
HSM Project
JavaCard Applet & SCP

Documentation

Deniz Agaoglu
Jerguš Lysý 1.5. 2017

1

Table of Contents
1 Introduction...3

1.1 Design..3
1.2 Security..3
1.3 Applet...4

2 Implementation..5
2.1 Instructions...5

2.1.1 INS_SENDKEY (0x50)...5
2.1.2 INS_CHANGEKEY (0x51)...5
2.1.3 INS_SETPIN (0x52)..5
2.1.4 INS_VERIFYPIN (0x53)...5
2.1.5 INS_VERIFYPUK (0x54)...6
2.1.6 INS_RUN (0x55)...6
2.1.7 INS_SETPUK (0x56)..6

2.2 States..6
2.3 Summary..7

3 Secure channel...8

2

1 Introduction
For the purposes of the HSM project the JavaCard applet has to be implemented as the working key
provisioner for the application. This document shall specify this part of the project in more detail as
well as the implemented applet.

1.1 Design
The aim of the applet is to provide a cryptographic key that is used by the application. The key
transmitting is made in a rather secure way, which consists of the following main features:

• Secure channel opened on JavaCard using three cryptographic keys.

• Key protected by a PIN (required from the application) and PUK (set during applet

installation).

• Protected from running any applet functions by using automata-based programming

approach.

All of these three concepts are introduced in the applet and are discussed in the following sections.
The implementation of these features is described in the next chapter. The last two chapters
presents the usage of security domain and secure channel of Global Platform.

1.2 Security
For the security of the overall project the secure channel must be initialized between the application
and the applet. These are the goals of using such a secure channel:

• Mutual authentication of the JavaCard a the application.

• Integrity and confidentiality of APDUs.

All of the goals are reached by using the Security Domain that has been already installed inside the
JavaCard. Using this it is only necessary to provide mandatory keys and open a secure channel
between the card and the application. Keys can be sent into the card using GP Pro, while the secure
channel can be open using the GP API. The channel is then open on the application side using
functions from GP Pro. The communication is then sent through this channel to the Security
Domain and then forwarded to the applet itself where it is unpacked.

3

1.3 Applet
The applet provides a key for an application. For this reason it stores the key and provides functions
for setting/getting this key out of the card. This key has to be protected from malicious users and the
applet has to protected from running unprivileged functions. PIN, PUK and and automata-based
programming are presented in the applet to reach the desired protection.

• PIN is used every time the user requires to send the key from card to the application. This

PIN firstly set by the user using the application. Then it can be changed only when verified
with this PIN again.

• PUK is used when the user fails to verify by PIN. This can happen in a case that the user ran

out of the available PIN tries. PUK is set during the FACTORY state of the applet and is not
supposed to be changed. If the user verifies with the PUK code then the applet is changed to
NORMAL state.

• Automata-based programming provides a way to call functions inside the applet in a secure

way. There are several states inside the applet. Each state specifies what functions can be
called. Example of such an approach is to have a factory state. The applet is in this state
right after the applet has been installed. With this state set inside the card the user can send
change, generate or send a key. But no other functionality is provided. For the PIN
verification the other state has to be set. That is reached by calling a certain function. Using
this approach the calling of functions is watched and thus is protected.

4

2 Implementation
Before describing the implementation details it is good to note that the entire project, as well as the
applet was created in Java. The applet is built with JavaCard Kit 2.2.2 and Global Platform 2.1.1
library.

Before installing the applet the PUK has to be prepared. This PUK will be then set as a parameter of
install command and then set to the PUK structure inside constructor of an applet. PUK is not
changeable from the applet and thus has to be saved.

2.1 Instructions
The applet implements several instructions that can be run. To be able to run then it is also required
to set the APDU class field to the value 0xB0, which specifies this applet.

2.1.1 INS_SENDKEY (0x50)

Instruction calls the function sendKey and is the response APDU will contain the key bytes. This
function can be run only if the PIN was previous verified or the applet is in FACTORY state. If the
applet is in the FACTORY state then the function does not change it. If the card is in
AUTHORIZED state then the state is changed to NORMAL. The instruction does not accept any
data or parameters.

2.1.2 INS_CHANGEKEY (0x51)

Instruction calls the function changeKey and does not returns any data. This function can be run
only in FACTORY state and is performed when the key needs to be changed. The new key is either
accepted in the APDU from the application – the parameter P1 is set to 0 – or is generated a new
one using on-card RNG – the parameter P1 is set to 1.

2.1.3 INS_SETPIN (0x52)

Instruction calls the function setPIN. It requires data to represent the PIN that is to be set and can be
run only when the applet is in the state SETUP or AUTHORIZED. If the state is SETUP, then there
was no previous PIN set and thus needs to be set. If the state was AUTHORIZED then PIN was
already set and has to be verified to change. The function changed the state of the applet to
NORMAL.

2.1.4 INS_VERIFYPIN (0x53)

Instruction calls the function verifyPIN. This instruction can be run only when the applet is in state
NORMAL. It requires data to be sent in the APDU that represents the PIN being verified. The
function can then change the state to either AUTHORIZED or FAILED. The former of the two is
set when verification passed successfully, while the later one is set when PIN tries are exhausted.
After successful verification the PIN counter is reseted.

5

2.1.5 INS_VERIFYPUK (0x54)

Instruction calls the function verifyPUK. This instruction can be run only when the applet is in the
state FAILED or NORMAL. In the case of former one it means that the verification of PIN has
failed and user has to authorize with PUK. If the state of applet is NORMAL then user has to set
PUK and if the verification is successful then the state is changed to FACTORY, otherwise the card
is locked.

