You Are How You Walk:

Gait Recognition from Motion Capture Data

Michal Balazia

Faculty of Informatics, Masaryk University, Brno, Czech Republic
https://gait.fi.muni.cz

Michal Balazia (FI MU) Gait Recognition from MoCap Data May 2nd, 2017 1/26



Data captured by a system of multiple cameras or a depth camera
Large tracking space

Multiple samples of a single walker

High variance in encounter conditions

Database of large amount of biometric samples

Identification in real time
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Motion Capture Data (MoCap)

Frame: 0 25 50 75 100 125 150

}'
X
@ Structural motion data

@ Skeleton of joints and bones

@ Data = 3D positions of joints in time.

@ Can be collected by a system of multiple cameras (Vicon) or a depth
camera (Microsoft Kinect)
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Raw MoCap Gait Data

@ Model of human body has J joints
@ Measured gait cycle has length of T video frames
@ Raw MoCap gait sample is a tensor
71 (1) o n(T)
g= : :
Y(T) - 2(T)

7; (t) € R3 are 3D coordinates of j € {1,...,J}at t € {1,..., T}
Dimensionality 3JT

Sample space {g}
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Geometric Features

@ Examples of geometric gait features:

joint angles (angle in shoulder-elbow-wrist)
inter-joint distances (feet distance)

joint velocity or acceleration

areas of joint polygons (upper body span)

features

video frames

@ Examples of distance functions:
e Dynamic Time Warping
o Minkowski distances
o ...
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Linearly Learned Latent Features

@ Labeled learning sample space {(gn,En)},'y;l
@ /, is a label of one of the identity classes {IC}CC;1

Zc has a priori probability p.

Consider an optimization criterion J

Feature extraction is given by a feature matrix ® € RP*D

@ D-dimensional sample space {g,,}nN:1

o D-dimensional feature space {gn},,"’zl

Transform gait samples g, into gait templates g, = ®'g,
Examples of distance functions:
e Mahalanobis distance

o Minkowski distances
o ...
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Learning by MMC

@ Optimize class separability of the feature space

@ Margin of two classes is the Euclidean distance of their means p.
minus both their variances 2.

@ Maximum Margin Criterion used by the Support Vector Machines

C
J = % Z PcPc’ ((Mc - Mc/)—r ('UJC - MC/) —tr (ZC + Zd))

c,c’'=1
:...:tr(ZB—Zw)

@ Between-class scatter matrix X g, within-class scatter matrix Xy
@ Criterion for a feature matrix ®

T (®) = tr <¢T (5 — Zw) ¢)
@ Solution: solve the generalized eigenvalue problem
(Xp —Xw)® = Ao

@ Mahalanobis distance function on templates
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Learning by PCA+LDA

2-stage feature extraction technique
Principal Component Analysis and Linear Discriminant Analysis

(]
[~
@ Total scatter matrix X1 = Xg + Xw
(]

Criterion for a feature matrix ®1,pa

J (®Ppca) =tr <¢1ICAZT¢'PCA)

J (®rpa) =tr ( ® A Ppca ZEProaPLpa )
A PpoaZwPreaPLDA

@ Solution: solve the generalized eigenvalue problems
27®pca = APpcyp
-1
(PrcaZw®ros)  (®rcaZp®roa) ®ros = A®ip,

@ Mahalanobis distance function on templates
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Identity Classification Pipeline

b3
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Identity Classification Pipeline
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The Classification Problem

I —— —
GAIT SAMPLE GAIT TEMPLATE GAIT TEMPLATE GAIT SAMPLE
WITH IDENTITY WITH IDENTITY WITH IDENTITY WITH IDENTITY
—— f—— - / VA AL
FEATURES EXTRACTION REGISTRATION REGISTRATION Z FEATURES EXTRACTION
GAIT SAMPLE GAIT TEMPLATE GAIT TEMPLATE GAIT SAMPLE
WITH IDENTITY WITH IDENTITY WITH IDENTITY WITH IDENTITY
DATA|BASE
K @ [FerTores xTRACTON” | ENTITY CLASSIFIGATION
GAIT SAMPLE GAIT TEMPLATE

CLASSIFIED IDENTITY

Identity: Label of a registered identity class.
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But In Video Surveillance Environment ...

