jpass-smartcard

Valentyn Kuznietsov, Petr Skyva, Zuzana Maté&jkova

OVERVIEW

The project is the fork of jpass (https://github.com/gaborbata/jpass) .

Repository of the project: https://github.com/ValentinKuznetsov/jpass-smartcard.

Features
1. Java card with applet instead of using master password

2. Secure channel between card and app
3. Bulk encryption for encrypting and decrypting database of password

SPECIFICATIONS

1. User can export the database by providing his smart card, instead of typing a password.
2. Upon the launch, the application asks for a smart card with a key, which will be used to
decrypt the database.
3. Smart card is locked by a factory-set PIN (use 1234)
The secure channel is established between the card and the desktop side, such that all
data is encrypted.
a. AES with zero IV is used
b. Unfortunately, the key which is used for the secure channel is hardcoded both on
the desktop side and the applet side; we almost managed to have Diffie-Hellman
working, but, unfortunately, due to an issue of RSA-decrypting on the card side

we, having spent many hours, failed to do so.

BUILDING

No extra-actions are required. Just pull the code and build.

For testing it on the real card, the source code should be tweaked: just replace true to false in the
following code:

22. this.card = new JavaCard(true):;

CardsManager.java

PROJECT STRUCTURE (important packages)

1. Applet package
a. JPassApplet - the applet which is on the card and used for bulk encryption.
b. SecureChannel -the additional layer between the applet process() method and
APDU'’s processing. Basically, it wraps (encrypts) all outgoing packets and
unwraps (decrypts) all incoming packets.

2. DiffieHellman

a. Has Diffie-Hellman implementation. Unfortunately, is not finished because of some

issue with modulo operation. (Description of this issue is omitted in this report)

3. jpass.data

a. DocumentHelper.java

i. basically, the new additional layer of enc/dec the database with a card was
added.

4. Changes to the Ul (not that important)
5. jpass.smartcard

a. APDUFactory - used for creating APDU requests.

b. CardsManager - singletone, has an instance of JavaCard. Provides APl to work
with the card. Basically, this API is a wrapper around JavaCard.

c. JavaCard - the class which performs APDU requests to the card and processing
the response.

Secure Channel
Secure channel is way of transferring data that is resistant to overhearing and tampering. We
implemented secure channel based on symmetric cryptography.

For key negotiation, we tried to implement Diffie-Hellman, but there were issues with deriving
shared secret between JavaCard and desktop application. Thus, unfortunately, now the secure
channel is based on hardcoded keys on both sides.

The implementation is in SecureChannel.java. There are two pairs of functions, wrap and unwrap
(two - for applet side, two - for desktop side). These functions are used to wrap(encrypt) APDUs
before sending to the card, unwrap(decrypt) on the card to process, wrap again the response,
and unwrap the response on the desktop side.

SecureChannel. java
JavaCard part
public short wrapResponseAPDU (short offset, short length)
- Wrap (encrypt) response APDU
- Offset where encryption starts
- Length how many bytes to encrypt
- Response codes are not encrypted (such as 90 00), only
data
public void unwrapCommandAPDU ()
- Unwrap (decrypt) incoming APDU
Desktop part
public byte[] encryptSend(byte[] buffer)
- Wrap (encrypt) dispatched APDU
- Buffer data part of dispatched APDU
- Only data part is encrypted, but not the instructions.
public byte[] decryptResponse (ResponseAPDU response)
- Unwrap (decrypt) received response APDU from card

For crypto operations the JavaCard library javacardx.crypto.Cipher. is used.
Hard coded private key on JavaCard is set in JPassApplet.java.

On desktop side private key is initiated in JavaCard.java in same way as in JavaCard in
constructor.

Diffie-Hellman

The implementation of the Diffie-Hellman protocol failed, because the generation of the shared
secret failed. Most likely, there was some issue with saving output of RSA (which was used for
modulo operations), such as signed values.

Desktop side

The original JPass applet is easy to use - It is quite intuitive. User creates entries in the database
by providing title, name, password, url and notes. He can export this database in the encrypted
form using the card; he can import the database as well (after validating PIN).

Firstly it is checked whether the card is connected, and if yes, user is challenged to enter PIN. If
the PIN is correct, he can choose name and location of the file to which he would like to store
encrypted database. The same flow applies for importing.

The instance of the card is encapsulated by the CardsManager.java class which is a singletone
and provides all necessary API to work with the card.

Applet side

The following instructions are supported:

INS VERIFYPIN = (byte) 0x11;
Accepts 4-byte pin and verifies it.

INS_SETPIN = (byte) 0x12;
Accepts a pin and sets it.

INS_ISPINUNLOCKED = (byte) 0x13;

Tells whether card is already unlocked with a PIN or not.

INS_CBC_BULK_INIT = (byte) 0x50;
Inits AES-CBC-PKCS5 bulk encryption. Accepts l6-byte IV.

INS _CBC_BULK PROCESS = (byte) 0x51;
Processes a 16-byte chunk. Accepts 16 (or less)-byte chunk, and the
mode of operation (01 for encryption, 02 for decryption)

INS_CBC_BULK FINISH = (byte) 0x52;
Finalizes the BULK decryption. Returns padding block, if needed
(encryption), or unpadded last block (if decryption)

INS DH INIT = (byte) 0x60;

Inits the DH protocol with some private key, P and G.
INS_DH_GET_Y_ PART = (byte) 0x61;

Obtains first part of Y for DH protocol.

INS DH GET Y PART2 = (byte) 0x65;

Obtains second part of Y for DH protocol.

INS DH SET = (byte) 0x62;

Sets Y for the opposite party.

INS DH FINAL = (byte) 0x63;

Finalizes the DH protocol (sides should have shared secret at that
point)

Please also see APDUFactory.java in jpass.smartcard package for better understanding of the
APDUs.

Feel free to contact any of us if you need help:

@valentynkuznietsov (telegram)

Valentyn.Kuznietsov - Skype, and | will share the contact with another team members, if you'd
like.

References and reused source code:
PKCS5Padding.java

Initial implementation was taken here and ported to the JavaCard Platform:
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/com/sun/crypto/pr
ovider/PKCS5Padding.java#PKCS5Padding.padWithLen%28byte%5B%5D%2Cint%2Cint%29

(In particular, conversions to (short) were added, and some changes in the API)

SecureChannel.java

Initial implementation was taken here:
https://github.com/jderuiter/javacard-openpgpcard/blob/master/src/openpgpcard/OpenPGPSecur
eMessaging.java

(But, more than 90% of the source code was removed completely or reworked)

Diffie-Hellman.java
Initial implementation was taken here:

https://github.com/ASKGLab/DHApplet/blob/master/src/dhapplet/DH.java

TerminalManager.java
Was initially CardManager.java by Petr Svenda, provided during the semester.

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/com/sun/crypto/provider/PKCS5Padding.java#PKCS5Padding.padWithLen%28byte%5B%5D%2Cint%2Cint%29
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/com/sun/crypto/provider/PKCS5Padding.java#PKCS5Padding.padWithLen%28byte%5B%5D%2Cint%2Cint%29
https://github.com/ASKGLab/DHApplet/blob/master/src/dhapplet/DH.java
https://github.com/jderuiter/javacard-openpgpcard/blob/master/src/openpgpcard/OpenPGPSecureMessaging.java
https://github.com/jderuiter/javacard-openpgpcard/blob/master/src/openpgpcard/OpenPGPSecureMessaging.java

