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Focus and sources

Focus
linear temporal logic (LTL) and Büchi automata (BA)
alternating 1-weak Büchi automata (A1W)
translation LTL→A1W
translation A1W→BA

Source
M. Y. Vardi: An Automata-Theoretic Approach to Linear
Temporal Logic, LNCS 1043, Springer, 1995.
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Syntax of LTL

Linear Temporal Logic (LTL) is defined by

ϕ ::= > | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 Uϕ2

where > stands for true and a ranges over a countable set AP
of atomic propositions.

Abbreviations: ⊥ ≡ ¬> Fϕ ≡ >Uϕ Gϕ ≡ ¬F¬ϕ

Terminology and intuitive meaning
Xa next • a • • • . . .
a U b until a a . . . a b • • • . . .
Fa eventually • • . . . • a • • • . . .
Ga always a a a a . . .
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Semantics of LTL

Let Σ = 2AP′
, where AP ′ ⊆ AP is a finite subset. We interpret

LTL on infinite words w = w(0)w(1) . . . ∈ Σω. By wi we denote
the suffix of w of the form w(i)w(i + 1)w(i + 2) . . ..
The validity of an LTL formula ϕ for w ∈ Σω, written w |= ϕ, is
defined as

w |= >
w |= a iff a ∈ w(0)
w |= ¬ϕ iff w 6|= ϕ
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 ∧ w |= ϕ2
w |= Xϕ iff w1 |= ϕ
w |= ϕ1 Uϕ2 iff ∃i ∈ N0 : wi |= ϕ2 ∧ ∀ 0 ≤ j < i : wj |= ϕ1

Given an alphabet Σ, an LTL formula ϕ defines the language

LΣ(ϕ) = {w ∈ Σω | w |= ϕ}.
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Büchi automata (BA)

A Büchi automaton (BA) is a tuple A = (Σ,Q, δ,q0,F ) defined
precisely as a finite automaton. There are just two differences:

a Büchi automaton is interpreted over infinite words
a run is accepting if it visits some accepting state infinitely
often

p q

l

k , l

k

l

Accepts all infinite words over Σ = {k , l} with infinitely many l .
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LTL→BA translations in general

applications in automata-based LTL model checking,
vacuity checking (checks trivial validity of a specification
formula), . . .
many LTL→BA translations

LTL→ generalized Büchi automata (GBA)→ BA (Spin)
LTL→ transition-based GBA (TGBA)→ BA (Spot)
LTL→ alternating 1-weak Büchi automata (A1W)→ BA
LTL→ A1W→ TGBA→ BA (LTL2BA, LTL3BA)
. . .

translations via alternating 1-weak automata offer
size-reducing optimizations of alternating 1-weak BA
smaller resulting BA (in some cases)
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LTL→BA via alternating 1-weak BA

Alternating Büchi automata
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Positive boolean formulae

Positive boolean formulae over set Q (B+(Q)) are defined as

ϕ ::= > | ⊥ | q | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where > stands for true, ⊥ stands for false, and q ranges
over Q.

S ⊆ Q is a model of ϕ ⇐⇒ the valuation assigning true just
to elements of S satisfies ϕ

S is a minimal model of ϕ ⇐⇒ S is a model of ϕ and no proper
(written S |= ϕ) subset of S is a model of ϕ
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Examples of positive boolean formulae

formulae of B+({p,q, r}) (minimal) models

⊥ no model
> ∅, {p}, {q}, {r}, {p,q}, . . .

p ∧ q {p,q}, {p,q, r}
p ∨ (q ∧ r) {p}, {p,q}, {p, r}, {q, r}, {p,q, r}
p ∧ (q ∨ r) {p,q}, {p, r}, {p,q, r}

minimal models = clauses in disjunctive normal form

ϕ ≡
∨

S|=ϕ

(
∧
p∈S

p)
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Alternating Büchi automata

An alternating Büchi automaton is a tuple A = (Σ,Q, δ,q0,F ),
where

Σ is a finite alphabet,
Q is a finite set of states,
δ : Q × Σ→ B+(Q) is a transition function,
q0 ∈ Q is an initial state,
F ⊆ Q is a set of accepting states.
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Trees

A tree is a set T ⊆ N∗0 such that if xc ∈ T , where x ∈ N∗0 and
c ∈ N0, then also

x ∈ T and
xc′ ∈ T for all 0 ≤ c′ < c.

ε

0 1 2 3

00 01 20 21 22

210

T = { ε,0,1,2,3,
00,01,20,
21,22,210 }

A Q-labeled tree is a pair (T , r) of a tree T and a labeling
function r : T → Q.
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Alternating Büchi automata: a run

A run of an alternating BA A = (Σ,Q, δ,q0,F ) on word
w = w(0)w(1) . . . ∈ Σω is a Q-labeled tree (T , r) such that

r(ε) = q0 and
for each x ∈ T : {r(xc) | c ∈ N0, xc ∈ T} |= δ(r(x),w(|x |)).