—— s AALA A e — A/ L A
FEATURES EXTRACTION SN REGISTRATION REGISTRATION FEATURES EXTRACTION
GATT SAMPLE GATT TEMPLATE AT TEMPLATE AT SAMPLE
WITH IDENTITY WITH IDENTITY WITH IDENTITY WITH IDENTITY
s . .2 VALALA
FEATURES EXTRACTION REGISTRATION - REGISTRATION BAAA A FEATURES EXTRACTION
GAIT SAMPLE GAIT TEMPLATE GAIT TEMPLATE GAIT SAMPLE
WITH IDENTITY WITH IDENTITY WITH IDENTITY WITH IDENTITY
DATA[BASE
AA_A A
| IAA A
K @ FEATURES EXTRAGTION AL IDENTITY CLASSIFICATION m
GAIT SAMPLE GAIT TEMPLATE CLASSIFIED IDENTITY

How can we represent the identity in video surveillance environment?
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The Class Discovery Problem

REGISTRATION REGISTRATION

k FEATURES EXTRACTION FEATURES EXTRACTION Q

GAIT SAVPLE GATT TEWPLATE AT TEWPLATE GAIT SAWPLE
WITH IDENTITY WITH IDENTITY WITH IDENTITY WITH IDENTITY
* FEATURES EXTRACTION REGISTRATION | " 'REGISTRATION FEATURES EXTRACTION k
GAIT SAVPLE GATT TEWPLATE AT TEWPLATE AT SAWPLE
WITH IDENTITY WITH IDENTITY WITH IDENTITY WITH IDENTITY
ATA[BASE
had AA N
VAL
AA_A A
@ FEATURES EXTRACTION IDENTITY CLASSIFICATION SavA
ANCALA
GAIT SAMPLE GAIT TEMPLATE CLASSIFIED IDENTITY

Identity: Content of a discovered identity class = movement history.
1

1
MM\ ==

1
You are how you walk. crime present

time
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Universal Gait Features

@ Data need to be acquired without walker's consent
@ New identities can appear on the fly

@ Labels for all encountered people may not always be available

@ Universal gait features — features of a high power in recognizing all
people and not only those they were learned on

@ We learn the universal gait features by MMC or by PCA-+LDA on an
auxiliary dataset

@ The dataset is assumed to be rich on covariate conditions — aspects
of walk people differ in

@ These features create an unsupervised environment particularly
suitable for uncooperative person identification
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Evaluation: Database

e ASF/AMC format of MoCap data
@ CMU MoCap database obtained from the CMU Graphics Lab

@ Extracted database contains only gait cycles (motions of two steps)

@ Normalization: position, walk direction and skeleton

@ 7 extracted databases:

# identities | # gait cycles
2 35
4 67
8 130
16 302
32 2,047
54 3,843
64 5,923
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Evaluation: Data Separation

@ Data separation

Samples Samples
Learning
3 8
B . . S
2 [Learning Evaluation *é
3 o Evaluation

Normal evaluation Cross-identity evaluation

@ Evaluation of classification estimated by nested cross-validation

Outer 3-fold cross validation

Inner 10-fold cross validation
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Evaluation: Metrics

o Class separability coefficients:

@ Davies-Bouldin Index (DBI)

@ Dunn Index (DI)

@ Silhouette Coefficient (SC)

@ Fisher’s Discriminant Ratio (FDR)

o Classification based metrics:

Cumulative Match Characteristic @ Correct Classification Rate (CCR)
False Accept / Reject Rate @ Equal Error Rate (EER)
Receiver Operating Characteristic (ROC) @ Area Under ROC Curve (AUC)

°

Mean Average Precision (MAP)

Recall / Precision Rate
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Evaluation: Results