2.1.6 INS_RUN (0x55)

Instruction calls the function run. This function is called whenever the card has been configured and
is about to be used. This function changes the state from FACTORY to SETUP and prepares the
card to receive and set the first PIN.

2.1.7 INS_SETPUK (0x56)

Instruction calls the function setpuk. This function can only be used in FACTORY state and should
be used only once to set the PUK code before the card it given to user to be normally used. This
function does not change state.

2.2 States
There are several states of the applet. These states are implemented as constant values which are
assigned to a state variable during the applet operation. The following states are available:

• FACTORY – represents the state of the applet after the installation. In this state the user can

change or generate a new key as well as send it out. It is also convenient to have an option to
get into this state once user needs to change the key – after successful PUK verification,
applet state is changed to FACTORY (this holds only when the previous state was
NORMAL).

• SETUP – once the function run is called and successfully ended, the state changes to

SETUP. This is the state when PIN needs to be set for the first time before applet can
operate normally. This state can be reached only from the FACTORY state.

• NORMAL – after the PIN was set the state is changed from SETUP to NORMAL. This

state represents a normal operating mode of the applet and during this state functions such as
verifyPIN and verifyPUK can be run.

• AUTHORIZED – once the application successfully verifies with the PIN the applet

changes to the this state and the function sendKey can be called to transmit the key to the
application. After this operation the state changes back to NORMAL.

• FAILED – if the verification of PIN fails due to exhausted PIN tries the state FAILED is

set. During this state the user needs to verify with PUK. If this verification is successful then
the state is changed to AUTHORIZED and counter of the PIN and PUK are reseted.

• LOCKED – after user fails with PUK verification the state is changed to LOCKED. This

6

state is not possible to change and is tested in the select function of applet – applet will not
be selected. The automaton with described states is displayed in the following figure.

2.3 Summary
The following table summarize all the instructions and their relation to the applet.

INS_ Code P1 P2 INPUT DATA IN OUTPUT DATA OUT From state To state

SENDKEY 0x50 - - N - Y key AUTH,FACT NORM,FACT

CHANGEKEY 0x51 0/1 - Y -/key N - FACT FACT

SETPIN 0x52 - - Y PIN N - SETUP,AUTH NORM

VERIFYPIN 0x53 - - Y PIN N - NORM AUTH

VERIFYPUK 0x54 - - Y PUK N - NORM,FAIL AUTH,FACT

RUN 0x55 - - N - N - FACT SETUP

SETPUK 0x56 - - Y PUK N - FACT FACT

7

Figure 1: Automaton with states of the applet. Notice it does not display loops – only functions
changing state.

3 Secure channel
Secure channel functions and protocols of Global Platform has been used to create a
secure environment between JavaCard and the PasswordSafe application. As in describe
in the specifications of GP, secure channel of our project has been divided into the
following phases : i) Secure Channel Initialization, ii) Secure Channel Operation and iii)
Secure Channel Termination.

i) We begin at this phase when the JavaCard is connected. Information about channel is
gathered after plugging the JavaCard and then a secure communication is needed.
Channel and secure channel are initialized in APDU of the card and in the application.

ii) Bidirectional secure communication between the application and the JavaCard is
established considering authenticity, confidentiality and integrity. A secure conservation is
achieved by 1) Key Establishment Protocol, 2) Key Derivation Function, 3) Authenticated
Encryption and 4) Authenticated Decryption. To generate shared session key in each
conversation, Key Establishment Protocol is used in APDU (thus, trusted server is the
JavaCard) and shared with the application via Key Transportation Protocol. Since we need
 different keys for ENC/MAC algorithms, we needed to use a cryptographic hash function.
To achieve this, Key Derivation Function is used to produce AES types of keys (since it is
longer, symmetric and provides confidentiality) from the session key. To protect the
confidentiality and integrity, block cipher and MAC should be encapsulated to be sent to
the application as decrypted secret key. Lastly, Authenticated Decryption by the application
is applied to recover plain text message from authenticated cipher text coming from the
JavaCard if MAC is verified.

Since these 4 parts of secure communication are what we expect, we used '02' SCP
version which provides AES based cryptography for ENC/DEC/MAC communication.
Thus, OpenSecureChannel (session keys, host challenge, SCP version, security level)
function has been called by null session key, null host challenge, '02' SCP version and
SECURED security level.

iii) Communication terminates when security level is set to NO_SECURITY. This happens
after the JavaCard plugged out, unselected, powered off or blocked (if 5 PIN and then 5
PUK trails are failure, then the user becomes unauthenticated), channel is closed, the
application is closed or communication end. Information about these states are reached by
checking the status of the channel.

The following two figures and the table are taken from GPC_Specification-2.2.1.pdf. They
show the mechanism of phase ii) Secure Channel Operations.

8

9

	1 Introduction
	1.1 Design
	1.2 Security
	1.3 Applet

	2 Implementation
	2.1 Instructions
	2.1.1 INS_SENDKEY (0x50)
	2.1.2 INS_CHANGEKEY (0x51)
	2.1.3 INS_SETPIN (0x52)
	2.1.4 INS_VERIFYPIN (0x53)
	2.1.5 INS_VERIFYPUK (0x54)
	2.1.6 INS_RUN (0x55)
	2.1.7 INS_SETPUK (0x56)

	2.2 States
	2.3 Summary

	3 Secure channel

