Report on
AESCrypt file Encryption Software
JavaCard based security over Secure Channel

Balaji Kommuru UCO 459208
Surendra Sharma UCO 459205
Ashwin Yakkundi UCO 459202

May 4, 2017

1 Introduction

1.1 AESCrypt

AES Crypt is a file encryption software available on several operating systems that uses the
industry standard Advanced Encryption Standard (AES) to easily and securely encrypt files.

On the command line, one can execute the ”aescrypt” command with name of the file

Advanced File Encryption for Windows, Mac,
105, Android, Linux, PHP, and Java.

Reliable, trusted, and completely open source software.

AES Crypt

and password to use to encrypt or decrypt. For Java and C# developers, there is also a
Java and C# library available that can read and write AES-encrypted files from within
your application.

Using a powerful 256-bit encryption algorithm, AES Crypt can safely secure your most
sensitive files. Once a file is encrypted, you do not have to worry about a person reading
your sensitive information, as an encrypted file is completely useless without the password.
It simply cannot be read.

AES Crypt is the perfect tool for anyone who carries sensitive information with them while
traveling, uploads sensitive files to servers on the Internet, or wishes to protect sensitive in-
formation from being stolen from the home or office. AES Crypt is also the perfect solution
for those who wish to backup information and store that data at a bank, in a cloud-based
storage service, and any place where sensitive files might be accessible by someone else.

1.2 Security Issues of AESCrypt

The main problem of the AESCrypt is it takes the password from the user in plaintext
format and processes as it is. This is not adviceable as it can leak the information without
the knowledge of the user. This is shown in the figure: AESCrypt-FExisting.

AESCrypt

i /pe your password
‘ ‘—’J' s

@Gﬂ

ENCRYPTIGN

Figure 1: AESCrypt-Existing

The AESCrypt prompts for a password from the user. Alternatively, the application
reads a password file stored on the computer. The file is encrypted with AES-256-CBC and
the encrypted file with .aes extension is stored back on the computer. The password stored
in the memory of the user is liable for loss while the password stored in the passowrd file is
vulnerable.

Although the AES-256 encryption is used, the confidentiality of the file relies only on the
strength of the Password chosen by the user, which may be with much less entropy. The
application is vulnerable to brute force attacks against smart dictionary attacks considering
also common usage of digits or special characters in human-created passwords. The pass-
word stored in the memory of the user is liable for loss while the password stored in the

passowrd file is vulnerable.

1.3 Security Enhancement using JavaCard HSM

JavaCard based HSM(Hardware Security Module) solution is implemented to improve the
security of the AESCrypt software. The design of this solution is ensures the security in
storages, security in transit, Authentication and Integrity of the application. The password
handling is done through the Java Card as shown in the figure A ESCrypt-modified.

ENCRYPTI

&
|
&5 =

:

Figure 2: AESCrypt-Modified

The details of the design and implementaion is explained in the following sections.

2 Setting the Keys in Trusted Environment

2.1 Setting of PIN
2.1.1 PIN setting with APDU

PIN of 4 digit size is set using the APDU. This is done in trusted environment. This is
done before the card is given to perticular user. Generally it is done by administrators or
manufacturers of card.

2.1.2 PIN Verification with APDU

The PIN already set is verified for the correct using this process. We are checking the PIN
set erlier by us as a verification.

PC APDU JC

Set User PIN

\ 4

Set Long Term Key

A 4

Set Appn Pswd

\ 4

Figure: Setting Long Term Key & App Password in JavaCard

3 How many ports have been used by attacker to launch the
attack?

3.1 Setting of the Long Term Key

Long Term Key of 16 bytes size is set in the trusted environment. This Key is statically
defined in the code. It is once set is permonant for the card life time. It is read only Key.
This is done using the keytype.setKey function. Like wise reading the key is done using
the keytype.getKey function. This process is dipicted in the figure Setting the Long term
key and app password in javacard.

4 Session Key establishment using the Secure Channel

Using the Long Term Key, Session Key establishment is done securely. Initially Nounces
are generated at both PC(Personel Computer) and JC(JavaCard). Both components has
unique IDs as PCID and JCID. They are used for mutual authentication.

PC generates the nonce, encrypts including with PCID with I'V; using the long term
Key and sends it to JC. At other end JC decrypts with long term key, verifies the PCID
and extracts the PC nonce.

JC generates the nonce, encrypts including with PCID and PC nonce with IV using the
long term Key and sends it to PC. At other end PC decrypts with long term key, verifies
the PCID and PC nonce recieved and extracts the JC nonce.

Now both ends got the nonces of both and generates session keys by exclusive-or of them.
And now PC sends the generated session Key with long term key with I'V3 and sends to
JC. JC decrypts and verifie the sessions key recieved with its generated one. If they tally,

PC APDU JC

Ex.(PCID | Np¢) | IV, Decrypt

Generate Npc »| Verify PCID
Extract Npe

Decrypt Ex (JCID|Npc | Nyc) | IV

Verify JCID , Npe | ke [Npc | Nyc) | IV Generate N,¢

Extract Nyc

SN | ErlNec ® Nuc) | 1Vg SKyc = Neo @ Nio

Ne Verify SKpe

Figure: Secure Session Key Establishment

communication can be done securely with using this session keys by both ends. This process
is dipicted in the figure SessionKeyEstablishment

5 Password retrieval through the secure channel

The generated session Keys are used to exchange the password securely. For getting the
password , PIN verification is done. PIN and Password are encrypted through the secure
channel always. Integrity of the Channel protected by SHA2 based HMAC.

For getting the password, PC initially encrypts PIN with session key, and calculates
HMAC with IV; and sends along with APDU. JC decrypts and verifies with HMACed
value and PIN. Then JC encrypts the Password with session key, and calculates HMAC
with I'V5 and sends along with APDU. PC decrypts and verifies with HMACed value and
extracts the password.

6 Conclusion

The design of components Trusted environment setup for security in storage, Secure channel
for security in transit, mutual authentication and integrity checking with HMAC all together
enhances the security of the AESCrypt.

7 References

1. https://github.com/FreedomBen/aescrypt/tree/master/java

2. https://docs.oracle.com/javacard/3.0.5/api/javacardx/crypto/package-frame.html

3. https://docs.oracle.com/javacard/3.0.5/api/javacardx/crypto/Cipher.html

4. https://docs.oracle.com/javacard/3.0.5/api/javacard/security /package-summary.html

5. https://en.wikipedia.org/wiki/Secure_channel

6. https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

7. https://en.wikipedia.org/wiki/Key_exchange

9. https://github.com/maxashwin/pv204/tree/Mod-ss - url of Code of Modified
AESCrypt

