IA159 Formal Verification Methods

LTL—BA via Alternating 1-Weak BA

Jan Strejcek

Faculty of Informatics
Masaryk University

Focus and sources

Focus
m linear temporal logic (LTL) and Blchi automata (BA)
m alternating 1-weak Blchi automata (A1W)
m translation LTL—-A1W
m translation AAW—BA

Source

m M. Y. Vardi: An Automata-Theoretic Approach to Linear
Temporal Logic, LNCS 1043, Springer, 1995.

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 2/34

Syntax of LTL

Linear Temporal Logic (LTL) is defined by

pu=T|al| | eiAe | Xo | ¢1Ugs
where T stands for true and a ranges over a countable set AP
of atomic propositions.

Abbreviations: 1=-T Fo=TUgp Gy = ~F-p

Terminology and intuitive meaning

Xa next ed e o o ...

aub until aa...abee o ...
Fa eventually oo ... 030 0 o ...
Ga always aaaa...

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 3/34

Semantics of LTL

Let = = 24P where AP’ C AP is a finite subset. We interpret
LTL on infinite words w = w(0)w(1) ... € ¥“. By w; we denote
the suffix of w of the form w(i)w(i +1)w(i+2)....

The validity of an LTL formula ¢ for w € ¥, written w = ¢, is

defined as
wkET
wE a iff aec w(0)
wE —p iff wlE o
W):(p1/\(p2 iff W’ZQO-]/\W):()OQ
w = Xp iff wy=o

wiEpiUps iff JieNg:wil= oo AVO<j<i:w =g

Given an alphabet X, an LTL formula ¢ defines the language

L(p)={weX¥|wkE ¢}

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 4/34

Blchi automata (BA)

A Buchi automaton (BA) is a tuple A = (X, Q, 4, qo, F) defined
precisely as a finite automaton. There are just two differences:

m a Buchi automaton is interpreted over infinite words

m arunis accepting if it visits some accepting state infinitely
often

K, | /
(> ()
k

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 5/34

Blchi automata (BA)

A Buchi automaton (BA) is a tuple A = (X, Q, 4, qo, F) defined
precisely as a finite automaton. There are just two differences:

m a Buchi automaton is interpreted over infinite words

m arunis accepting if it visits some accepting state infinitely
often

K, | /
(> ()
k

Accepts all infinite words over ¥ = {k, /} with infinitely many /.

I1A159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 6/34

LTL—BA translations in general

m applications in automata-based LTL model checking,
vacuity checking (checks trivial validity of a specification
formula), ...
m many LTL—BA translations
m LTL — generalized Bichi automata (GBA) — BA (Spin)
m LTL — transition-based GBA (TGBA) — BA (Spot)
m LTL — alternating 1-weak Blichi automata (A1W) — BA
m LTL - A1W — TGBA — BA (LTL2BA, LTL3BA)
...

m translations via alternating 1-weak automata offer

m size-reducing optimizations of alternating 1-weak BA
m smaller resulting BA (in some cases)

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 7/34

LTL—BA via alternating 1-weak BA

Alternating Blichi automata

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 8/34

Positive boolean formulae

Positive boolean formulae over set Q (57 (Q)) are defined as

o u=T [L]qg]| prAw2| @1V

where T stands for true, L stands for false, and g ranges
over Q.

S C Qisamodelof p <= the valuation assigning true just
to elements of S satisfies ¢

S is a minimal model of ¢ <= S is a model of ¢ and no proper
(written S |= ¢) subset of Sis a model of ¢

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 9/34

Examples of positive boolean formulae

formulae of BT ({p,q,r}) | (minimal) models
1L no model
T 0,{p}. {a}, {r}. {p.q}, ...
pPAQ {p.q}, {p:q,r}
pVv(gAr) phAp, gt {p.ry {q.r}, {p,q,r}
pA(qVr) {p.q}, {p.r}, {p,q,r}

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 10/34

Examples of positive boolean formulae

formulae of BT ({p,q,r}) | (minimal) models
1L no model
T 0,{p}. {a}, {r}. {p.q}, ...
pPAQ {p.q}, {p:q,r}
pVv(gAr) phAp, gt {p.ry {q.r}, {p,q,r}
pA(qVr) {p.q}, {p.r}, {p,q,r}

minimal models = clauses in disjunctive normal form

e = V(AP

SEp peS

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 11/34

Alternating Blchi automata

An alternating Bichi automaton is a tuple A = (X, Q, 9, Qo, F),
where

m Y is a finite alphabet,

m Qs a finite set of states,

mJ:Qx X — BH(Q)isa transition function,
B Qo € Qis aninitial state,

m F C Qis a set of accepting states.