A run (T , r) is accepting iff for each infinite path π in T it holds
that Inf (π) ∩ F 6= ∅, where Inf (π) is the set of all labels
(i.e. states) appearing on π infinitely often.

An automaton A accepts a word w iff there is an accepting run
of A on w . We set

L(A) = {w ∈ Σω | A accepts w}.
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Example of an alternating Büchi automaton

m

l

m

l

n

q3

q2

p

q1

n

n

l

m

Accepts the language l∗m(l + m + n)∗nω.
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Alternating 1-weak Büchi automata (A1W)

Intuitively, an alternating BA is 1-weak (or linear or very weak,
written A1W or VWAA) if it contains no cycles except selfloops.

Formally, let A = (Σ,Q, δ,q0,F ) be an alternating BA. For each
p ∈ Q we define the set of all successors of p as

Succ(p) = {q | ∃l ∈ Σ,S ⊆ Q : S ∪ {q} |= δ(p, l)}.

Automaton A is 1-weak (or linear or very weak) if there exists
a partial order ≤ on Q such that for all p,q ∈ Q it holds:

q ∈ Succ(p) =⇒ q ≤ p
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Notes

standard Büchi automata are alternating Büchi automata
where each δ(p, l) is ⊥ or a disjunction of states
A1W automata have the same expressive power as LTL
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LTL→BA via alternating 1-weak BA

LTL→A1W
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LTL→A1W

Input: an LTL formula ϕ and an alphabet Σ = 2AP′

for some finite AP ′ ⊆ AP
Output: A1W automaton A = (Σ,Q, δ,qϕ,F ) accepting LΣ(ϕ)

Q = {qψ,q¬ψ | ψ is a subformula of ϕ}
δ is defined as follows (where α ∈ B+(Q) satisfies α ≡ ¬α)

δ(q>, l) = > > = ⊥
δ(qa, l) = > if a ∈ l , ⊥ otherwise ⊥ = >
δ(q¬ψ, l) = δ(qψ, l) q¬ψ = qψ
δ(qψ∧ρ, l) = δ(qψ, l) ∧ δ(qρ, l) qψ = q¬ψ
δ(qXψ, l) = qψ β ∧ γ = β ∨ γ
δ(qψUρ, l) = δ(qρ, l) ∨ (δ(qψ, l) ∧ qψUρ) β ∨ γ = β ∧ γ

F = {q¬(ψUρ) | ψU ρ is a subformula of ϕ}
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LTL→A1W

Note that every infinite path of a run of A has a suffix labeled
with a state of the form qψUρ or q¬(ψUρ) (other states have no
loops and can appear at most once on a path). F is defined to
prevent the first case: ψUρ is satisfied only if ρ eventually holds.

Theorem

Given an LTL formula ϕ and an alphabet Σ, one can construct
an A1W automaton A accepting LΣ(ϕ) and such that the
number of states of A is linear in the length of ϕ.
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LTL→BA via alternating 1-weak BA

A1W→BA
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A1W→BA

Input: an alternating BA A = (Σ,Q, δ,q0,F )
Output: a BA A′ = (Σ,Q′, δ′,q′0,F

′) accepting L(A)
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A1W→BA

Input: an alternating BA A = (Σ,Q, δ,q0,F )
Output: a BA A′ = (Σ,Q′, δ′,q′0,F

′) accepting L(A)

Intuitively, A′ tracks states on each level of the computation tree
of A. Moreover, A′ has to divide the set of states into two sets:
states labeling paths with recent occurrence of an accepting
state, and states labeling the other paths.
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A1W→BA

Input: an alternating BA A = (Σ,Q, δ,q0,F )
Output: a BA A′ = (Σ,Q′, δ′,q′0,F

′) accepting L(A)

Q′ = 2Q × 2Q

q′0 = ({q0}, ∅)
δ′((U,V ), l) is defined as:

if U 6= ∅ then

δ′((U,V ), l) = {(U ′,V ′) | ∃X ,Y ⊆ Q such that
X |=

∧
q∈U δ(q, l) and

Y |=
∧

q∈V δ(q, l) and
U ′ = X r F and V ′ = Y ∪ (X ∩ F )}

if U = ∅ then
δ′((∅,V ), l) = {(U ′,V ′) | ∃Y ⊆ Q such that

Y |=
∧

q∈V δ(q, l) and
U ′ = Y r F and V ′ = Y ∩ F )}

F ′ = {∅} × 2Q
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LTL→A1W

Theorem

Given an alternating BA A = (Σ,Q, δ,q0,F ), one can construct
a BA A′ accepting L(A) and such that the number of states of
A′ is 2O(|Q|).

Corollary

Given an LTL formula ϕ and an alphabet Σ, one can construct a
BA A′ accepting LΣ(ϕ) and such that the number of states of
A′ is 2O(|ϕ|).
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Coming next week

Partial order reduction

When can a state/transition be safely removed from a
Kripke structure?
What is a stuttering principle?
Can we effectively compute the reduction?
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