class separability coefficients
Bl DI SC FD

classification based metrics
CR

scalability
DCT T

method EER MAP
Ahmed| 216.2 0.842 —0.246 0.954 |0.657 0.38 0.659 0.165 0.01 24
Ali| 5015 0.26 —0.463 1.175|0.225 0.384 0.679 0.111 0.01 2
Andersson| 142.3 1.297 —-0.102 1.127 ({0.84 0.343 0.715 0.251 0.01 68
Ball| 161 1.458 —0.163 1.117 |0.75 0.346 0.711 0.231 0.01 18
Dikovski| 144.5 1.817 —0.135 1.227|0.881 0.363 0.695 0.254 0.01 71
Gavrilova| 185.8 1.708 —0.164 0.77 [0.891 0.374 0.677 0.254 | 4478 5,254
Jiang| 206.6 1.802 —0.249 0.85 |0.811 0.395 0.657 0.242 8.17 584
Krzeszowski| 154.1 1.982 —0.147 0.874|0.915 0.392 0.662 0.275| 35.32 3,795
Kumar| 118.6 1.618 —0.086 1.09 |0.801 0.459 0.631 0.217 7.87 13,950
Kwolek| 150.9 1.348 —0.084 1.175[0.896 0.358 0.723 0.323 0.06 660
Preis|1,980.6 0.055 —0.512 1.067 |0.143 0.401 0.626 0.067 0.01 13
Sedmidubsky| 398.1 1.35 —0.425 0.811|0.543 0.388 0.657 0.149 5.79 292
Sinha| 214.8 1.112 —0.215 1.101|0.674 0.356 0.697 0.191 0.01 45
_MMCgRr| 154.2 1.638 0.062 1.173|0.925 0.297 0.748 0.353| 0.01 53
_MMCjc| 130.3 1.891 0.051 1.106 |{0.918 0.378 0.721 0.315 0.01 51
_PCALDABR| 182 1.596 —0.015 0.984 (0.918 0.361 0.695 0.276 0.01 54
_PCALDA)c| 174.4 1.309 —0.091 0.827 |0.863 0.44 0.643 0.201 0.01 54
_Random 0.042 0
_Rawpr| 163.7 2.092 0.011 0.948 |0.966 0.315 0.743 0.358| 70.27 8,229
_Raw 155.1 1.954 —0.12 0.897 [0.926 0.377 0.679 0.283 |160.64- 13,574
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Evaluation: Results
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Evaluation: Results

@ Homogeneous set-up with C; = Cg € {2,...,27}

@ Heterogeneous set-up with C; = Cg € {2,...,27}
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Evaluation: Results

@ Heterogeneous set-up with C; € {2,...,27} and Cg =27
@ Heterogeneous set-up with C; € {2,...,52} and Cg =54 — C;
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Evaluation: Results

method | CCR EER  AUC MAP |CMC
Rawjc | 0.872 0.321 0.731 0.317 | emmmm 1.00
MMCgg | 0.868 0.305 0.739 0.332 | e~ 095 _—
Rawpy 0.867 0333 0.701 0259 | e 020 22—
MMCyc | 0.861 0325 072 0309 | = "0 |
PCA+LDAgg | 0.845 0.335 0.682 0.247 | w5 (6 |
KwolekB | 0.823 0.367 0.711 0.296 ‘g 070 L2
KrzeszowskiT | 0.802 0.348 0.717 0.273 % 0.65 —
PCA+LDA)c|0.79 0.417 0.634 0.189 £ 060 7
DikovskiB | 0.787 0.376 0.679 0.227 8 055 1
AhmedF | 0.771 0.371 0.664 0.22 5 050 1 7
AnderssonVO [ 0.76  0.352 0.703 0.228 g 045 7
NareshKumarMS | 0.717 0.459 0.613 0.19 § 8:(5) /
JiangS | 0.692 0.407 0.637 0.204 2 030 / /
BallA | 0.667 0.356 0.698 0.207 2 o 1/
SinhaA | 0.598 0.362 0.69 0.176 § 020 1L/
AhmedM | 0.58 0.392 0.646 0.145 0.15 ,/
Sedmidubsky] | 0.464 0.394 0.65 0.138 | em===  0.10
AliS|0.186 0.394 0.662 0.096 | e 0.05
Preis] | 0.131 0.407 0.618 0.066 | e ~ 0-00 77—
Random | 0.039 — 234 ganﬁ 78910
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Evaluation: Results
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Evaluation: Results
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Evaluation Framework and Database

Available online at https://gait.fi.muni.cz

Database extraction drive
Implementations of all 20 methods

Classifier learning and classification mechanism

Evaluation mechanism and 12 performance metrics
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Universal gait features learned on an auxiliary dataset

Our approach based on MMC and PCA+LDA

Broad evaluation on normal and cross-identity setups

MMC learned on 17 identities recognizes 37 identities with 95% CCR
MMC learned yet on 7 identities best recognizes 57 identities
Evaluation framework and database

https://gait.fi.muni.cz

Thank you for attention.
Questions?
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