card poses as server and the PC app poses
as client in the protocol. The initial phase of the protocol has to be done in the secure
environment. First, group in which we compute is established, i.e. the modulus n is
chosen and the generator g is computed. Further on, the PC app picks a random short
salt s and asks user for a PIN P. Then the PC app computes © = H(s, P), where H
stands for arbitrary secure hash function. Further v = ¢* is computed and (v, s) is stored
securely on the javaCard. The mutual authentication and shared secret is then achieved
with the following scheme

pcApp Card

A=g" 4 B=kv+g

u= H(A, B) L2 w=H(A B)

x = H(s, P)

S = (B — kg")* S = (Av*)

K = H(S) K = H(S)

M, = H(u, S) My (verify M)

(verify M) 2 My = H(u, My, S).

where all computations are performed modulo n and with respect to the following notation

..the group generator

..Random pcApp’s salt for the password

> »w

..Ephemeral private keys, generated randomly and not publicly revealed

e

N

2 < 8 ==

..Corresponding public keys

..Constant multiplier, computed from the has of the modulo and concatenated with g
..private key derived from the password and salt

.. The password verifier calculated from ¢*

..Random scrambling parameter, publicly revealed

..One-way hash function

= S

..Computed session key

The actual authentication happens in the last two steps and the resulting session secret
is K. Upon completion of the protocol, secure communication takes place. It has to be
noted that if any error during the protocol happens, whole process has to be stopped and
repeated. For the exact thread model, see [1].

2

Secure channel implementation

Unfortunately there was not enough time and manpower to design and implement the
secure channel protocol, so it is not used. We have at least found possible libraries
to use/get inspired. First of all, the applet which implements the protocol is part of
the article [1] and is fully available on github [3]. The corresponding C++ library
(implementing the original SRP-6 protocol) is available from [4].

References

1]

HOLZL, Michael, Endalkachew ASNAKE, Rene MAYRHOFER a ndMichael ROLAND.
A password-authenticated secure channel for App to Java Card applet communi-
cation. International Journal of Pervasive Computing and Communications [on-
line|. 2015, 11(4), 374-397 [cit. 2017-05-04]. DOI: 10.1108/1JPCC-09-2015-0032.
ISSN 1742-7371. Available from: http://www.emeraldinsight.com/doi/10.1108/
IJPCC-09-2015-0032

WU, Thomas D., et al. The Secure Remote Password Protocol. In: NDSS. 1998. p.
97-111.

HOLZL, Michael, Endalkachew ASNAKE, Rene MAYRHOFER and Michael ROLAND.
Java Card applet for SRP-6a password-authenticated secure channel to secure
elements/smartcards [online]. Available from: https://github.com/mobilesec/
secure-channel-srp6a-applet.

SLECHTA, Pavel. C++ library implementing The Stanford Secure Remote Password
Protocol - SRP (SRP6a) |online|. Available from: https://github.com/slechta/
DragonSRP.

http://www.emeraldinsight.com/doi/10.1108/IJPCC-09-2015-0032
http://www.emeraldinsight.com/doi/10.1108/IJPCC-09-2015-0032
https://github.com/mobilesec/secure-channel-srp6a-applet
https://github.com/mobilesec/secure-channel-srp6a-applet
https://github.com/slechta/DragonSRP
https://github.com/slechta/DragonSRP

