Seminar 3

Algorithm 1 (Variable byte code) A number n is encoded in variable byte code in the following procedure:

- 1. Take a binary representation of n with padding to the length of a multiple of 7.
- 2. Split into of 7 bit blocks right-to-left.
- 3. Add 1 to the beginning of the last block and 0 to the beginning of all previous blocks.

Example: VB(824) = 0000011010111000

Definition 1 (Unary code) Unary code, also referred to as α code, is a coding type where a number n is represented by a sequence of n 1s (or 0s) and terminated with one 0 (or 1). That is, 6 in unary code is 1111110 (or 0000001). The alternative representation in parentheses is equivalent but for this course we use the default representation.

Definition 2 (\gamma code) γ code is a coding type, that consists of an offset and its length: $\gamma(n) = \text{length of offset}(n)$ in α , offset(n). Offset is a binary representation of a number n without the highest bit (1). Length of this offset encoded in the unary (α) code. Then the number 60 is encoded in γ as 111110,11100.

Definition 3 (\delta code) A number n is encoded in δ code in the following way. First calculate the offset of n and the length of n encode with γ code. Then add the offset of n. The final form is $\delta(n) = \text{length of offset}(n)$ in γ , offset(n). Analogously, 600 is encoded in δ as 1110,001,001011000.

Definition 4 (Zipf's law) Zipf's law says that the *i*-th most frequent term has the frequency $\frac{1}{i}$. In this exercise we use the dependence of the Zipf's law $cf_i \propto \frac{1}{i} = ci^k$ where cf_i is the number of terms t_i in a given collection with k = -1.

Definition 5 (Heaps' law) Heaps' law expresses an empiric dependency of collection size (number of all words) T and vocabulary size (number of distinct words) M by $M = kT^b$ where $30 \le k \le 100$ and $b \approx \frac{1}{2}$.

Exercise 1

Count variable byte code for the postings list $\langle 777, 17743, 294068, 31251336 \rangle$. Bear in mind that the gaps are encoded. Write in 8-bit blocks.

Exercise 2

Count γ and δ codes for the numbers 63 and 1023.

Exercise 3

A collection of documents contains 4 words: *one*, *two*, *three*, *four* of decreasing word frequencies f_1 , f_2 , f_3 and f_4 . The total number of tokens in the collection is 5000. Assume that the Zipf's law holds for this collection perfectly. What are the word frequencies?

Exercise 4

How many distinct terms are expected in a document of 1,000,000 tokens? Use the Heaps' law with parameters k = 44 and b = 0.5