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 12/34

HGES

Atreeis aset T C Nj such thatif xc € T, where x € Nj and
¢ € Ny, then also

m x<Tand
mxceTforall0O<c <ec.

T={¢01,23,

e
|
0/1¥3 00,01, 20,

21,22,210 }
ya RN
20" 21 22

00 01 |

210

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 13/34

HGES

Atreeis aset T C Nj such thatif xc € T, where x € Nj and
¢ € Ny, then also

m x<Tand
mxceTforall0O<c <ec.

T:{ 6’07172737

e
|
0/1¥3 00,01, 20,

21,22,210 }
ya RN
20" 21 22

00 01 |

210

A Q-labeled tree is a pair (T, r) of atree T and a labeling
functionr: T — Q.

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 14/34

Alternating Blchi automata: a run

A run of an alternating BA A = (X, Q, 9, qo, F) on word
w=w(0)w(1)... € X% is a Q-labeled tree (T, r) such that

m r(¢) = go and
m foreach x € T: {r(xc) | c € No,xc € T} |=6(r(x), w(|x])).

Arun (T, r) is accepting iff for each infinite path 7 in T it holds
that Inf(7) N F # (), where Inf(r) is the set of all labels
(i.e. states) appearing on 7 infinitely often.

An automaton A accepts a word w iff there is an accepting run
of A on w. We set

L(A) = {w € ¥ | A accepts w}.

I1A159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 15/34

Example of an alternating Blchi automaton

I1A159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 16/34

Example of an alternating Blchi automaton

Accepts the language I*m(/ + m+ n)*n®.

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 17/34

Alternating 1-weak Blchi automata (A1W)

Intuitively, an alternating BA is 1-weak (or linear or very weak,
written A1TW or VWAA) if it contains no cycles except selfloops.

Formally, let A = (¥, Q, 6, qo, F) be an alternating BA. For each
p € Q we define the set of all successors of p as

Succ(p) ={q |3, SCQ:SU{q} =dip)}

Automaton A is 1-weak (or linear or very weak) if there exists
a partial order < on Q such that for all p, g € Q it holds:

q € Suce(p) = q<p

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 18/34

m standard Blchi automata are alternating Blichi automata
where each §(p, /) is L or a disjunction of states

m A1W automata have the same expressive power as LTL

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 19/34

LTL—BA via alternating 1-weak BA

LTL-A1TW

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 20/34

LTL—-A1W

Input: an LTL formula ¢ and an alphabet ¥ = 247
for some finite AP’ C AP
Output: A1W automaton A = (, Q, 6, q,., F) accepting L=(y)

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 21/34

LTL—-A1W

Input: an LTL formula ¢ and an alphabet ¥ = 247
for some finite AP’ C AP
Output: A1W automaton A = (, Q, 6, q,., F) accepting L=(y)

m Q= {qy,q-y | ¥ is a subformula of ¢}

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 22/34

LTL—-A1W

Input: an LTL formula ¢ and an alphabet ¥ = 247
for some finite AP’ C AP
Output: A1W automaton A = (, Q, 6, q,., F) accepting L=(y)

m Q= {qy,q-y | ¥ is a subformula of ¢}
m ¢ is defined as follows (where @ € B*(Q) satisfies @ = —«)

éagr,l) =T T =1
5(ga, /) = Tifael, L otherwise 1 =T
6(q-y, 1) = 0(ay, 1) G = Qy
5(q¢/\p7l) = 6(qy, 1) N 6(qp, 1) @ = G
o(Qxy;) = Qu Ay = Bv7Y
5(quup, 1) = 3(qp,) v (6(qy, 1) A Qyup) BVy = BAY

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 23/34

LTL—-A1W

Input: an LTL formula ¢ and an alphabet ¥ = 247
for some finite AP’ C AP
Output: A1W automaton A = (, Q, 6, q,., F) accepting L=(y)

m Q= {qy,q-y | ¥ is a subformula of ¢}
m ¢ is defined as follows (where @ € B*(Q) satisfies @ = —«)

éagr,l) =T T =1
5(ga, /) = Tifael, L otherwise 1 =T
6(q-y, 1) = 0(ay, 1) G = Qy
5(q¢/\p7l) = 6(qy, 1) N 6(qp, 1) @ = G
o(Qxy;) = Qu Ay = Bv7Y
5(quup, 1) = 3(qp,) v (6(qy, 1) A Qyup) BVy = BAY

B [= {q-pup) | YU pis asubformula of ¢}

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 24/34

LTL—-A1W

Note that every infinite path of a run of A has a suffix labeled
with a state of the form gy, or q-(4u,) (other states have no
loops and can appear at most once on a path). F is defined to
prevent the first case: y)Up is satisfied only if p eventually holds.

Theorem

Given an LTL formula ¢ and an alphabet ¥, one can construct
an A1W automaton A accepting L*>(y) and such that the
number of states of A is linear in the length of .

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 25/34

LTL—BA via alternating 1-weak BA

ATW—BA

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 26/34

A1TW—BA

Input: an alternating BA A = (%, Q, 4, qo, F)
Output: aBA A" = (X, @, ¢, qy, F') accepting L(.A)

I1A159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 27/34

A1TW—BA

Input: an alternating BA A = (%, Q, 4, qo, F)
Output: aBA A" = (X, @, ¢, qy, F') accepting L(.A)

Intuitively, A’ tracks states on each level of the computation tree
of A. Moreover, A’ has to divide the set of states into two sets:
states labeling paths with recent occurrence of an accepting
state, and states labeling the other paths.

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 28/34

A1TW—BA

Input: an alternating BA A = (%, Q, 4, qo, F)
Output: aBA A" = (X, @, ¢, qy, F') accepting L(.A)

mQ =29x%x29

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 29/34

A1TW—BA

Input: an alternating BA A = (%, Q, 4, qo, F)
Output: aBA A" = (X, @, ¢, qy, F') accepting L(.A)

m Q) =29x%x29
® gy = ({q},0)

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 30/34

A1TW—BA

Input: an alternating BA A = (%, Q, 4, qo, F)
Output: aBA A" = (X, @, ¢, qy, F') accepting L(.A)

mQ =20x29
m g, = ({%},0)
m J'((U, V),]) is defined as:
m if U # (0 then
§'((U, V), 1) = {(U', V') | 3X, Y C Q such that
X = Ageud(g.1) and
Y = Agev8(q.1) and

U=X~Fand V' =YU(XNF)}
m if U= 0 then

§'((0, V), 1) = {(U', V') | 3Y C Q such that

Y Agevd(q.1) and
U=Y~Fand V' = YnF)}

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 31/34

A1TW—BA

Input: an alternating BA A = (%, Q, 4, qo, F)
Output: aBA A" = (X, @, ¢, qy, F') accepting L(.A)

mQ =20x29
m g, = ({%},0)
m J'((U, V),]) is defined as:
m if U # (0 then
§'((U, V), 1) = {(U', V') | 3X, Y C Q such that
X = Ageud(g.1) and
Y = Agev8(q.1) and

U=X~Fand V' =YU(XNF)}
m if U= 0 then

§'((0, V), 1) = {(U', V') | 3Y C Q such that

Y Agevd(q.1) and
U=Y~Fand V' = YnF)}

m F = {0} x29

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 32/34

LTL—-A1W

Theorem

Given an alternating BA A = (¥, Q, 6, qo, F), one can construct
a BA A’ accepting L(.A) and such that the number of states of
Alis 200Q0),

Corollary

Given an LTL formula ¢ and an alphabet ¥, one can construct a
BA A’ accepting L>(¢) and such that the number of states of
A is 20(l¢D)

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 33/34

Coming next week

Partial order reduction

m When can a state/transition be safely removed from a
Kripke structure?

m What is a stuttering principle?
m Can we effectively compute the reduction?

IA159 Formal Verification Methods: LTL— BA via Alternating 1-Weak BA 34/34

